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Abstract 

FastFretTrainer is a system for testing a guitar player's ability to reproduce notes upon being prompted. 

The trainer consists of three main components: the App, Base, and Fob. The Fob is a small battery-

powered PCB mounted to the guitar, which sends a digitized recording of the guitar’s output via 

Bluetooth to the Base. The Base is connected to a PC via USB, over which it transmits the received 

Bluetooth data and receives commands to drive the LCD display. The App produces a user interface to 

give guitarists feedback and does the backend data processing to compare the played note to the 

requested note. Once a user selects a practice mode, a countdown begins, then the App sends a request 

to the hardware, which, once the data is ready, writes the recorded guitar signal back to the PC. Finally, 

the App’s algorithm will judge the correctness of the played note.  



iii 
 

Contents 

1. Introduction ....................................................................................................................... 1 

2 Design ................................................................................................................................ 3 

2.1 Software Design .......................................................................................................................3 
2.1.1 Data Processing Backend ............................................................................................................................. 3 
2.1.2 App Frontend................................................................................................................................................ 4 

2.2 Fob Design ................................................................................................................................6 
2.2.1 Amplifier Subsystem..................................................................................................................................... 6 
2.2.2 Power Supply Subsystem ............................................................................................................................. 8 
2.2.3 USB/UART Subsystem .................................................................................................................................. 9 
2.2.4 ESP32 Physical Design .................................................................................................................................. 9 

2.3 Base Design ............................................................................................................................ 10 
2.3.1 LCD Subsystem ........................................................................................................................................... 10 

2.4 Firmware Design ..................................................................................................................... 11 
2.4.1 ADC/Wireless Subsystem ........................................................................................................................... 11 

3. Design Verification ........................................................................................................... 13 

3.1 Software Verification .............................................................................................................. 13 

3.2 Fob Verification ...................................................................................................................... 13 
3.2.1 Amplifier Subsystem Verification ............................................................................................................... 13 
3.2.2 Power Supply Subsystem Verification ........................................................................................................ 14 
3.2.3 USB/UART Subsystem Verification ............................................................................................................. 14 

3.3 Base Verification ..................................................................................................................... 15 
3.3.1 LCD Subsystem Verification........................................................................................................................ 15 

3.4 Firmware Verification ............................................................................................................. 16 

4. Costs ................................................................................................................................ 17 

4.1 Parts....................................................................................................................................... 17 

4.2 Labor ...................................................................................................................................... 17 

5. Conclusion ....................................................................................................................... 19 

5.1 Accomplishments ................................................................................................................... 19 

5.3 Ethical and Safety Considerations ............................................................................................ 19 

5.4 Future Work ........................................................................................................................... 20 

Bibliography ........................................................................................................................ 21 

Appendix A   Requirement and Verification Table ................................................................. 23 



1 
 

1. Introduction 
Beginner guitarists often have trouble learning to play the guitar since the notes are not marked on the 

instrument. The lack of markings often intimidates lower skill players because its wide range of notes is 

often overwhelming. We designed FastFretTrainer to make learning easier. FastFretTrainer utilizes its 

three components: the App, Base, and Fob to train and test the user on knowledge of the notes on the 

guitar neck. The Fob sits on the guitar itself and is responsible for sampling the guitar signal from the 

output jack upon request and then sending that data to the Base via Bluetooth. The Base serves as an 

intermediate between the Fob and the computer, it receives the sampled signal from the Fob and sends 

it to the PC via USB and also controls the LCD display on the Base enclosure to provide basic user 

feedback. The App does the Fast Fourier Transform (FFT) computation that enables us to compare the 

played note to the note that the App asked the user to play. The App is responsible for the flow control 

of the whole project, meaning that the Fob is waiting for the PC to tell the Base that sampling should 

begin before it will send any data back.   

Figure 1 showcases our block design; there are several blocks included within our general design.  First, 

under the Fob, the Amplifier Subsystem exists to both amplify the input guitar signal and add a DC 

offset. This DC offset is needed because our ADC Subsystem is only able to sample positive voltages up 

to 3.3 V. The ADC is responsible for correctly sampling the input guitar signal. The Bluetooth Subsystem 

sits on the Fob’s ESP32 and is responsible for sending the sampled data to the Base PCB. Also on the 

Fob, the Power Supply Subsystem generates the positive voltages required to both power and bias the 

op-amp circuit, while also creating the negative voltage required to correctly bias the Amplifier’s op-amp 

circuit.  On the bottom right of Figure 1, the Base has its own ESP32 which is used for receiving the data 

that the Fob is sending. Both the Fob and the Base have the same USB to UART Subsystems which are 

responsible for programming the microcontrollers as well as data transmission in the case of the Base. 

The Base has a much simpler power generation scheme as it only requires 3.3 V to power the ESP32 and 

5 V to power the LCD display. The LCD Subsystem is responsible for taking data from the App and 

displaying basic feedback. Finally, the Computer Subsystem houses our App and the serial connection 

over which the Base and PC communicate. 

 

Figure 1. General Design Block Diagram 
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The high-level requirements for our design are: 

• The fob must be able to communicate with the base station wirelessly from a distance of 1.5 

meters without data loss. 

• The local application on the laptop should be able to compare frequencies of the played and 

expected notes accurately after receiving data from the base station. 

• The LCD display of the base station should be able to display basic values from the local 

application like how far off the note played was in cents. 

If each of the above requirements are met, then our project will function as intended. If our device is 

able to wirelessly send the sampled data without loss, our App can accurately give feedback, and the 

LCD display can receive some of that feedback to display, then our project will succeed. From a 

subsystem level our design remained the same through the semester. However, there were changes in 

the schematic design that will be addressed in the following sections. 
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2 Design 
Our project is split into three major design components: Software, Fob, and Base design. Below we 

discuss the design decisions and details for each block. This section also individually addresses the 

firmware design in our project.  

2.1 Software Design 
The main responsibility of our Software system is to help us reach our high-level requirement of giving 

accurate feedback to the user. By using digital signal processing, we give feedback to users on how well 

they played a note using cents as a measure. Cents are a metric used in music to compare the frequency 

of two notes. This is calculated via a logarithmic relation between the played and expected note seen in 

Equation (1). On the guitar, each fret is separated by 100 cents. This is what makes this metric key in our 

use case. By using cents, we are able to pinpoint the note that a user played so we can give them direct 

feedback on how to adjust and correctly play the note. Our Python backend is responsible for 

performing a frequency analysis to find and compare the user’s played note to the expected note while 

communicating with the base station to send and receive data. The role of our frontend is displaying 

processed data via a local app written with the Flask library [1] incorporating HTML and CSS for styling. 

We felt that Python was the best choice for our software system due to its versatility when it comes to 

both data processing and support for advanced visualization through a plethora of libraries. An initial 

concern was that it wouldn’t be powerful enough to process data optimally compared to other 

languages like C++, however it worked out well for our use case. 

   

 
(1) 

 

2.1.1 Data Processing Backend 

The first step in our backend’s data processing flow is receiving the digitized signal from our base 

station. This is done using the PySerial library [2], which performs a the first step of the handshaking 

process further described in our Firmware Section 2.4. Once the header bytes of the sampled signal are 

found, the backend then unpacks the raw bytes into the true values representing the signal. 

Numpy.fft [3] is then used to take the FFT of the signal so that the peaks at each frequency can be 

analyzed. The frequency our algorithm is concerned with is the fundamental frequency of the signal, 

marked with the orange x in Figure 2 below. The fundamental frequency represents the note played on 

the guitar. It is found at the first significant peak of the FFT, not necessarily the peak with the highest 

magnitude. While isolating this frequency could be a bit tricky with all the overtones adding additional 

peaks to the FFT, we used an algorithm that would find a relative threshold of magnitudes so that only 

significant peaks would be taken into account. This threshold only considers peaks above the average 

magnitude of the FFT added to an eighth of the maximum magnitude (shown in the dotted red line 

below in Figure 2 below). In addition to our threshold for the FFT magnitudes, we also used a threshold 

of 75 Hz for the frequencies since the lowest expected frequency of a note played on a 6-string guitar in 
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standard tuning is about 82.5 Hz. Median filtering was also used to smooth the FFT for cleaner analysis. 

To isolate the fundamental frequency once some additional processing is done on the FFT, the 

find_peaks function from the signal extension of the SciPy library [4] is used to store the frequencies of 

all the peaks in a list. The frequency at the first index of this list corresponds to the fundamental 

frequency we are looking for. 

 

Figure 2. FFT (X axis – Frequency, Y axis – Magnitude) 

Once the fundamental frequency of the signal has been found, we then use it as the played frequency in 

our cents calculation shown in Equation (1). After the cents have been calculated, feedback is then 

shown on our app and sent back to the base station to be displayed on the LCD. This feedback including 

the cents is converted to bytes for the top and bottom lines on the display and sent via the PySerial 

library. 

In addition to calculating the cents off from the expected note, our backend also calculates the number 

of frets the user must move up or down the neck to adjust for the correct note. First, a search is 

performed on a sorted list of all the frequencies to determine the closest note to the one played. If the 

closest note is outside of the scope of the selected mode (string or scale), the user is asked if they are on 

the correct string or scale via the frontend. Otherwise, using an additional sorted list only containing the 

notes within the current mode, the distance is calculated between the indices of the played and 

expected notes and is used to determine how many frets or spots on the scale the user must move. The 

algorithms and operations described in this section are packaged into functions called in our integrated 

App code. 

2.1.2 App Frontend 

Our App uses a local Flask application to provide a graphical interface and give more complex feedback 

than what is shown on the LCD display. While Python is used to setup the app, route the pages, and 

perform the data processing in the backend, HTML and CSS are used to style our app and improve its 

usability. When the app is launched, the user is asked to reset both the Fob and the Base Station to 

establish their connection. Once they have been connected, the user is then taken to the home screen 

shown in Figure 3 below. 
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Figure 3. App Home (Left) and App Guide (Right) 

At the home screen, the user can choose from a variety of modes. These include individual strings on a 

guitar in standard tuning (beginner level), a few commonly used scales (intermediate level), and a 

combination of all notes up to the 12th fret on the strings of the guitar (advanced level). There is also a 

guide that the user can view so that they can learn how to use the app once they choose a mode shown 

in Figure 3. The buttons shown on each page are used to navigate through the app in the event of a 

click. As shown in the guide, specific positions of scales were used for our implementation. There are a 

variety of ways each scale can be played, but we chose the most common positions that are initially 

taught and used. The scale diagrams shown in Figure 4 were pulled from the website Guitar Chords 

Scales and More. [5]. Once the user selects a mode, they are asked to play a specific note and are given 

a three second countdown. They are then asked to play when “Play Now” is shown as seen in Figure 4 

below. 

  

Figure 4. App Countdown Page (Left) and App Feedback Page (Right) 

The timing of this process is a crucial aspect of the design. It’s important for us to give the user enough 

time to adjust and play the expected note. It is also important that the user plays the note exactly when 

they are prompted so that the signal that is sampled after the “Play Now” is strong and doesn’t decay, 

which is especially key for higher notes. After the note is played and the app processes the sampled 

signal, the user is then taken to a page with feedback shown in Figure 4 above. 

As shown in Figure 4, the user can see the played and expected frequencies as well as the cents off 

shown both as a value and a position on a scale from –200 to +200 cents. If the note played is further off 

than this range, it will just be shown at the corresponding end of the scale. A threshold of +/- 50 cents is 

used to determine whether the note played was correct or incorrect to account for potential noise or 

being slightly out of tune. In addition to the metrics previously mentioned, the user can also see the 
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number of frets they need to adjust detailed in Section 2.1.1. If the user played the note incorrectly, 

they have the option to try again, move to the next note, or go back to the home screen. Otherwise, an 

alternate screen is shown that allows them to move to the next note or navigate home. Essentially, the 

app can be considered as a state machine with the states styled in HTML and CSS and Python controlling 

the transitions to each state. 

2.2 Fob Design  
The Fob’s major responsibility is to be able to amplify and correctly sample the input guitar signal, then 

send it via Bluetooth to the Base for processing. The Fob contains four major systems, the amplifier, 

power supply, USB/UART, and ESP32. The following sections will describe the design decisions behind 

each system. There will be a small section that mentions the ESP32 from a physical design perspective, 

however, the discussion will be brief since most of the work related to the ESP32 will be mentioned in 

the firmware section of this report. 

2.2.1 Amplifier Subsystem 

The voltage level of a typical guitar signal before amplification is ~50 mVpp, thus amplification is 

required if the signal is to be accurately sampled. One way to do this is to buy a purpose-built audio 

amplifier that is designed to amplify with little noise in the audio range. However, we chose not to do 

this because many of those amplifier designs expect to be driving an 8 Ω load (speaker) and are overkill 

for our low power design as they require high output power. We also were planning on driving a high 

impedance load, namely the input of an ADC, so the capability to drive a speaker is not required. Thus, 

we chose our summing op-amp design because it enables the highest level of circuit control, while 

remaining relatively simple from an implementation perspective. A key design constraint that affects our 

amplifier design is the fact that our ADC can only sample positive voltage, namely 0 V to 3.3 V. Since our 

guitar signal is essentially a sum of sinusoids, negative voltage components are present. That means our 

design must add a DC offset to our amplified guitar signal. After iterating on our design to ensure correct 

operation, Figure 5 showcases the final design. 

 

Figure 5. Amplifier Schematic 
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Figure 5 can be split into four major parts, each with their own relevant design equations. First, op-amp 

U1A serves as an inverting amplifier for the input guitar signal.  All op-amps are in the inverting 

configuration because they are less sensitive, have a better small signal response and similar large signal 

response when compared to the non-inverting configuration [6]. The U1A op-amp setup is designed to 

follow Equation (2). 

 
 

(2) 

 
 

  
(3) 

Equation (3) shows that with our resistor values and a guitar pickup resistance of 7500 Ω, the input 

guitar signal is amplified 12.5 times larger than its original. Depending on how hard the string was 

picked, the input guitar voltage will change. The typical voltage seen in our testing was 50 mVpp or 25 

mV maximum amplitude. If the input guitar signal is 50 mVpp then after amplification the output will be 

625 mVpp which is excellent for our application as we need to ensure that after adding a DC offset, the 

signal still remains within 0 V to 3.3 V. The next op-amp is the unity inverting buffer placed on the DC 

offset, namely U8A in Figure 5. The Resistor network surrounding the op-amp follows Equation (4). 

 
 

(4) 

The purpose of this op-amp is to buffer the DC offset source from the rest of the amplifier circuit. This 

was done because in a previous iteration of the design, no buffering was done which yielded unexpected 

and incorrect output. The value of the DC offset is 1.65 V. This was chosen since it gives the most room 

above to 3.3 V and below to 0 V, maximizing the amount the guitar signal can be amplified without 

clipping. Since now both the DC offset and input guitar signal have been buffered, amplified to differing 

degrees, and negated, they must be summed and then negated again to produce an output within the 

ADC’s range. That functionality is accomplished by op-amp U1B in Figure 5. Similarly to the previous two 

op-amps, U1B inverts and amplifies according to the input and feedback resistances as shown in 

Equation (5). 

 
 

(5) 

 
 

 

 
(6) 

  



8 
 

  
(7) 

As Equation (7) shows, the final output voltage after summing includes the amplified guitar signal plus 

the DC offset as requested. Finally, to limit high frequency noise in the output signal going to the ADC a 

low pass filter was included.  

  

 

 
(8) 

The 3dB cutoff frequency shown in Equation (8) was chosen to be significantly large enough to limit 

attenuation of our desired amplifier output, but also low enough to cut out as much high frequency 

noise as possible. All these pieces together create an amplifier which can amplify the input guitar signal 

and add a DC offset while keeping the output between 0 V and 3.3 V and reducing high frequency noise. 

2.2.2 Power Supply Subsystem 

On the Fob, the Power Supply Subsystem is responsible for both powering the ESP32 and biasing the 

amplifier circuit so that it can function as designed. This means that we need to supply both positive and 

negative voltages, 3.3 V and -2 V respectively. One way of doing this is to use a single positive voltage 

LDO to step down the 6 V output from the battery and use a Switched Capacitive Inverter to negate the 

input voltage. There are a couple of issues with this design, first the analog and digital positive voltages 

are not separated, leading to excess noise on the positive power lines from the digital circuitry. The 

output negative voltage also has a large 12 kHz component from the inverting chip which is undesirable. 

Thus, we decided to improve upon this design to best fit our use case. To remedy these issues, a second 

positive voltage LDO and a negative voltage LDO were added as shown in Figure 6. 

  

Figure 6. Fob Power Supply Schematic 

The addition of the second positive voltage LDO enables our design to isolate the digital noise from the 

positive voltage power supply, increasing the signal integrity of our amplified guitar signal. A simple 

voltage divider was used with two 1 kΩ resistors to convert analog 3.3 V into 1.65 V for our DC offset. 
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The capacitor choices on the input and output of the positive voltage LDOs are recommended by the 

datasheet [7]. Since 22 µF capacitors were not immediately available, two 10 µF capacitors in parallel 

were used instead. The capacitive configuration surrounding the Switched Capacitive Inverter is shown 

in the datasheet [8] as well. Adding the negative voltage LDO reduces the presence of the 12 kHz 

switching frequency and brings the output negative voltage to -2 V as required by our amplifier 

subsystem. The datasheet [9] guided the choice of resistor values on the output of the negative voltage 

LDO to choose the correct output voltage. 

2.2.3 USB/UART Subsystem 

Another key component of this design is the ability to program and debug the ESP32 microcontroller. 

There are two main ways to allow serial communication with the ESP, using an external UART 

programmer, or including an on-board USB to UART conversion IC. Since this same design is used on the 

Base for serial communication with the PC, it is desirable to have a simple interface for users to connect 

to our PCB. Therefore, we chose to include the USB to UART conversion in our design. With our current 

design a user only needs a MicroUSB cable, not a UART programmer module that doubles as a serial 

interface. We utilized the FT232RL chip and a MicroUSB port in our design. Our implementation 

connects the TX/RX pins to the interface of the FT232RL chip and connects the USB data pins from the 

FT232RL chip to the Micro USB connector to facilitate serial communication. The basic design around 

the FTDI chip was taken from its datasheet [10], we modified the final design to include automatic 

programming with the MOSFET circuit shown in Figure 7. The design for the MOSFET circuit was inspired 

by a similar version of the circuit constructed using BJTs that is common on ESP development kits [11]. 

Generally, the automatic programmer uses the RTS and DTR signals to toggle the enable and IO0 pins 

such that the ESP is reset into bootloader mode and is ready to program. Looking toward the Micro USB 

connector show on the right, the data and power pins are connected to a TVS diode array to clamp 

transient voltage spikes and prevent damage to sensitive components downstream. The idea to include 

reverse voltage and TVS protection came from looking at the ESP development kit’s MicroUSB connector 

implementation [11]. 

   

Figure 7. USB to UART (Left) and Micro USB Schematic (Right) 

2.2.4 ESP32 Physical Design 

The brain of our project is the ESP32 microcontroller. It is responsible for sampling on the Fob, and serial 

communication with the PC via the Base. Not to mention that the two ESPs are supporting the Bluetooth 
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transfer of audio data. The design on the Fob and the Base differ slightly but are mostly the same. The 

only difference is that the Fob ESP has a GPIO used by the ADC for sampling, while the Base is using two 

GPIO pins to drive the I2C protocol required to interface with the LCD display. Both ESPs interface with 

the USB to UART design in the same way. The general design concept outside of the ADC and the LCD 

display interfaces was decided upon after reading through our ESP 32’s datasheet [12]. The datasheet 

made it clear that the reset pin must be pulled high to prevent random resets without a press of the 

switch. It also made it apparent that we would require a button that could pull IO0 low, as a backup to 

our automatic programming circuit. 

 

Figure 8. Fob ESP Design (Left) and Base ESP Design (Right) 

Figure 8 shows that the designs are quite similar even though they may be laid out differently. The main 

differences being that on the Fob IO33 is used for the ADC to sample the amplified guitar signal and on 

the Base IO21 and IO22 are used to generate SCLK and SDA for the I2C LCD display. 

2.3 Base Design 
The Base station consists of an ESP32 microcontroller, LCD connector, USB/UART chip, and MicroUSB 

port. The Base station is responsible for receiving the sampled audio data from the Fob, writing to the 

serial buffer for the PC to read, and for displaying feedback on the LCD screen. The Base station is 

powered via the 5 V supply given from the MicroUSB port when plugged into a computer. We decided to 

do this instead of using batteries because the computer will also collect data from the serial buffer of 

the ESP32 which relies on a physical connection. Since the ESP32 requires a 3.3 V power supply, we use 

an LDO to drop down the 5V input to 3.3 V. This ensures power is within the bounds of the ESP32’s 

specification. The USB/UART design is the same as the Fob’s (reference section 2.2.3 for details). See 

section 2.2.4 for discussion about the Base ESP32 physical implementation. 

2.3.1 LCD Subsystem 

Figure 9 shows an image of the 4-pin LCD connector that sits on the Base station. We are utilizing an LCD 

display with an I2C adapter due to its ease of configuration and control.  
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Figure 9. 2LCD Connector  

We connect power, ground, serial clock and serial data pins which are driven from GPIO pins on the Base 

station’s ESP32. When the user plays a note and feedback is displayed on the app, we send a more basic 

form of feedback to be displayed on the LCD. This means that the software is controlling the LCD display. 

We made this design decision because we are doing our FFT computation on the software side, so it’s 

easiest to implement. 

An alternative approach to this would have been to utilize an LCD display without an I2C adapter. This 

adds unnecessary complexity as we would need to drive all 8 data lines to the LCD display versus just 

one utilizing an adapter.  

 

2.4 Firmware Design 
The firmware we designed for our project uses the ADC on the Fob to digitize the input guitar signal, and 

Bluetooth on both ESP32s to transfer the data from the Fob to the Base.  

2.4.1 ADC/Wireless Subsystem 

We designed firmware to program and configure the ESP32’s ADC and Bluetooth. The ADC was 

configured on the Fob’s ESP32 as the Fob is responsible for digitizing the input guitar signal. Bluetooth 

was configured and setup on both ESP32s, and the Base was configured as a master device (the Base will 

connect to the Fob’s MAC address).  

We utilized ADC continuous mode on the ESP32 as it provides a high sampling frequency (44.1 kHz) to 

ensure an accurate FFT. We chose to use a 44.1 kHz sampling rate since it is an industry standard. Each 

time we sample a guitar signal, we collect 5,512 samples. Equation (11) shows the FFT resolution is 

dependent on the sampling frequency and the number of samples we collect.  

  
(9) 

  
(10) 

 

 
(11) 
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Increasing the number of samples would result in a smaller bin width, which would increase the 

resolution of the FFT. We chose to collect 5,512 samples as we had enough space on the ESP32, and this 

would lead to our design being highly performant.  

We struggled with continuously sampling data since guitar notes decay quickly, especially if they’re high 

frequency. To have a high accuracy FFT we needed to sample when the signal is at its strongest, which 

occurs right when the guitar note is played. We designed a Bluetooth handshaking protocol represented 

in Figure 10 capture the signal at its strongest point.  

 

Figure 10. Bluetooth Handshaking Protocol 

Initially the computer requests a sample from the Base station, and upon acknowledgement from the 

Base, that request is transferred to the Fob via Bluetooth to signal the system to begin sampling. This 

request begins when the App alerts the user to “Play Now”, which is described in section 2.1.2. Once the 

data is sampled, it’s sent to the Base via Bluetooth and then written to the serial buffer for the App to 

begin data processing.  
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3. Design Verification 
Thorough verification needs to be completed to ensure proper functionality of the project. To view the 

full list of requirements and verifications view Appendix A. 

3.1 Software Verification 
Correct functionality for the software side of our product requires taking the FFT on the incoming 

digitized guitar signal correctly, and displaying that feedback on the app. Also being able to easily use 

the app is necessary for a good user experience. For specific requirements, refer to the PC section of 

Table 1 in Appendix A. To verify that we were taking the FFT and reporting the frequency correctly, we 

utilized a signal generator and set it to send a 400 Hz sine wave. If the FFT is taken correctly, and our 

frequency isolation algorithm functions, our app will report that the “played” frequency as 400 Hz. 

Figure 11 below shows the 400 Hz sine wave input to the Fob and the feedback showing the 

fundamental frequency to be 400.12 Hz which aligns with our requirements.  

 

Figure 11. Sine wave and feedback shown on app 

3.2 Fob Verification 
The main purpose of the Fob is to sample the amplified guitar signal and send the data over Bluetooth. 

This means that our Amplification Subsystem, Power Subsystem, and USB/UART Subsystem must all be 

functional to accomplish our purposes. 

3.2.1 Amplifier Subsystem Verification 

The input guitar signal contains negative voltage components, and our ADC requires the input signal to 

reside within 0 V and 3.3 V. This means that we must add a DC offset to our input such that it is not 

clipped when the ADC is sampling. To verify that this system performs as expected, two tests will be run: 

one with a sine wave generated by a signal generator, and another with the guitar connected. Since the 

average guitar input signal is about 50 mVpp and it is amplified by a factor inversely related to the 

output source resistance as shown in Equation (2), for an equivalent effect to be created using a signal 

generator with an output resistance of 50 Ω, the signal amplitude must be about 3.4 mVpp. Our test 

input will use a 5 mV amplitude or 10 mVpp to simulate a worst-case scenario. For our amplifier to pass 

verification, both the simulated input from the signal generator and the input from the guitar must be 
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amplified and be within the 0 V to 3.3 V range. The results are shown in Figure 12. To read the 

requirement set for the amplifier, check Appendix A. 

  

Figure 12.  Guitar Test (Left) and Signal Generator Test (Right) (X axis – Time, Y axis – Amplitude) 

 

3.2.2 Power Supply Subsystem Verification 

The Fob is battery powered, and the Base is powered via the MicroUSB connector plugged into a 

computer. Refer to the power supply section of Table 1 in Appendix A for specific requirements. To 

verify that the Base was getting sufficient power, we probed pins for the FTDI chip and LDO to ensure 

they were getting 5 V of power. In terms of the Fob, we are using four 1.5 V batteries in series which 

gives us 6 V, and we need to step this down to 3.3 V to power the ESP32. We also need to ensure that 

the output of the negative voltage LDO is at –2 V for biasing the op-amps. Figure 13 shows waveforms of 

the output voltages (negative and positive voltages respectively). You can see that the negative LDO 

outputs close to –2 V, and the power circuit successfully steps down the supply voltage to within 10 % of 

3.3 V.  

  

Figure 13. Negative and Positive Output Voltages on Fob (X axis – Time, Y axis – Amplitude) 

3.2.3 USB/UART Subsystem Verification 

Correct functionality for the USB/UART subsystem will allow automatic programming of the ESP32 and 

serial communication. Refer to the USB to UART section in Table 1 in Appendix A for specific 
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requirements. When the components on the Fob and Base were soldered onto the PCBs, we ensured 

continuity between TX/RX pins on the FTDI chip and ESP32 respectively and the data pins from the FTDI 

chip to the MicroUSB connector. To verify serial communication was functioning correctly, we flash the 

ESP32 with basic code that will print to the serial terminal. If a message gets printed to the serial 

terminal and we can view it, this verifies functionality. Figure 14 below shows the ESP32 being reset, 

running our code, and a printing a message to the serial terminal.  

 

Figure 14. ESP32 Print Message for Verification 

3.3 Base Verification 
For the Base to function correctly, we verify hardware connectivity of the USB/UART chip to the ESP32, 

and to the MicroUSB connector which ensures proper programming and serial communication. Refer to 

the USB to UART section in Table 1 from Appendix A for specific requirements. USB/UART verification is 

covered in section 3.2.3. For the Base, the main functional requirements are for the LCD display.  

3.3.1 LCD Subsystem Verification 

Refer to the LCD section in Table 1 from Appendix A for specific requirements. Figure 15 below shows 

the results from our verification tests for the LCD display. When the app computes the FFT of the played 

note and it is within the 50 cents threshold of the expected note, the app marks it as correct and 

displays a “Correct!” message on the app. The computer system sends write commands to the LCD to 

provide basic feedback.  

 

Figure 15. LCD Display Verification 
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3.4 Firmware Verification 
Once the hardware for the Fob and Base PCBs was built and working correctly, we verify the ADC and 

Bluetooth. Refer to the ADC and Wireless sections of Table 1 in Appendix A for specific requirements. 

To verify Bluetooth Serial connection between the Base and the Fob, we first connect the two devices 

together (the Base connects to the Fob’s MAC address). Then we attempted to write to the serial 

terminal of the other device (i.e the Fob would write to the Base device, and the Base would read and 

print the message to its serial terminal). Once this basic connection is working, we connect a signal 

generator to the ADC GPIO pin on the Fob’s ESP32. We read data from this pin, collect that data into a 

buffer, and send the buffer of data to the Base and attempt to read it. Once this basic data transfer is 

working, we begin reading a sine wave to verify more complex input signals are also supported. 

To verify the ADC’s functionality, we connected a signal generator to the ADC on the ESP32 and start 

sampling. We digitize the data and send it to the Base since the Bluetooth has already been verified. We 

then takw the digitized signal on the software end, and recreate a plot of the analog signal and it 

matches. Figure 16 below is a recreated software plot of a digitized 400 Hz sine wave.  

 

Figure 16. Recovered Sine Wave (X axis – Time, Y axis – Amplitude) 

This ensures verification of the ADC and Bluetooth, as well as completes full software integration of the 

project. 
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4. Costs 

4.1 Parts 
Table 2 contains all the parts used to build both the Fob and Base PCBs. Each PCB has its own subtotal 

which will be summed to find the final parts total price. 

Table 2  Parts Costs 

Part Manufacturer Retail Cost ($) Number 
Required 

Actual Cost ($) 

Fob     

FT232RL FTDI 5.17 1 5.17 
LM828M5 Texas Instruments 0.65 1 0.65 

Tantalum Capacitors Kyocera AVX 0.11 2 0.22 

AA 1.5V Li ion 
batteries 

Duracell 2.00 4 8.00 

LM337KVURG3 Texas Instruments 1.75 1 1.75 

Resistors Multiple 0.02 34 0.68 

Capacitors Multiple 0.015 20 0.30 
Micro USB Amphenol ICC 0.26 1 0.26 

N Channel Mosfet International Rectifer 0.37 2 0.74 

LVM922 Op-amp National Semiconductor 0.73 2 1.46 

AZ1117CD-3.3TRG1 Diodes 0.64 2 1.28 
ESP32-WROOM-32E Espressif Systems 2.80 1 2.80 

Subtotal    23.31 

Base     

ESP32-WROOM-32E Espressif Systems 2.80 1 2.80 

FT232RL FTDI 5.17 1 5.17 

Resistors Multiple 0.02 34 0.68 
Capacitors Multiple 0.015 20 0.30 

Micro USB Amphenol ICC 0.26 1 0.26 

N Channel Mosfet International Rectifer 0.37 2 0.74 

AZ1117CD-3.3TRG1 Diodes 0.64 2 1.28 
LCD Header TE Connectivity 0.11 1 0.11 

LCD Display SunFounder 8.95 1 8.95 

Subtotal    20.29 
Total    43.60 

Assuming tax and shipping adds an extra 15 %, this brings our total price to 1.15*$43.60 = $50.14. 

 

4.2 Labor 
Assuming that each team member works, on average 5 hours a week on this project and is paid $50 per 

hour of work over this 16 week semester, our labor costs are: 
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(12) 

  

Since our team has three members, this brings  our total labor cost to 3 * $10,000 = 

$30,000 

 

 

The machine shop worked on our project for approximately 4 hours, thus bringing their 
labor total to 2.5 * 50 * 4 = $500. 
 
Thus, our total cost for the whole project is $500 + $50.14+ $30,000 = $30,550.14. 
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5. Conclusion 

5.1 Accomplishments 
Looking back upon completion of our project, we feel that there are a lot of areas in which we 

succeeded. Most importantly, we were able to meet all our high-level requirements. However, on top of 

our high-level requirements, we surpassed our initial goals for usability and feedback. Our guide makes 

it much clearer how the App flows for the user once they select a mode. Giving feedback on the number 

of frets to adjust instead of just the number of cents is also more useful to users and is easier to wrap 

their heads around if they aren’t familiar with musical metrics like cents. These additional features as 

well as the way in which our App is styled make for an App that is both easy to navigate and visually 

appealing. On the lower-level side, the resolution at which we can sample is ample for our use-case. 

Through our own tests, we also felt that our project was not only an interesting prototype for a senior 

design class, but also a useful tool for guitar players at all levels. Outside of our technical 

accomplishments, we also learned a lot about metrics used in music, real world applications of signal 

processing, and writing firmware for efficient Bluetooth communication on microcontrollers like the 

ESP32. 

5.3 Ethical and Safety Considerations 
Throughout our work on the project, there were some ethical and safety considerations that we had to 

make to respect the work of others, be transparent, and ensure that no one would be harmed using our 

design. To make sure we are giving credit to those who laid the foundation of our work through libraries 

or datasheets we’ve used, we made sure to abide by Section 1.5 of the ACM Code of Ethics: “respect the 

work required to produce new ideas, inventions, creative works, and computing artifacts” [13]. For this 

reason, we have included references to all external resources that we have used to put together and 

inspire our design. In addition to giving credit where it is due, we felt that it was important to be open to 

suggestions and transparent about our own challenges faced, following section 1.5 of the IEEE Code of 

Ethics: “to seek, accept, and offer honest criticism of technical work, to acknowledge and correct errors, 

to be honest and realistic in stating claims or estimates based on available data, and to credit properly 

the contributions of others” [14]. Through our weekly TA meetings, we were able to receive feedback 

that guided the direction of our project while being able to honestly address our own concerns and 

obstacles. 

To ensure that our design is safe for all to use, we followed Section 1.1 of the IEEE Code of Ethics: “to 

hold paramount the safety, health, and welfare of the public, to strive to comply with ethical design and 

sustainable development practices, to protect the privacy of others, and to disclose promptly factors 

that might endanger the public or the environment” [14]. This mainly involved making sure our battery 

usage for our Fob power system was done in a safe manner and that our wireless communication 

wouldn’t interfere with other devices or present other safety issues. When using batteries, we held 

ourselves accountable to ensure proper storage in a cool, dry place, check for shorts before connection, 

and periodically monitor the output current during operation to verify that it was within a safe range. 

Thankfully, the chips we used for our Bluetooth wireless communication are both FCC and BQB certified, 
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meaning they have already been vetted through a series of industry-standard checks to ensure they are 

safe and reliable for wireless communication. 

5.4 Future Work 
While we are proud of the work we put in and what we have been able to achieve with our project, 

there are some areas that we recognize could use further work to significantly improve our design. On 

the hardware/firmware side, we think continuous sampling would be a significant improvement over 

our current design as it would mitigate latency introduced by needing to request samples with 

handshakes. In addition to continuous sampling, multithreading the sampling and sending of data would 

also minimize latency by allowing concurrent operations of parallelizable tasks instead of executing 

everything sequentially. We also feel that our enclosures could be made smaller so that the Fob could 

rest more comfortably on the guitar. On the software side, adding additional modes such as more 

scales, support for additional tunings, and the ability to practice chords would make our project much 

more versatile and all-encompassing for guitar players. A continuous training mode where the App 

would automatically navigate to the next note would also make the practice for the user flow better so 

that they aren’t forced to click on buttons after each note. Our algorithm for finding the fundamental 

frequency and frets off could also be further optimized to use less data structures and reduce the 

runtime. We also feel that our Base station could be eliminated completely as the LCD display gives 

more primitive feedback compared to the App and sampled signals can be sent to the laptop via 

Bluetooth directly. 
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Appendix A   Requirement and Verification Table 
 

                                        Table 2   System Requirements and Verifications  

Requirement Verification Verification 
status  

 

Software Subsystem   

Accurately report the frequency of the 
note played on the guitar 

Use a signal generator and oscilloscope 
to record the note frequency and 
compare it to what is reported 

Verified 
(see Figure 11) 

Give an accurate measurement of note 
difference in cents on the scale shown in 
the UI 

Utilize an oscilloscope to measure 
frequency and manually calculate and 
compare the cents value 

Verified 
(see Figure 11) 

Properly interface with the USB 
connection to send data packets back 
to the Base Station 

 

Call write commands via the PC for 
“Hello world” packets and see if they 
are displayed on the LCD display 

Verified 

Amplification Subsystem   

 Signal input to the ADC must be between 

3.3 V and 0 V 

Use a 5 mVpp input and ensure the 
output is within 0 V to 3.3 V 

Verified 
(see Figure 12) 
 

DC offset must be half of the positive rail 
voltage. 

Use a multimeter to ensure the offset 
remains within +/-15 % of the 
required 1.65 V 

Verified 

Power Supply Subsystem   

Four 1.5 V AA batteries in series will be 
used to power the fob and supply voltage 
to the ESP32 on the fob.  

Measure and ensure the output remains 
between 5 and 6.4 V.  

Verified 

Ensure the power circuit steps down the 
supply voltage to 3.3 V  

Use a multimeter to ensure we have 
3.3V +/- 10 %  

Verified 
(see Figure 13) 
 

The output of the negative voltage LDO 
must be as close as possible to -2 V 

Probe the output of the negative 
voltage LDO to ensure that the value is 
within 10 % of -2 V 

Verified 
(see Figure 13) 
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Table 2 System Requirements and Verifications (Continued) 

USB to UART   

Provide 3.3V-5.25 V +/- 0.5 % for power. Use a multimeter to ensure Vcc is 3.3 V 
and no more than 5.25 V  

Verified 

The FT232RL must receive UART signals, 
convert to USB, and transfer to the PC. 

Send a “Hello World” message from the 
ESP32. 

Verified 
(see Figure 14) 
 

When plugged in, the device must be 
recognized by a COM port. 

On the PC side, The Mac should 
recognize the device as a USB device 

Verified 

The ESP32 TX/RX pins must correctly be 
configured to the FT232RL TX/RX pins. 

Use a multimeter to check continuity 
between the pins respectively. 

Verified 
(see Figure 14) 
 

Firmware   

 ADC Must be connected correctly to the 

amplified guitar signal 

Verify channel selection and ADC 
configuration and data acquisition via 
software plotting 

Verified 

Bluetooth is correctly configured, and data 
transfer is successful up to distances of 3 
meters. 
 

Send “Hello World” packets from the 
fob to base 
 

Verified 
(see Figure 16) 

Ensure that the Fob and Base can connect 
reliably 
 

Utilize the SerialBTM example sketch in 
Arduino IDE to connect devices 
together  
 

Verified 

LCD   

The I2C LCD1602 requires a 3.15 V - 3.45 V 

supply voltage 

We can use a multimeter to probe and 
ensure 3.15 V - 3.45 V 

Verified 

The SCL and SDA pins must be correctly 
connected 

Probe connections on ESP 32 and LCD 
display to ensure connection 

Verified 
(see Figure 15) 
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