Wireless EMG Sleeve for Hand Gesture Recognition

Team 57

Problem

Virtual reality (VR) environments are not immersive enough leading some users to experience cybersickness (characterized by discomfort). Part of immersion is related to how VR systems handle hand interactions.

Modern VR Controllers

Computer Vision Hand Tracking

Wireless EMG Sleeve for Hand Gesture Recognition

High-Level Requirements

1. Reliability in Discerning Gesture

Verification: Achieve an 70% accuracy in correct classification between the 6 gestures over 30 random user tests.

2. Unrestrained Device Use

Verification: Classification result from each user test sent wirelessly between our device and an external computer from a distance greater than 10 meters.

3. System Operational Time

Verification: Ensure the device can be used for 1 hour without need of a battery recharge.

Block Diagram

Power Subsystem

Switch and 3.3 V Regulator

Requirement	Verification	
There must be switch to remove power	1. Use a precision voltmeter to measure	
from the device during operation.	the voltage across the voltage regulator output to universal ground.	
	2. Assure voltage measured is 3.3V within 0.3V	
	3. Turn off the power switch, repeat step one, assure there is no voltage difference.	
The external battery must be able to sup-	1. Use a precision voltmeter to measure	
ply a constant 3.7V within 0.3V.	the voltage across the battery	
The XC6220 Voltage Regulator must reli-	1. Use a precision voltmeter to measure	
ably regulate the battery voltage to 3.3V	the voltage across the voltage regulator to	
within 0.3V.	universal ground.	
The circuit associated with the TPS61090	1. Use a precision voltmeter to measure	
must reliably regulate the battery voltage	the voltage across the voltage booster to	
to 5V within 0.2V.	universal ground.	

Poor layout of inductor, capacitor and 5 V boost converter

EMG Subsystem - Preamp board

Differential Amp (Gain = 100) High Pass Filter (Gain = 2, Cutoff = 10.6 Hz) Gain:

- Expected sEMG: ±10 mV range.
- Desired range: 0 V 5 V (Vref=2.4 V)
- Max gain: 2.4 V / 10 mV = 240
- Chose gain of 200

HPF Cutoff:

- EMG frequencies higher than 10 Hz
- Chose low cutoff of 10.6 Hz

EMG Subsystem - Sensing Board Test

Rest

Requirement	Verification
The EMG array must be able to detect muscle stimulation signals in the 10 mV range.	 Use a signal generator to input known mV-range signals into the EMG array (1 or 2 mV for example). Analyze the output of the EMG array using an oscilloscope. Compare the input and output signals to verify accurate detection. Repeat the test for various signal am- plitudes within the mV range. Document the results, including any discrepancies between input and output signals.
The amplifier circuit must amplify mV range signals with a gain of 200 within 10 mV.	 Use a signal generator to input known mV-range signals into the EMG array (1 or 2 mV for example) Analyze the output of the EMG array using an oscilloscope. Compare the input and output signals to assure a gain of 200. Repeat the test for various signal am- plitudes within the mV range.

Sleeve Subsystem - EMG Sensor Placement

EMG Preamp Board

Requirement	Verification		
The sleeve diameter when maximally stretched must be ≤ 10 cm.	 Use a flexible measuring tape to measure the sleeve's diameter when fully stretched. Take measurements at multiple points along the sleeve's length. Record all measurements and ensure they are ≤ 10 cm. Document the results in a table, in- cluding the maximum measured diame- ter 		
The sleeve must allow for consistent EMG sensor placement between uses.	 Put on the EMG Sleeve Use a pen to mark sleeve placement using the sleeve holes Take off, and put on sleeve once more Assure that previous pen marks align with sleeve holes. 		

EMG Arm Sleeve

Control Board Subsystem - ADC

ADC on breakout board

Filtered EMG data for wrist flexion

Processing Subsystem

timestamp	CH1 mV	CH2 mV	CH3 mV	CH4 mV	gesture
1745896227	0	6.226	0.732	0	1
1745896227	6.958	17.579	0	1.392	1
1745896227	0	3.369	115.213	0.513	1
1745896227	6.592	4.657	0	1.685	1
1745896227	6.738	4.541	-0.22	0	1

Requirement	Verification Procedure
The STM32WB55MMG must process EMG and IMU sensor	 Setup: Simulate continuous EMG and IMU sensor data being fed into the STM32WB55MMG
data with a latency of 100ms.	MCU. 2. Logging Execution Time: Use built-in timers to record timestamps (a) when data is re- ceived, (b) when classification is completed. 3. Pass Criteria: Ensure the total latency (time from receiving sensor data to classification result out- put) is ≤ 100 ms in 95% of cases.
The STM32WB55MMG must ex- ecute TensorFlow Lite models ef- ficiently for real-time gesture in- ference.	1. Setup: Convert a pre-trained gesture recogni- tion model into TensorFlow Lite format optimized for the MCU. 2. Test Execution Time: Run infer- ence on test data and log the duration using the MCU's internal clock. 3. Pass Criteria: Confirm that inference time is \leq 50ms per sample while maintaining classification accuracy \geq 80%.
The system must maintain high- speed SPI communication with the EMG/IMU sensors at ≥ 1 Mbps.	1. Setup: Send a fixed-size data packet (e.g., 100 bytes) from the sensors to the STM32WB55MMG over SPI. 2. Measure Throughput: Use a logic analyzer or timestamp comparison to measure SPI transfer speed. 3. Pass Criteria: Ensure the transfer rate is ≥ 1 Mbps with an error rate of $\leq 1\%$ over 1000 transfers.
The STM32WB55MMG must correctly classify gestures with at least 80% accuracy.	 Setup: Record 30 user-performed gestures and log classification outputs. Compare with Ground Truth: Match each classification result against manually labeled gestures. Pass Cri- teria: Ensure ≥80% of gestures are correctly clas- sified.
The processing system must re- main operational without crashes or memory leaks over a 1-hour continuous test.	 Setup: Run the gesture recognition system con- tinuously for 1 hour with simulated or live sensor data. Monitor Stability: Check for MCU resets, memory allocation failures, or performance degra- dation. Pass Criteria: No unintended reboots, crashes, or increasing memory usage over the full test period.

Processing Subsystem: EMG Signal Classification Model

Layer Type	Neurons	Activation	Normalization	Dropout
Input Layer	40	-	-	-
Dense Layer 1	50	ReLU	BatchNorm	-
Dropout Layer 1	-	-	-	0.2
Dense Layer 2	50	ReLU	BatchNorm	-
Dropout Layer 2	-	-	-	0.2
Output Layer	6	Softmax	-	-

Dense layer 1: Learns initial high-level representations from raw features Dense layer 2: Further abstracts input

Processing Subsystem: Model Training Methodology

Dataset Structure:

- 30 trials per gesture class, 2 seconds each
- Sampling Rate: 2khz

Training Split:

- Stratified 70%/30% Train-Test Split
- Early Stopping (monitoring Validation loss)
- Trained 100 epochs

Feature extraction:

Mean: Baseline offset or average contraction

Standard Deviation: Signal fluctuation/spread

RMS: Signal power

MAV: Overall activity level (smoothed abs value)

Zero-Crossings: Oscillation frequency — helps detect movement types

Processing Subsystem: Classification Results

Class	Precision	Recall	F1-Score	Support
Extension	1.00	0.76	0.87	17
Fist	1.00	0.85	0.92	20
Rest	1.00	1.00	1.00	21
Pinch	0.74	0.81	0.77	21
Flexion	1.00	1.00	1.00	18
Two	0.74	0.94	0.83	18
Accuracy			0.90	115

- Precision: Correct positive predictions / total predicted positives
- Recall: Correct positive predictions / total actual positives
- F1-Score: Harmonic mean of precision and recall
- Support: Number of true samples for each class

Bluetooth Subsystem

Cortex M0+ Secure FUS Wireless Stack SFSA Cortex M4 User Application

STM32WB series uses a dual-core architecture:

CPU1: Arm® Cortex®-M4 → runs our application code communicates via IPCC CPU2: Arm® Cortex®-M0+ → runs encrypted BLE stack

STM32WB chips come preloaded with a root security firmware (FUS)

- Entered APP_BLE_Init()
- SHCI_C2_BLE_Init() crashes (system halt)
- problem with the BLE stack binary on CPU2

Future Work

- Handling Noisy Signals
 - Analog Filters, Perfecting the PCB
- Streamlining Classification
 - More Electrodes, Realtime Classification through Bluetooth Protocol
- Standalone Device
 - Testing on multiple users
 - Designing VR Environment for Practical device testing

Wireless EMG Sleeve for Hand Gesture Recognition

Team 57