

Water Blaster

Electrical & Computer Engineering

Team 19 Clark Taylor - clarkmt2 Jaejin Lee - jaejin2 John Lee - junhee2

Overview

Water Blaster 101 Existing Solutions Our New Solution Mechanical Components Electrical Design Firmware Success and Challenges Verifications Ethics & Safety Future work & Roadmap

Pump Rod

Copyright 2013 iSoaker.com

- Water is put under pressure
- Mechanism to release water
- Nozzle

Two options:

Store at pressure Or Pump from reservoir

Elastic Pressure: Spring Chamber

Pump Shaft

Check Valve 1

Problems

Images Courtesy of Bambulab

Existing Electric Water Blasters

- Very Limited Range
- Low Capacity
- No Customization
- Not Easily Maintainable
- Not Interactive

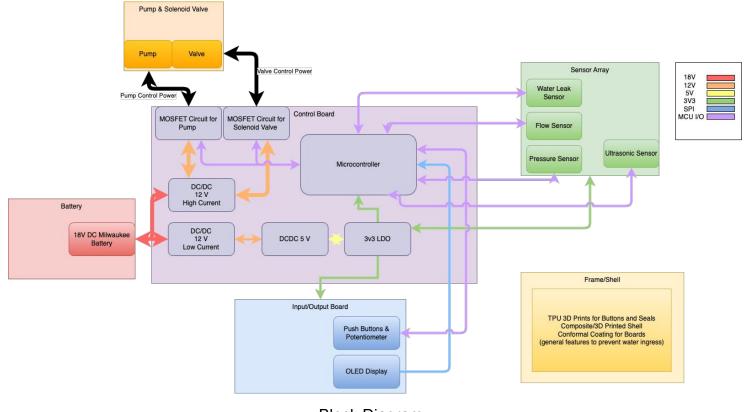
Requirements

AI generated image

High level requirements

- 1. The blaster should consistently shoot water bursts covering a distance of over 20 ft.
- 2. The blaster must be lightweight with a total weight not to exceed over 10 lbs.
- 3. The display must accurately reflect the state of the state machine and update in under 1 second to ensure accurate data is displayed.

Our Solution


Our New Electric Water Blaster

Quick Video Demonstration

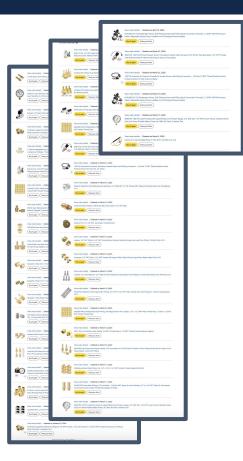
Block Diagram

Block Diagram

Mechanical Design

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING


Mechanical Parts

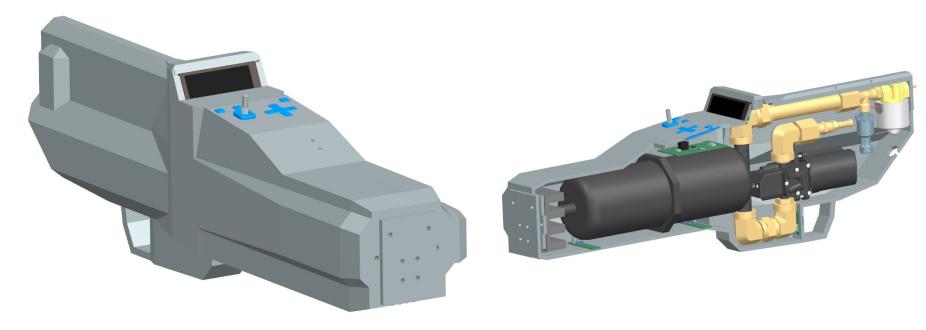
.

. . .

Tested many configurations

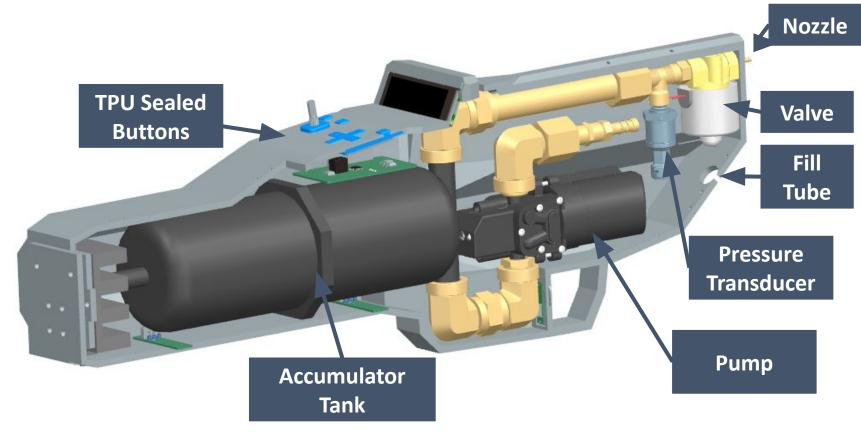
- Pump + Expandable Bladder + Solenoid Valve + Nozzle
- Pump + Non Pressurized Reservoir + Nozzle
- Pump +Tank + Bleeder Valve + Solenoid Valve + Nozzle
- Pump + Accumulator Tank + Solenoid Valve + Nozzle

Mechanical Parts



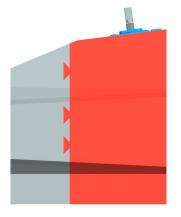
Features

- 12V Solenoid Valve
- 12V DC Pump
 - 110 PSI Max
- Accumulator Tank
 - Charged to 5PSI
- 1/8in Nozzlet



Labeled Mechanical Components

Understanding The Mechanical Design



Mechanical Design

Sleek angular design Integrated screen Larger back to accommodate 1.5L tank Bump out for solenoid valve at front

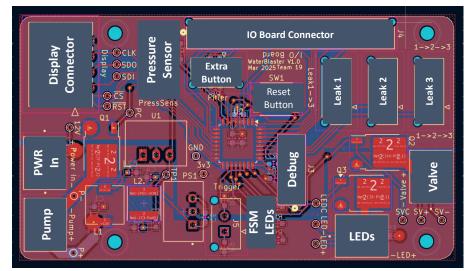
Designing for Manufacturability

Mounting holes on everything Multi part print combined with 0 tolerance interlocking joints Holes for square nut mounting Asymmetrical parting line

Electrical Design

ELECTRICAL & COMPUTER ENGINEERING

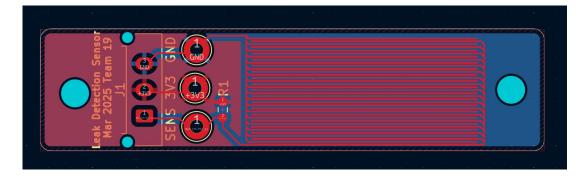
GRAINGER ENGINEERING


Main Board

Main Board

- MOSFET Circuit for high power applications
- ADC for Pressure Transducer
- GPIO for leak sensors
- SPI for OLED

Active Low Leak Sensors

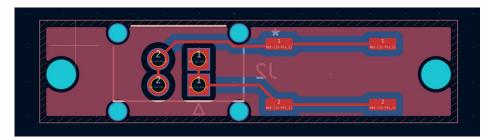


Interlaced traces GND and SENS SENS pulled up to 3v3 through 1M resistor Water completes circuit MCU GPIO goes to logic low

IO Board

IO Board

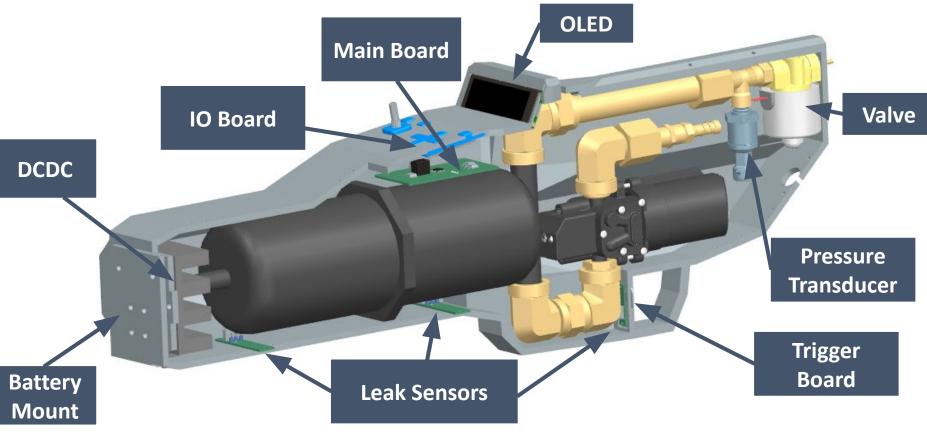
Interfaces with Main Board Step Encoder D-Pad Power Button Fill Button Settings Menu Button 3D Printed TPU Button Covers


Trigger Board

Trigger Board

- Mount easily in enclosure
- Can unplug to service
- Connector works both ways

Battery and DCDC



Battery and DCDC

- Milwaukee Tool Battery Mount
- Step Down Converter
- ~18V -> 12V
- Multiple hours of use on a single charge*

Roughly 7,000 50 ms bursts on a single charge

Labeled Electrical Components

ELECTRICAL & COMPUTER ENGINEERING

Firmware

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

Features

- Settings Menu
- Sensor Monitoring
- Firing Modes
- Shot Duration
- Drain Tank
- Automatic Fill

Autofill Algorithm

- Open Valve
- Start Pump
- Close Valve (15 PSI)
- Boost Sequence (75 PSI)
- Shut-off (~80 PSI)

Successes and Challenges

- Issue: Display flickering Solution: buffer
- Issue: Tank not filling
 Solution: drain before filling (State machine)
- Issue: Leak detection sensor not working properly Solution: logic flipped in firmware level
- Issue : Inaccurate encoder readings Solution : storing previous value

Verifications

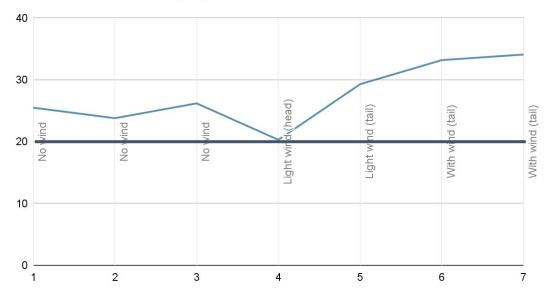
ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

Fill Timing from 0% to 100% capacity

Г
 4

Trial	Fill time (seconds)
1	19.0
2	18.6
3	18.5
4	18.3
5	18.7
6	18.5


AVG: 18.6 seconds

Distance with varying wind conditions (1s Shot Duration)

Г
Ц

Trial	Wind condition	Distance (ft)
1	No wind	25.5
2	No wind	23.8
3	No wind	26.2
4	Light wind (head)	20.3
5	Light wind (tail)	29.3
6	With wind (tail)	33.2
7	With wind (tail)	34.1

Distance Fired In Varying Wind Conditions

ELECTRICAL & COMPUTER ENGINEERING

Additional Verifications

- No observable glitches on OLED
- Leak sensor reacts quickly <250 ms
- SPI Data sent to display
- Encoder control smoothly updates values
- No cracks from 1 meter drop

Ethics & Safety

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

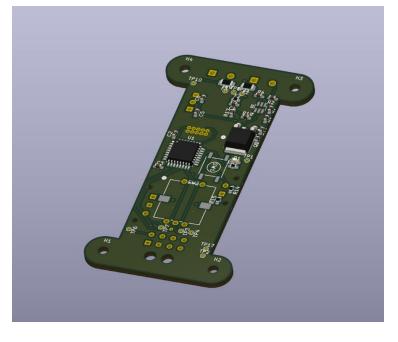
Ethical Commitment: Following IEEE & ACM Codes for safety

Safety Measures: Calibrated pressure (110 psi to 80 psi), auto shut-off, secure electrical enclosure

Regulatory Compliance: Adhering to ASTM F962 & OSHA guidelines

Design Focus: Prioritizing user safety & reliability

Future Work & Roadmap


ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

Roadmap & Improved Featureset

- New ergonomic enclosure
 - Composite
 - 2 Part instead of 8 (split mold)
- LED Lighting
 - Circuit designed
- Water Blaster Lite
 - Smaller footprint
 - Combines IO Board & Control Board
 - Transparent OLED
 - Integrated BMS & custom spot welded battery pack
 - Overvoltage & Undervoltage protection
 - Cost Effective Alternative
 - \$40

Mechanical Design for Water Blaster Lite

- Pump directly from hand filled reservoir
- BOM
 - Simple nozzle
 - 12V DC Pump
 - 12V Battery
- Roughly \$45 Per unit

Summary

- BOM Costs roughly \$120
- Shoots 30+ Feet
- Capable of firing 70 bursts per refill*
- Responsive and intuitive UI
- Custom enclosure
- Water Blaster Lite[™] Coming Soon...