

Climate Control Grow Box

Electrical & Computer Engineering

By Andrea Gardner, Rhea Tiwari, Gabrielle Wilki Group 73 5/5/2025

Reservoir

About The Project

The goal of our project is to design a box which will allow plants to be grown within the home where the climate may not match the growing requirements of the plant.

Example: Growing a cactus in an office building in florida

High Level Requirement - Ease of Use

Product must be accessible to the average consumer in ease of use

Verification:

- Single, unified chassis with all components contained within it
- Moveable by single person
- less than 25 lbs with plant inside

High Level Requirements - Accuracy

Humidity: 45.10 %, Temp: 29.60 Celsius Humidity: 45.10 %, Temp: 29.50 Celsius Humidity: 45.20 %, Temp: 29.50 Celsius Humidity: 45.40 %, Temp: 29.60 Celsius Humidity: 45.50 %, Temp: 29.50 Celsius

LUX:140.831x LUX:138.331x LUX:300.001x LUX:334.171x High level of accuracy within the control system to maintain the desired environment type with a low tolerance for fluctuations

Verification:

- Humidity system allows tolerance of +-5% humidity when set in the acceptable range of +-10% of the external humidity levels
- The water dispersions allow an error bound of +-10g per dispersal of water

The system needs to respond to external stimuli in a timely manner

Verification:

- Response time will allow for proper setting of the internal climate
- External stimuli detected at every three minutes and begins change process within five seconds of detecting external stimuli

The System as a Whole

a high level overview of the projects subsystems

GRAINGER ENGINEERING 5

The Box

Initial Diagram of the box

GRAINGER ENGINEERING 6

Block Diagram

PCB Schematic

PCB Schematic

Subsystems

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING 10

-0

Control

This system uses buttons to select the value for the lighting, watering, and humidity. The controller will take these values and use them to determine how to act with the system.

Humidity Components

//outputsignals int HUMIDITYOUTPIN = 7; int LIGHTOUTPIN = 6; int VENTOUTPIN = A0; int WATEROUTPIN = A1;

Control Requirements and Verifications

- Must be able to create the control variables for humidity and light
- Must be able to operate timer control for the water subsystem
- The controls must correctly activate the MOSFETs

Power

Various systems have different voltage requirements. This requires us to adjust the voltage that is pulled into the system.

Component	Voltage	Power	
Spray Humidity Module	5V-DC	7.5W	
Venting Fan	12V-DC	7W	
Sensors	5V-DC	<1W	
Water Pump	12V-DC	10W	
UV Grow Lights	110V-120V-AC	50W	

The Power Converter Schematics

Ideal Values:

Duty Ratio of 45%

Simulated Results

The Final System

The system was originally designed to operate at a frequency of about 50 kHz. When testing with the lab bench equipment a duty ratio of about 39% provided us with a system that operated with a maximum of 5.1 V.

The Power Converter Results

We also saw that the system in this case only had a peak to peak difference of about 300mv which means it remained within the 5% bounds

Power Results

GRAINGER ENGINEERING 18

The Results

In the end the controller was not able to obtain the originally tested duty ratio and we saw a duty ratio much slower(1.8 kHz).

Power Results

Humidity

The humidity control subsystem is responsible for the monitoring of and the regulation of humidity within the enclosure of the grow box

	Water Before	Water After	Water dispersed in 10 minutes
Humidifier 1	47.5g	42.8g	3.6g
Humidifier 2	44.7g	39.9	4.2

][

Humidity Requirements and Verifications

- The humidity must be sensed with an accuracy of +-5%
- We must be able to raise the humidity within the enclosure by 10% in comparison to the external humidity level
- We must be able to lower the humidity within the enclosure by 10% in comparison to the external humidity level

To calculate Relative Humidity (RH) from Absolute Humidity (AH)

and temperature, use the formulas:

```
RH = (AH / Saturation Vapor Pressure at given temperature) x 100
```

```
Absolute Humidity [AH] (g/m^3) = (Mass of Water Vapor (g) / Volume of Air (m^3))
```

```
40-50 ml/h * 6 = 240-300ml/hr = 240-300 g/hr = 4-5 g/m
```

```
\Delta AH = 4 (g/min) / 0.0566337 (m^3) = 70.629 ((g/m^3)/min)
```

```
\Delta RH = (\Delta AH/Saturation Vapor Pressure)*100
```

```
= (70.629/781.95730806)*100 = 9.032 humidity %/m
```

Light

The Light subsystem is responsible for monitoring and controlling the light intensity level within the enclosure

LUX:140.831x LUX:138.331x LUX: 300. 001x LUX:334.171x LUX: 320. 831x LUX:330.001x LUX:343.331x LUX:334.171x LUX: 335. 831x LUX:331.671x

Lighting Requirements and Verifications

- The luminosity level must be sensed with an accuracy of +-5lx
- The lights must turn on with an external signal
- Light should increase the light in an environment with less than 1000 lx when on

Water

The Water Subsystem will be responsible for the water distribution for the plants inside the enclosure.

GRAINGER ENGINEERING 24

Watering Requirements and Verifications

- Must be able to accurately dispense water using timed dispension in ¼ cup intervals up to dispensing the entire reservoir
- Must be able to stop dispersal of water within three seconds after the signal to dispense water has ended

We learned that we need to check how we place things on a PCB schematic. There were components that were made to be through hole and we had to surface mount them.

Coding issues, we overheated our components and had issues with the system connecting to the programer. One of the pins that we were using to control the power was also used to program the chip.

Thank You!

Questions?

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING 27