

USB 3.0 Outlet Conversion Cindy Fok, Andrew Moruzi, and Tyler Neyens University of Illinois at Urbana-Champaign Spring 2012

Introduction

- Addresses the growth of external DC converters for consumer products.
- Objective:

- Modify an AC wall outlet
- Include two DC power ports:
- Eliminates the need for DC converters outside the wall outlet or in appliances.

Product Features

- Two DC outputs with different power levels options
- Eliminated need of additional power converter
- High efficiency

- In-wall installation
- Simple installation process

Design Overview

Rectifier

- H-bridge rectifier chip
 - convert 120Vac power from the wall to 108Vdc
- Efficiency: 97.37%
- Ripple: ±1.7V
 - With capacitor bank of 156µF
- Waveform:
 - Channel 1 Output Voltage
 - Channel 2 Input Voltage from the Function Generator

Linear Regulators

• Design:

- Used two linear regulators
- Step down from 108V to 75V
- Step down from 75V to 12V
- Avoid over stressing the components
- Waveform:
 - Input 25 V from DC power supply.
 - Pot adjusted to voltage.
 - Range from 20V-8V tested.

FLYBACK CONVERTER

Flyback Converter

• Provides:

- galvanic isolation between the output and input
- an additional layer of surge protection
- Ratings:
 - Input: 108V/3 A
 - Output: 25V/8.1 /

Flyback MOSFET Control

12V

 Waveform of PWM control signal for the flyback converter

Flyback Converter Challenges

 \square

Top Waveforms:

- Noise on the switching signal
- Bottom Waveforms:
 - Floating ground
- Channels:
 - second voltage regulator output
 - first voltage regulator 2.
 - bridge rectifier output. 3.
 - switching signal (not on 4. differential probe)

Low Buck Converter

- Ratings:
 - Input: 25V/1A
 - Output: 5V/5A
 - Switching Frequency 300 kHz

Low Buck Control

• Used IC chip: TSP5450

- Included the MOSFET and controls for linear regulations
 - Voltage output regulated itself to be 5V

Low Buck Output

- Average Voltage: 5V
- Ripple: ± 100mV
- Waveform:
 - Low buck converter with an electronic load.
 - The electronic load with set output current of 4.75A
 - Channels:
 - 1. Input Voltage
 - 2. Output Voltage
 - 3. Output Current

Efficiency Curve

• Average Efficiency is 80.3%

High Buck Converter

- Rating:
 - Input: 25V/7.2A
 - Output: 12V/15A
 - Switching Frequency 115 kHz

High Buck Control

- Original Idea:
 - TI Buck Controller (TPS40020)
 - Over Current Protection mode
- Alternative Approach:
 - PWM (UC3843)
 - High Side Gate Driver (IR2117)

High Buck Output

• Waveform:

- loaded with drill 25V input from DC power supply.
- Channels:
 - Voltage output (unadjusted)
 - 2. Gate signal
 - 3. PWM output
 - 4. Input Voltage load drawing 3.5A

Efficiency Curve

• Average Efficiency is 88.93%

Loads

Wall Construction

Overall Results

- Each PCB worked
- Problems with Flyback PCB
- 100% operational Buck Modules

Lessons Learned

- Check Circuit (signals)
- Ground
- Don't plug in the circuit with power on during the demo
- Cindy is a good cook

Future

- Smaller Components
 - Potentiometers, higher switching frequency, inductor, PCB layout
- Lower ESR Capacitors
- PCB High Buck
- Commercialize

The Battle Continues...

Questions

