

Secure Illini

Electrical & Computer Engineering

Group 61: Andrew Ruiz, Bowen Cui, Sebastian Sovailescu

May 6th 2025

Andrew Ruiz-BSEE. Sebastian Sovailescu - BSCE Bowen Cui - BSCE

Bike Thefts

Number of Bike Thefts Per Year on University of Illinois Campus Source: University of Illinois Police Department, Jan. 1, 2019 to Nov. 13, 2023 150 Number of Bike Thefts Reported 100 50 2019 2020 2021 2022 2023 Year

Problem

- There were over 100 bike thefts reported in 2022 and 2023.
- Even properly secured U-bar lock are not impervious to being stolen
- "5-10% of bike theft reports get solved"
- Bike theft is often a low priority for police due to limited evidence or lead
- Victims face direct costs (replacing the bike) and indirect costs (transportation delays, lost work time).

Solution

- Real Time alerts over WiFi of disturbances
- Remote Control over Bluetooth for keyless capabilities
- Advanced materials and electronic locking mechanisms resist common theft tools.
- Records when the lock was used, aiding in theft investigations.
- Siren to deter thieves when tampering is detected

Block Diagram of original design

Overview of each functional block requirements

- 1. Electronic locking system that can be manually overridden with master key (or override code) that can withstand over 1000 lbs of force.
- A 90 dB siren will sound for 10 seconds when our anti-theft algorithm detects suspicious activity within a locked state. Theft attempts will be determined when excessive movement is detected which sensitivity will be experimented with.
- 3. Can send and receive real-time alerts, commands, or temperature readings over WiFi and/or Bluetooth using a custom built web application. All communications will be safe.
- 4. 3.3V Indicator LEDs to indicate the lock's current state as well as power level.

High level requirements

- 1. Electronic locking system that can be <u>controlled with Bluetooth</u> manually overridden with master key (or override code) that can withstand over 1000 lbs of force.
- 2. A <u>60 dB buzzer</u> will sound for 10 seconds when our anti-theft algorithm detects suspicious activity within a locked state. Theft attempts will be determined when excessive movement is detected which sensitivity will be experimented with.
- 3. Can send and receive real-time alerts, or temperature readings over WiFi and/or Bluetooth using a <u>ThingSpeak dashboard</u>. All communications will be safe.
- 4. 3.3V Indicator LEDs to indicate the lock's current state as well as power level.

Physical Design

Physical Design

PCB Initial Design

Problems

- Messy Traces
- USB-UART Bridge on board
- Extra unnecessary sensors
- Oversized board
- No Ground Net

Improvements

- Cleaner Trace Design
- USB-UART bridge pins provided
- Significantly smaller board
- Test pins provided

Subsystems

Over of functional blocks

Power

- 4.7V 2Ah rechargeable battery
- Voltage regulator
- Battery life of ~2.4days

Locking Mechanism

- Bluetooth controlled servo
- LED state

Alarm

- Anti-theft detection
- Buzzer plays for 10 seconds
- Trigger alert

WiFi

- Real-time alerts
- IMU and temperature readings
- ThingSpeak dashboard

Components

- Tenergy Rechargeable Battery (4.8V 2000mAh)
- LM1117 3.3V Regulator
- Several 0.1uF-10uF stability capacitors

Power

- 4.8V Rail from Battery
 - IMU
 - SERVO
- 3.3V
 - ESP
 - \circ Programing

Testing

- No Manual Battery Life test obtained
- Current Consumption Passive:
 - ESP: 20mA
 - IMU: 3.9mA
 - LED: 4mA
 - SERVO: 7.7mA
 - SIREN: 0mA
- 2000mAH /(35.6mA * 24H) = 2.34Days
- Peak Values
 - ESP: 300mA
 - IMU:3.9mA
 - LED:4mA
 - SERVO: 200mA
 - SIREN: 0.1mA

•1		S			
Requirement	Verification Method	Result	The device shall send	Confirm and demonstrate wifi communication with web app	Successful Test
The lock shall secure within 2 seconds of command.	Measure time from Bluetooth command to movement with stopwatch	Lock secured within 1.5s	commands over WiFi and/or Bluetooth using the custom web app		
Lock shall unlock only after valid authentication	Test it doesn't open with invalid commands	Only opened and closed on proper commands	3.3V Indicator LEDs shall show lock state (Locked/Unlocked) and	Demonstrate LED with different lock states and battery level	Successful Alarm status LED, due to design limitations with housing, Unsuccessful
The lock shall detect and alert on tampering	Simulate tampering (e.g., vibrational or mechanical force) and check alert response.	IMU properly detected movement and signaled the	battery status (e.g., Good, Low, Critical).		battery status LED
		siren.	The system shall measure and report temperature data	Vary the temperature environment and verify reported values	Successful Test
There shall be a mechanical override.	Try to mechanically override lock	Successful test	to the web application in real time.		
Siren will trigger 90dB siren within 1 sec of tampering	Simulate tampering and time response time	Siren only capable of 70dB but successful timing	The siren shall sound for 10 seconds once activated.	Trigger alarm and use a timer to verify siren duration.	Design choice led to a shorter duration than 10 sec, Unsuccessful test
The electronic locking system shall be able to withstand at least 1000 lbs of pulling force without mechanical failure.	Apply increasing force with with force gauge until failure	Unsuccessful, motor was displaced from force well below 1000lbs	Battery life can last up to 7 days	Leave plugged in and running for 7 days	Ran out of time to test but mathematically unsuccessful based on assumed average current draw.

-0

Locking Mechanism

Bluetooth

- MCU as Server
- nRF Connect app
- Commands over terminal

Servo

- ESP32Servo library
- Machine shop modification
- Latch modification

Requirement	Verification Method	Result	The device shall send real-time alerts and receive commands over WiFi and/or Bluetooth using the custom web app	Confirm and demonstrate wifi	Successful Test	
The lock <u>shall secure</u> within 2 seconds of command.	Measure time from Bluetooth command to movement with stopwatch	Lock secured within 1.5s		commands over WiFi and/or Bluetooth using the custom web app		
Lock shall unlock only after valid authentication	Test it doesn't open with invalid commands	Only opened and closed on proper commands		3.3V Indicator LEDs shall show lock state (Locked/Unlocked) and	Demonstrate LED with different lock states and battery level	Successful Alarm status LED, due to design limitations with housing, Unsuccessful
The lock shall detect and alert on tampering	Simulate tampering (e.g., vibrational or mechanical force) and check alert response.	IMU properly detected movement and signaled the		battery status (e.g., Good, Low, Critical).	battery status LED	
		siren.		The system shall measure and report temperature data to the web application in real time.	Vary the temperature environment and verify reported values	Successful Test
There shall be a mechanical override.	Try to mechanically override lock	Successful test				
Siren will trigger 90dB siren within 1 sec of tampering	Simulate tampering and time response time	Siren only capable of 70dB but successful timing		The siren shall sound for 10 seconds once activated.	Trigger alarm and use a timer to verify siren duration.	Design choice led to a shorter duration than 10 sec, Unsuccessful test
The electronic locking system shall be able to withstand at least 1000 lbs of pulling force without mechanical failure.	Apply increasing force with with force gauge until failure	Unsuccessful, motor was displaced from force well below 1000lbs		Battery life can last up to 7 days	Leave plugged in and running for 7 days	Ran out of time to test but mathematically unsuccessful based on assumed average current draw.

Alarm

Alarm

- Anti-theft detection
- Buzzer plays for 10 seconds
- Trigger alert

Problem

- Only 60dB
- ESP: Low output Voltage (3.3)

Figure 2 Acceleration magnitude formula for tampering detection

Solution

- H-Bridge
- ESP to Switch to Battery

Figure 3 Adafruit piezo buzzer PS1240

Alarm Tests

Testing

- Update
- Accurate data
- LED pattern to communicate

Requirement	Verification Method	Result		The device shall send real-time alerts and receive commands over WiFi and/or Bluetooth using the custom web app 3.3V Indicator LEDs shall show lock state (Locked/Unlocked) and	Confirm and demonstrate wifi communication with web app	Successful Test
The lock shall secure within 2 seconds of command.	Measure time from Bluetooth command to movement with stopwatch	Lock secured within 1.5s	r C E			
Lock shall unlock only after valid authentication	Test it doesn't open with invalid commands	Only opened and closed on proper commands			Demonstrate LED with different lock states and battery level	Successful Alarm status LED, due to design limitations with housing, Unsuccessful
The lock shall detect and alert on tampering	Simulate tampering (e.g., vibrational or mechanical force) and check alert response.	IMU properly detected movement and signaled the		battery status (e.g., Good, Low, Critical). battery status L	battery status LED	
		siren.		The system shall measure and report temperature data to the web application in real time.	Vary the temperature environment and verify reported values	Successful Test
There shall be a mechanical override.	Try to mechanically override lock	Successful test				
Siren will trigger 90dB siren within 1 sec of tampering	Simulate tampering and time response time	Siren only capable of 70dB but successful timing		The siren shall sound for 10 seconds once activated.	Trigger alarm and use a timer to verify siren duration.	Design choice led to a shorter duration than 10 sec, Unsuccessful test
The electronic locking system shall be able to withstand at least 1000 lbs of pulling force without mechanical failure.	Apply increasing force with with force gauge until failure	Unsuccessful, motor was displaced from force well below 1000lbs		Battery life can last up to 7 days	Leave plugged in and running for 7 days	Ran out of time to test but mathematically unsuccessful based on assumed average current draw.

WiFi

- Used WiFi.h library
- Registered device with MAC
- Generated API for ThingSpeak

ThingSpeak

- POST HTTP Request
 - X,Y, and Z acceleration (m/s^2)
 - Temperature (°C)
 - State (UNLOCKED/LOCKED/ALARM)

System FSM

Finite State Machine

State	Signals
UNLOCKED	Motion Detection <mark>OFF</mark> BUZZER <mark>OFF</mark> Ping ThingSpeak on state change
LOCKED	Motion Detection <mark>ON</mark> BUZZER <mark>OFF</mark>
ALARM	Motion Detection <mark>OFF</mark> BUZZER <mark>ON</mark> Ping ThingSpeak on state change and every 15 sec until reset

Finite State Machine

Poquiromont	Varification Mathed	Regult	The device shall send	Confirm and demonstrate wifi	Successful Test
Requirement	vernication method	Result	real-time alerts and receive	communication with web app	
The lock shall secure within 2 seconds of command.	Measure time from Bluetooth command to movement with stopwatch	Lock secured within 1.5s	commands over WiFi and/or Bluetooth using the custom web app		
Lock shall unlock only after valid authentication	Test it doesn't open with invalid commands	Only opened and closed on proper commands	3.3V Indicator LEDs shall show lock state (Locked/Unlocked) and	Demonstrate LED with different lock states and battery level	Successful Alarm status LED, due to design limitations with housing, Unsuccessful
The lock shall detect and alert on tampering	Simulate tampering (e.g., vibrational or mechanical force) and check alert response.	IMU properly detected movement and signaled the	battery status (e.g., Good, Low, Critical).		attery status LED
		siren.	The system shall measure and report temperature data	Vary the temperature environment and verify reported values	Successful Test
There shall be a mechanical override.	Try to mechanically override lock	Successful test	to the web application in real time.		
Siren will trigger 90dB siren within 1 sec of tampering	Simulate tampering and time response time	Siren only capable of 70dB but successful timing	The siren shall sound for 10 seconds once activated.	Trigger alarm and use a timer to verify siren duration.	Design choice led to a shorter duration than 10 sec, Unsuccessful test
The electronic locking system shall be able to withstand at least 1000 lbs of pulling force without mechanical failure.	Apply increasing force with with force gauge until failure	Unsuccessful, motor was displaced from force well below 1000lbs	Battery life can last up to 7 days	Leave plugged in and running for 7 days	Ran out of time to test but mathematically unsuccessful based on assumed average current draw.

Process

How did we get here?

Challenges

Challenges

- Programming Circuit wouldn't upload
- Stepper Motor Unidirectional
- Multiple PCB Designs with no USB Bridge connections
- Delayed testing process
- Bridged contacts underneath the ESP32

Solutions

Solutions

- Swapped CTS and RTS pins
- Switched to Servo Updated Lock
 Design
- 3rd PCB print was successful
- Had to speed up testing and Validation to makeup time
- Careful alignment of the ESP and longer baking time

Conclusion

What have we learned?

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

Conclusions

Things we learned

- 1. Circuit/PCB design using kicad
- 2. Circuit manufacturing process
- 3. The iterative process for product development

Things we would do differently

- 1. Pick components more carefully
- 2. Allow GPS tracking of the lock
- 3. Redesigning the lock to be physically stronger

Recommendations

What should be done going forward?

Recommendations

Smart attachment Vs Full Lock Design

- Safe and Secure Electronic Locking mechanism is expensive and hard to make secure
- Most physical locks already provide good physical protection
 - Lack external safety solutions

Develop Smart Attachment box

- Most of design could be condensed into attachment
- Attach either to bike or lock itself
- Cheap solution to improve security of products already on the market

Thank You Questions?

References

- 1. ACM. ACM Code of Ethics and Professional Conduct. Association for Computing Machinery, 2018, https://www.acm.org/code-of-ethics.
- B. C. / F. CU-CitizenAccess, "Bike thefts surge on University of Illinois campus, but online reporting system aids police investigations," CU-CitizenAccess.org, Jan. 04, 2024. <u>https://cu-citizenaccess.org/2024/01/bike-thefts-surge-on-university-of-illinois-campus-but-online-reporting ng-system-aids-police-investigations/</u>
- 3. FCC. Title 47 CFR Part 15 Radio Frequency Devices. Federal Communications Commission, <u>https://www.ecfr.gov/current/title-47/chapter-I/subchapter-A/part-15</u>.
- 4. IEEE. IEEE Code of Ethics. Institute of Electrical and Electronics Engineers, <u>https://www.ieee.org/about/corporate/governance/p7-8.html</u>.
- 5. UL. UL 437 Standard for Key Locks. Underwriters Laboratories, <u>https://www.ul.com</u>.
- 6. U.S. State Laws on Electronic Tracking Devices. Legal Considerations for GPS Tracking, National Conference of State Legislatures, <u>https://www.ncsl.org</u>.
- 7. Sebitian. ECE445. GitHub, last updated 6 Mar 2025, https://github.com/Sebitian/ECE445.

The Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

