

Smart Snack Dispenser

ECE 445: Senior Design || Team #23 Eric Nieto Gonzalez, Elinor Simmons, Adam Kramer

Introduction

Problem

•200+ unconscious food decisions daily

•Market lacks solutions

•Weight gain & unhealthy eating patterns

•Plastic waste of individuallypackaged snacks

Objective

Our Solution: Smart Snack Dispenser

- User defined portions
- Home appliance
- M&M's, peanuts, and Skittles
- Calorie tracking
- Diet management

Design

Block Diagram

High Level Requirements

Ι

• Accuracy:

- 15% weight tolerance
- Correct nutrient tracking

• Speed:

- 30 seconds or less
- Immediate user input response

• Usability:

- UI smooth and organized
- Intuitive

Design Changes

- PIR sensor → Ultrasonic Sensor
- Photoresistor → IR Break Beam Sensor
- Maximum Dispense: $100g \rightarrow 70g$
- DC Motor

Photoresistor

PIR Sensor

Physical Design

- Collaborated with Machine Shop
 - Alternatives:
 - Linear actuators (too big)
 - Auger screw (not advised)

Auger Screw

Hardware

- Two custom PCBs
 - Load Cell Amplifier PCB (Analog-to-Digital Converter)
 - Main PCB
 - ESP32-S3-WROOM-1 Chip
 - 12V to 5V Voltage Regulator
 - 5V to 3.3V Voltage Regulator

<u>C6</u>

C5 3

Main PCB

Software

- 15 custom functions
- RFID login → bowl detection → snack selection
 → precise dispensing & real-time feedback
- Features:
 - authentication

- calorie tracking
- multi-snack selection user data logging

Date & Time (Date & Time (24h): 2025-05-02 08:28:06 12h): 08:28:06 AM
User:	
Calories Rema Snack : Snack : Snack : Snack :	======== ining: 0.00 [g] [g] [g]
Real Weight: Calories: Sugar: Protein: Sodium: Fat:	0.00[g] 0.00[Cal] 0.00[g] 0.00[g] 0.00[g] 0.00[g] 0.00[g]
+++++++++++++++++++++++++++++++++++++++	
Date & Time (2 Date & Time (1	24h): 2025-05-02 08:24:01 12h): 08:24:01 AM
User:Enic's Ta Calories Remai Snack 1: Snack 2: Snack 2:	ag ining: -185.60 15[g] 15[g]

Snack 3:	15[g]	
Real Weight:	42.14[g]	
Calories:	240.60[Cal]	
Sugar:	4.63[g]	
Protein:	7.58[g]	
Sodium:	52.67[g]	
Fat:	19.38[g]	

Results

Dispensing Subsystem R&V

Requirements

Stepper motors must dispense snacks in 30 seconds or less

Wheels can produce a consistent number of pieces for each snack on average and minimize jamming

DC motor can spin fast enough to provide necessary vibration to avoid snack jamming

- Time verification: measured with a stopwatch

 Average (with jams): 32.01 seconds
 Best (no jams): 23.62 seconds
- Wheel and DC motor verification: qualitatively measured through observation

Dispenses of 70g that had jamming issues	
37.35 seconds	
30.30 seconds	DC
31.40 seconds	
31.37 seconds	
30.17 seconds	
32.37 seconds	
31.12 seconds	

DC Motor with small weight attached for vibration

Dispensing wheels and snacks inside machine

Microcontroller Subsystem R&V

Requirements

All code will be stored within the ESP32 to ensure full independence

ESP32 must relay communication between subsystems when signals are sent through the GPIOs

Sensor Subsystem R&V: RFID

• Included two distinct RFID tags

- White tag: Eric's Tag
- Blue tag: New user

Requirements

RFID must read tag and display the correct information associated with that tag

RFID Tags

Eric's Tag Display

New user Tag Display

Sensor Subsystem R&V: Ultrasonic Sensor

- Ultrasonic facing forward
- Bowl detected at 5cm

Requirements

Ultrasonic sensor must recognize when the distance is shortened due to the placement of a bowl

No Bowl

Bowl is put closer

Bowl in place

Sensor Subsystem R&V: Weight Sensor

* 100

- Compared entered portion on machine to the amount weighed
 - Equation: $\% error = \left| \frac{desired measured}{desired} \right|$
- Compared amount weighed to commercial food scale weight

Requirements

Weight sensor must measure the correct amount of weight within 15%

Weight sensor must tare the weight of the bowl

Bowl Tare

Sensor Subsystem R&V: Weight Sensor (Data)

M&M's	Entered Portion	Weighed Portion	% Error	Commercial Scale
	15g	13.67g	8.87%	12g
	22g	20.61g	6.32%	21g
	70g	63.26g	9.63%	60g

Skittles	Entered Portion	Weighed Portion	% Error	Commercial Scale
	15g	16.92g	12.8%	17g
	22g	21.81g	0.864%	19g
	70g	61.34g	12.37%	57g

Peanuts	Entered Portion	Weighed Portion	% Error
	15g	15.04g	0.267%
	22g	21.5g	2.27%

Sensor Subsystem R&V: IR Sensors

Code checks IR sensors before each dispense

• User cannot bypass and must refill before dispensing more snacks

Requirements

Receiver must be able to sense the IR beam from across the length of the container

Receiver must not sense IR beam when snacks are present, so that a false notification is not sent

Snacks below IR sensors

Refill Notification

Snacks above IR sensors

Touchscreen LCD Subsystem R&V

Requirements

The LCD correctly shows values collected from various sensors

The display should be capable of user touch to be able to select a variety of options

The LCD should display the correct notifications when necessary

Touchscreen Display Information

	User:Eric's Tag		
no	Calories Rema Snack 3: Snack 3: Snack 3:	0[g] 0[g] 0[g] 22[g]	
202 DW 024 202 awin 4 x 6	Real Weight: Calories: Sugar: Protein: Sodium: Fat:	19.77[g] 112.88[Cal] 2.17[g] 3.56[g] 24.71[g] 9.09[g]	

Database Information

Software Subsystem R&V

Requirements

The machine should only display the features that the user has chosen

The machine must keep track of and display the correct nutrition values

- Features:
 - Snack info
 - Current nutritional values
 - Chosen snacks

Software Subsystem R&V

- Example Calculations: 19.77 g of peanuts
 - Calories: 5.71 * 19.77 = 112.88 Cal
 - Sugar: 0.11 * 19.77 = 2.17 g

Team #23 || Smart Snack Dispenser

Power Subsystem R&V

- 12V Wall Adapter:
 - Average output: 12.03536V
 - 12 + 12(5%) = 12.6V
- 12V to 5V Regulator
 - Average output: 4.958612V
 - 5 5(3%) = 4.85V
- 5V to 3.3V Regulator
 - Average output: 3.340948V
 - 3.3 + 3.3(5%) = 3.465V

12V Wall Adapter	12V to 5V Regulator	5V to 3.3V Regulator
12.0355V	4.95875V	3.34102V
12.0354V	4.95842V	3.34086V
12.0353V	4.95853V	3.34098V
12.0353V	4.95856V	3.34092V
12.0353V	4.95880V	3.34096V

Requirements

Wall adapter must be able to provide 12V±5% and a maximum output current of 3A

12V to 5V regulator must be able to provide 5V±3% and a maximum output current of 3A

5V to 3.3V regulator must be able to provide 3.3V±5% and a maximum output current of 3A

Conclusion

Summary of Results

Success

- All sensors work effectively
- High level requirements were achieved
- Machine functions as an independent appliance

Challenges

- Snacks sometimes jam causing a longer dispensing time
- Wheel design limitations
- Limited snack shape

Future Work

Future Direction

- 2D→3D
- More stock
- Improve dispensing to prevent jams
- Integrate mobile app

Thank You