

Abstract

This project presents a prototype system for automating cerebrospinal fluid (CSF) drainage in patients

requiring External Ventricular Drains (EVDs). The device integrates a dual-sensor configuration, pressure

and flow, connected to a microcontroller that governs solenoid valve actuation based on user-defined

thresholds. A graphical user interface (GUI) enables real-time data monitoring and system manual

override. The system converts a traditionally external setup into a compact, palm-sized, digitalized device

mountable at the level of the external auditory meatus (EAM), eliminating the need for manual zeroing

of the pressure sensor and enabling continuous data logging of intracranial pressure (ICP) and CSF flow.

A fail-safe normally-closed valve ensures safety during power loss or system failure. While not yet

intended for clinical use, the prototype demonstrates reliable pressure-flow monitoring and responsive

valve control, offering a functional foundation for future development of safer, more automated EVD

systems.

Keywords—External Ventricular Drain (EVD), cerebrospinal fluid (CSF), intracranial pressure (ICP),

external auditory meatus (EAM), solenoid valve control, pressure sensor, flow sensor, microcontroller,

biomedical device, automation, graphical user interface (GUI).

2

Contents

1. Introduction...4

1.1 Problem.. 4

1.2 Solution...4

1.3 Visual Aid.. 5

1.4 High-Level Requirements..7

2 Design...7

2.1 Block Diagram...7

2.2 Physical Design... 8

2.3 Subsystem Description & Requirements..9

2.3.1 Microcontroller Subsystem... 9

2.3.2 Power Subsystem.. 10

2.3.3 Drainage Subsystem.. 11

2.3.4 Pressure Subsystem...11

2.3.5 Flow Control Subsystem.. 11

2.3.6 Graphical User Interface Subsystem..12

3. Design Verification...12

3.1 Microcontroller Subsystem...12

3.2 Power Subsystem..12

3.3 Drainage Subsystem..13

3.4 Pressure Subsystem.. 13

3.5 Flow Control Subsystem... 14

3.6 Graphical User Interface Subsystem... 14

4. Costs.. 15

4.1 Parts..15

4.2 Labor...16

5. Conclusion... 16

5.1 Accomplishments... 16

5.2 Failures..17

5.3 Ethical considerations...17

5.4 Future work.. 18

5.5 Special Thanks.. 18

References...19

Appendix A Requirement and Verification Table.. 20

3

https://docs.google.com/document/d/1I1o5Du2EvNiIpN8630Wx94VbzGW838laGtN_4nKhgdA/edit?pli=1#heading=h.s8xmc2foxk4
https://docs.google.com/document/d/1I1o5Du2EvNiIpN8630Wx94VbzGW838laGtN_4nKhgdA/edit?pli=1#heading=h.s8xmc2foxk4
https://docs.google.com/document/d/1I1o5Du2EvNiIpN8630Wx94VbzGW838laGtN_4nKhgdA/edit?pli=1#heading=h.s8xmc2foxk4
https://docs.google.com/document/d/1I1o5Du2EvNiIpN8630Wx94VbzGW838laGtN_4nKhgdA/edit?pli=1#heading=h.yrzpzew70liy
https://docs.google.com/document/d/1I1o5Du2EvNiIpN8630Wx94VbzGW838laGtN_4nKhgdA/edit?pli=1#heading=h.yrzpzew70liy
https://docs.google.com/document/d/1I1o5Du2EvNiIpN8630Wx94VbzGW838laGtN_4nKhgdA/edit?pli=1#heading=h.yrzpzew70liy
https://docs.google.com/document/d/1I1o5Du2EvNiIpN8630Wx94VbzGW838laGtN_4nKhgdA/edit?pli=1#heading=h.s2snub4tn3ml
https://docs.google.com/document/d/1I1o5Du2EvNiIpN8630Wx94VbzGW838laGtN_4nKhgdA/edit?pli=1#heading=h.s2snub4tn3ml
https://docs.google.com/document/d/1I1o5Du2EvNiIpN8630Wx94VbzGW838laGtN_4nKhgdA/edit?pli=1#heading=h.s2snub4tn3ml
https://docs.google.com/document/d/1I1o5Du2EvNiIpN8630Wx94VbzGW838laGtN_4nKhgdA/edit?pli=1#heading=h.s2snub4tn3ml
https://docs.google.com/document/d/1I1o5Du2EvNiIpN8630Wx94VbzGW838laGtN_4nKhgdA/edit?pli=1#heading=h.s2snub4tn3ml
https://docs.google.com/document/d/1I1o5Du2EvNiIpN8630Wx94VbzGW838laGtN_4nKhgdA/edit?pli=1#heading=h.s2snub4tn3ml
https://docs.google.com/document/d/1I1o5Du2EvNiIpN8630Wx94VbzGW838laGtN_4nKhgdA/edit?pli=1#heading=h.gxd45eguyi6e
https://docs.google.com/document/d/1I1o5Du2EvNiIpN8630Wx94VbzGW838laGtN_4nKhgdA/edit?pli=1#heading=h.gxd45eguyi6e
https://docs.google.com/document/d/1I1o5Du2EvNiIpN8630Wx94VbzGW838laGtN_4nKhgdA/edit?pli=1#heading=h.gxd45eguyi6e
https://docs.google.com/document/d/1I1o5Du2EvNiIpN8630Wx94VbzGW838laGtN_4nKhgdA/edit?pli=1#heading=h.gxd45eguyi6e
https://docs.google.com/document/d/1I1o5Du2EvNiIpN8630Wx94VbzGW838laGtN_4nKhgdA/edit?pli=1#heading=h.gxd45eguyi6e
https://docs.google.com/document/d/1I1o5Du2EvNiIpN8630Wx94VbzGW838laGtN_4nKhgdA/edit?pli=1#heading=h.z55ye6ma1fky

1 Introduction

1.1 Problem
External Ventricular Drains (EVDs) are commonly used to manage intracranial pressure

(ICP) by diverting excess cerebrospinal fluid (CSF) or blood in acute conditions such as

hydrocephalus, traumatic brain injury, and meningitis. The brain produces 450–500 cc of CSF

daily, with a typical volume of approximately 150 cc, requiring precise regulation. Traditional

EVDs are external, gravity-based systems that must be aligned/zeroed at the external auditory

meatus (EAM) to ensure accurate pressure monitoring. However, patient movements such as

turning, transport, coughing, or repositioning can lead to misalignment, leading to overdrainage

of up to 60–80 cc within minutes and posing risks of hemorrhage, brainstem herniation, or death.

Manual clamping and re-zeroing during repositioning disrupt continuous drainage and increase

the likelihood of human error. Furthermore, outside specialized neurocritical care units, staff

unfamiliar with EVD management face a heightened risk of errors, including improper

re-zeroing or inadvertently lowering the drain height, which can critically compromise safe CSF

regulation.

1.2 Solution
Our proposed system automates CSF drainage, enhancing safety, stability, and reducing manual

intervention. Pressure and flow sensors communicate with a microcontroller, controlling a solenoid valve

to regulate drainage based on intracranial pressure (ICP). The valve opens only when ICP exceeds a

user-defined threshold and closes when ICP returns to safe levels, preventing overdrainage despite patient

movement or transient pressure spikes caused by actions such as sneezing. Additionally, the flow sensor

ensures drainage rates do not exceed user-preset limits, automatically closing the valve if exceeded and

requiring manual reopening after the collection bag is emptied. The External Ventricular Drain (EVD) is

fixed level with the external auditory meatus (EAM) and secured to the mastoid bone, eliminating manual

zeroing and further minimizing error risks.

4

1.3 Visual Aid

Figure 1: Visual aid of device physical design and placement

To eliminate the need for manual zeroing relative to the external auditory meatus

(EAM), the device is designed to be securely mounted to the patient’s mastoid bone,

establishing a fixed and consistent reference point (Figure 1). The system facilitates

cerebrospinal fluid (CSF) drainage through tubing connected to a collection bag and

interfaces with a graphical user interface (GUI) via Bluetooth. The GUI enables

clinicians to configure pressure and flow thresholds, manually reset the solenoid valve,

and monitor real-time pressure and flow measurements. Additional features include

graphical data visualization, alarm notifications for abnormal readings, and data logging

capabilities for clinical review and documentation.

5

Figure 2: Visual aid of the overall system design

Our design features a three-way pipe tee to which the catheter is connected, with a

pressure sensor mounted on top, perpendicular to the CSF flow, and a solenoid valve at

the opposite end, which remains closed by default in the absence of a driving voltage. As

CSF fills the tee, the pressure sensor, in direct contact with the fluid, measures the CSF

pressure, corresponding to the patient’s intracranial pressure (ICP), and transmits the data

to a microcontroller. If the detected pressure exceeds the maximum user-set value, the

microcontroller activates the solenoid valve to allow CSF drainage. Once the pressure

drops to the minimum user-set threshold, the microcontroller signals the solenoid valve to

close, halting drainage.

CSF flows through the solenoid valve to a flow sensor via a tube before reaching

a collection bag. The flow sensor monitors the drainage rate and transmits the data to the

microcontroller. If the flow rate exceeds a user-set limit, typically 10 cc/hour, the

microcontroller signals the solenoid valve to close, stopping drainage until manually

reopened, typically when the nurse empties the collection bag, to ensure controlled CSF

removal.

6

1.4 High-Level Requirements
For our project to be successful, the system must meet three key requirements:

1. Automated Flow Regulation: The system must autonomously control CSF drainage via a

solenoid valve. The valve should open when the intracranial pressure (ICP), measured by

a pressure sensor, exceeds a user-set threshold (e.g., 16 mmHg) and close when it reaches

a maximum user-set limit (e.g., 100 mmHg).

2. Flow Rate Sensing: The system must limit the flow rate to 10 ccs per hour, using a flow

rate sensor to monitor and adjust drainage via the solenoid valve accordingly.

3. Real-Time Monitoring: The microcontroller must support Bluetooth communication with

a display monitor, providing near real-time data with a maximum delay of 10-30 seconds

(as approved by Dr. Pappu).

2 Design

2.1 Block Diagram

Figure 3: Block Diagram

7

2.2 Physical Design

Figure 4: Physical Design

The mechanical design of the system consists of several stages. The first stage includes a

three-way tee connected to the input, a pressure transducer, and a solenoid valve. The solenoid valve is

then connected to a flow sensor in line with the collection bag. By placing the flow sensor at the valve’s

output, we ensure that we measure only CSF outflow, preventing any interference from the initial fluid

buildup in the first stage.

8

2.3 Subsystem Description & Requirements

2.3.1 Microcontroller Subsystem

Figure 5: ESP32 circuitry Figure 6: Enable control circuitry for ESP32

The Microcontroller Subsystem serves as the central processing unit, managing sensor inputs

and control outputs to enable automated, real-time regulation of CSF drainage. The pressure sensor

outputs an analog voltage, which is converted to a digital signal via an external Analog-to-Digital

Converter (ADC). The microcontroller reads the ADC output via the I²C protocol, translating it into

pressure readings. It also receives flow rate data from the flow sensor and processes both inputs to

determine appropriate valve actuation. If the pressure or flow rate exceeds user-set thresholds, the

microcontroller outputs a voltage signal to drive the solenoid valve, controlling CSF drainage.

Additionally, it interfaces with the Graphical User Interface (GUI) via Bluetooth, transmitting real-time

pressure and flow data. We are utilizing the Espressif ESP32-WROOM-32 microcontroller, which features

built-in Wi-Fi and Bluetooth, making it well-suited for wireless communication. The ESP32's integrated RF

transceiver ensures reliable data transmission for seamless system monitoring and control.

9

2.3.2 Power Subsystem

Figure 7: Power subsystem schematic

The Power System Circuit ensures a stable and reliable power supply to all subsystems, enabling

continuous operation of the microcontroller, pressure and flow sensor, and solenoid valve. Given the

medical nature of the system, power reliability is crucial.

We used a 3.3V linear regulator to step down a 5V input into our circuit board. The 3.3V linear

regulator is utilized to power the microcontroller, pressure sensor, and flow sensor. The 3.3V linear

regulator utilized was the Analog Devices LT1086, which has a current rating of 1.5A. For this project, a

linear regulator with a maximum current output of 259mA was necessary as the board had to be

designed with the assumption that the ESP32 would potentially operate at its max current rating, which

is 250 mA and the sensors draw 9mA of current.

The solenoid used consumes 2W of power at 24V, drawing 83.3mA of current. To power the

solenoid, a 24V rail is created by using a buck-boost to step up the 5V input to 24V. The buck boost

chosen was the Analog Devices LT1377, which has a current rating of 1.5A. A buck boost with a current

rating significantly greater than the minimum specification was chosen to ensure that there were no

issues with non-idealities coming into play as a result of high current draw, which can decrease the

maximum gain of the buck-boost.

We chose a linear regulator over switching regulators, such as a buck converter, because

minimizing noise inputted into a microcontroller is generally recommended for proper functioning.

Switching regulators have ripple noise on their output, which can cause microcontrollers to not function

properly.

10

2.3.3 Drainage Subsystem

The solenoid valve regulates cerebrospinal fluid (CSF) flow based on pressure readings, enabling

automated drainage only when necessary. It opens when intracranial pressure (ICP) exceeds a

user-defined upper threshold and closes once pressure falls below a user-defined lower threshold,

thereby preventing overdrainage.

The selected solenoid valve is a normally closed (NC) type, meaning it remains closed by default

and automatically returns to the closed position in the event of a power loss, ensuring fail-safe

operation. It operates on a 24V DC power supply, has a power rating of 2W, and requires an input current

of approximately 83 mA.

To control the valve, a switch is placed between the 24V rail and the solenoid input, driven by a

digital output signal from the microcontroller. This configuration enables precise, real-time control of CSF

flow based on sensor feedback.

2.3.4 Pressure Subsystem

The pressure sensor measures intracranial pressure (ICP) by detecting the hydrostatic pressure

transmitted through the cerebrospinal fluid (CSF) in the drainage catheter. The sensor used is the

Amphenol NPI-19J-015A2, which has a measurement range of 0 to 15 psi (0 to 775.7 mmHg) and

outputs a 14-bit digital signal via I²C with an accuracy of ±1%. It is powered using a 3.3V linear voltage

regulator.

This transducer is piezoresistive, meaning it senses pressure by measuring resistance changes in

a piezoresistive material. As the diaphragm deforms under pressure from the CSF, the material's

resistance changes proportionally, allowing the sensor to determine fluid pressure. The transducer is

connected to a three-way tee, which is in direct hydraulic continuity with the brain’s ventricles via the

catheter. When the solenoid valve is closed, this configuration ensures stable and accurate ICP readings.

Since fluctuations as small as 1 mmHg (0.019 psi) must be detected, a high-precision sensor is essential

for safe and effective system operation.

2.3.5 Flow Control Subsystem
The flow rate sensor monitors cerebrospinal fluid (CSF) drainage to prevent excessive flow,

typically defined as greater than 10 cc/hour. If the flow rate exceeds the user-defined threshold, the

microcontroller activates a voltage-controlled switch positioned between the 12V power rail and the

solenoid valve. By default, the switch remains open (non-conductive), which means a closed solenoid

valve; when a control signal is applied, the switch closes, allowing current to flow to the solenoid and

open the valve accordingly.

The system uses the Sensirion SLF3S-0600F, a low-power liquid flow sensor that operates using

thermal mass flow measurement. It outputs 16-bit digital data via an I²C interface, with the flow rate (in

µL/min) proportional to the output value. The sensor supports a differential pressure range of −600 Pa

11

to +600 Pa and offers high accuracy, with an offset error of ±0.5 Pa and full-scale error of ±3 Pa, ensuring

reliable monitoring of CSF flow.

The SLF3S-0600F operates at 3.3V, making it fully compatible with the ESP32 microcontroller. Its

digital I²C output eliminates the need for external analog-to-digital conversion, simplifying system

integration and reducing signal noise.

2.3.6 Graphical User Interface Subsystem
The Graphical User Interface (GUI) provides an interactive platform for medical professionals to

monitor intracranial pressure (ICP), cerebrospinal fluid (CSF) flow rate, and solenoid valve status in real

time. It also supports data logging and manual override of the solenoid valve, enhancing patient safety.

The system utilizes the Espressif ESP32-WROOM-32 microcontroller, which features built-in Wi-Fi and

Bluetooth; communication with the GUI is established via Bluetooth Classic. This connection enables the

GUI to receive sensor data and transmit control commands to the system. The GUI is cross-platform,

compatible with Windows, Linux, and macOS, and is developed in Python using the Tkinter library.

3. Design Verification
The verification process was conducted to ensure that the prototype functioned as intended.

This involved individually testing and validating the performance of the pressure sensor, flow sensor,

GUI, and microcontroller. Once each component was verified, they were integrated and tested as a

complete system to confirm that the prototype operated correctly as a whole.

3.1 Microcontroller Subsystem

The system must support both I²C and Bluetooth communication to enable real-time acquisition

of sensor data and wireless transmission to external devices, such as a PC or mobile application. This

ensures seamless integration with various sensors and enhances system flexibility. The ESP32 firmware

should be developed, verified, and uploaded using the Arduino IDE, with all outputs monitored through

the Serial Monitor to confirm proper functionality.

During testing, the Serial Monitor displays real-time data for pressure, flow, and Bluetooth

connection status, providing immediate feedback on sensor readings and system connectivity. The

graphical user interface (GUI) must accurately reflect the data received from the ESP32 via Bluetooth,

ensuring real-time visualization and validation of sensor functionality.

3.2 Power Subsystem

The system must continuously supply at least 25 mA at 5V ± 0.1V to support the connected

output components. This voltage regulation is essential to ensure the stable operation of downstream

devices that depend on a consistent power source.

To verify this requirement, GPIO 32 on the ESP32 is connected to the enable pin of the

buck-boost converter. A digital multimeter is used to measure the converter's output voltage during

12

system operation, confirming that it remains within the specified 5V ± 0.1V range. This test validates

both the proper enablement of the converter and its ability to maintain the required output voltage

under load.

3.3 Drainage Subsystem

The solenoid valve must exhibit a response time of less than one second upon receiving a HIGH

or LOW signal from the ESP32. This quick response is critical for promptly controlling fluid flow, ensuring

system responsiveness, and operational safety. To verify proper operation, the voltage across the

solenoid terminals is measured using a digital multimeter during both signal states, confirming that the

valve receives the appropriate actuation voltage.

For testing, the user issues an “OPEN” or “CLOSE” command via the graphical user interface

(GUI), which triggers the ESP32 to set GPIO32 to HIGH or LOW, respectively. Water is poured into the

system’s input to observe flow behavior. The GUI should accurately indicate the valve’s state, and water

should only flow into the collection container when the valve is open. Coupled with voltage

measurements across the solenoid, this test confirms that both the electrical actuation and mechanical

response of the valve are functioning within the required specifications.

3.4 Pressure Subsystem

The system must maintain an accuracy of at least ±1 mmHg to ensure precise pressure regulation

within the cerebrospinal fluid (CSF) drainage system. Upon powering on, the ESP32 begins reading

pressure data from the Amphenol NPI-19J-015A2 sensor, which should initially detect and display

atmospheric pressure. Users can manually set a pressure threshold, allowing the system to determine

when drainage is required based on real-time measurements.

To verify the sensor’s accuracy, two validation methods were employed. First, the sensor’s

measured pressure was compared to known atmospheric pressure while exposed to open air. Second,

hydrostatic pressure variation was tested by vertically displacing the sensor (in the z-direction) and

observing the corresponding pressure change.

To eliminate air from the system and ensure accurate hydrostatic behavior, a pump-driven setup

was devised to fill the tubing with water. The input tube was elevated above the three-way tee and

submerged in a bowl of water. The tee’s output was connected to a needle valve, which was linked to a

pump that discharged into another water-filled bowl. When the pump was activated, it forced water

upward through the system, displacing trapped air. Once the tubing was fully primed, the needle valve

was closed and the input tube sealed, creating a closed fluid-filled system. This configuration allowed for

controlled hydrostatic pressure changes. A lab jack was used to precisely adjust the height of the tee,

enabling accurate measurement of pressure variations and validation of the sensor’s performance.

13

Figure 8: Fluid pressure testing setup

The hydrostatic pressure of a liquid varies as a function of height and is governed by the

equation P = ⍴gh, where ⍴ is the fluid density, g is the acceleration due to gravity, and h is the height of

the fluid column. By measuring pressure at different heights, the sensor’s ability to accurately detect

fluid pressure was verified. This was confirmed by validating the linear relationship ΔP = ⍴gΔh,

demonstrating that pressure changes were proportional to height changes, as expected. Once the

sensor’s performance was validated, its resolution was calculated based on its 14-bit digital output.

Given a measurement range of 0 to 775.7 mmHg, the resolution is 775.7 mmHg/214 = 0.0473 mmHg,

confirming its suitability for detecting small pressure fluctuations in the CSF drainage system.

3.5 Flow Control Subsystem
The system must achieve a flow measurement accuracy of ±5% for water at rates up to a

full-scale value of 2 mL/min; for flow rates exceeding this range, a reduced accuracy of ±10% is

acceptable. To validate this requirement, 167 µL of water is measured using a micropipette and

introduced into the system's input tubing via a funnel. As the fluid moves through the system, the flow

sensor captures real-time data, which is transmitted by the ESP32 to the graphical user interface (GUI)

via Bluetooth.

The GUI displays the measured flow rate in cubic centimeters per minute (cc/min) in both text

and graphical formats, enabling real-time visualization. Additionally, it calculates and displays the total

volume delivered per hour (cc) as a separate text field. This dual representation helps verify that the

system meets the specified flow accuracy requirements and provides users with clear, actionable data.

3.6 Graphical User Interface Subsystem

The system must display real-time pressure and flow data with a delay no greater than 10–30

seconds to ensure timely monitoring and clinical decision-making. To initiate the test, Bluetooth is

enabled on the ESP32 via the Arduino IDE, and a Python executable establishes communication between

the ESP32 and the graphical user interface (GUI). Upon successful connection, a pop-up window appears

14

displaying real-time graphs of pressure and flow sensor data. Additional on-screen indicators include live

readings of flow rate, pressure, total volume, and the solenoid valve status, along with a text box that

logs sensor updates every second.

System performance is verified by monitoring the text box to ensure it reflects

near-instantaneous sensor values and accurately indicates the current state of the solenoid valve (open

or closed). Users may also export a complete log of the session in CSV format, providing a detailed,

time-stamped record of pressure, flow, and valve behavior for further analysis or documentation.

4. Costs

4.1 Parts
Table 1 Parts Costs

Part Manufacturer Retail Cost ($)

NPI-19J-015A2
Pressure Sensor

Amphenol Advanced Sensors $78.85

SLF3S-0600F
Flow Sensor

Sensirion AG 144.27

AMV-ENM-24-01
Solenoid Valve

BMT Fluid Control Solutions 93.61

1/8 NPT to M3 Mcmaster Carr 7.98
1/4 -28 UNF to 5/32 push

connect
Mcmaster Carr 7.90

1/8 NPT to 5/32 push connect Mcmaster Carr 2.92
1/4-28 UNF to 1/8 NPT Mcmaster Carr 15.48

1/8 NPT Tee Taisher 12.99
ESP32 Dev Board ELEGOO 19.99

Buck boost module WWZMDiB 9.99
5/32 plastic tubing uxcell 6.19

20-200 uL micropipette ONiLAB 26.99
5V AC-DC Adapter GuanTing 6.99

3D-Printed Enclosure 5.00
4.7K Ohm Pull-up Resistors Yageo 0.50

Lab Jack 14.99

Water Pump HSH-Flo 19.99

Zip Ties Harbor Freight 5.00

Screw Terminal Block Tnisesm 9.99
Labor 40 per hour * 500 = 20000
Total 20345.35

15

4.2 Labor
Table 2 Labor Breakdown

Category Hours per person

 David Ralph Isiah

Circuit Design and Construction 120 20 20

Testing and Debug 60 70 40

Logistics/Documentation 60 70 50

We dedicated approximately 10 hours per week per team member to this project, representing a

significant portion of our time and effort. Driven by a strong motivation to see the project succeed, we

invested considerable energy into the design and implementation process. Over the course of 11 weeks,

we estimate that our team collectively spent approximately 500 hours working on the development,

testing, and refinement of the system.

5. Conclusion
This project successfully developed a prototype system for automating cerebrospinal fluid (CSF)

drainage in external ventricular drains (EVDs) to enhance patient safety, improve clinical workflow

efficiency, and minimize manual intervention. By integrating pressure and flow sensors with a

microcontroller-controlled solenoid valve, the system is capable of regulating CSF outflow in real time

based on user-defined intracranial pressure (ICP) and flow thresholds. The addition of Bluetooth

communication and a graphical user interface (GUI) enables continuous monitoring, user configuration,

and data logging capabilities. This automation reduces the risks associated with overdrainage, eliminates

the need for manual leveling at the external auditory meatus (EAM), and streamlines clinical oversight.

5.1 Accomplishments

The key accomplishments of the project are summarized as follows:

● Improved Patient Safety: The system autonomously controls the solenoid valve through

real-time communication with both pressure and flow sensors to prevent overdrainage or

underdrainage, enhancing stability and reducing risk during patient movement or sudden ICP

fluctuations.

● Reduced Clinical Workload: Manual recording of drainage volumes and ICP values was mitigated

through the implementation of an integrated digital data logging system, enabling automated

storage and export of measurements in .csv format, thereby reducing clinical workload and

minimizing the likelihood of human error.

16

● Accurate Setup and Zeroing: As a prototype, our current design represents an initial step toward

miniaturization. While already significantly more compact than traditional fully external systems,

the palm-sized device can be anchored at the EAM/mastoid level, eliminating the need for

manual zeroing or re-leveling and improving both positional accuracy and operational

consistency.

● Real-Time Monitoring and Logging: The system continuously tracks real-time pressure, flow, and

cumulative volume while transmitting data over Bluetooth Classic to a Python-based GUI with a

delay of less than 30 seconds. Data logging features support exportable CSV files and hourly flow

rate resets.

These outcomes demonstrate the feasibility and clinical value of an automated, sensor-based

EVD system and lay the groundwork for future integration into patient care environments.

5.2 Failures
We were unable to get our PCB to function correctly. Upon reviewing the design after the board

had been discarded, we concluded that the issue most likely stemmed from an error in how the ESP32

was programmed. Specifically, we failed to recognize that when using a UART adapter, the Rx0 and Tx0

pins must be cross-connected, Rx0 to Tx0 and Tx0 to Rx0. A comparison of our schematic with an official

reference design from Espressif confirmed that the circuit itself was correct. Alternatively, the failure

may have resulted from a soldering error, such as incorrect placement of a component within the

ESP32’s programming circuitry or thermal damage to the ESP32 due to excessive heat during manual

soldering.

5.3 Ethical considerations

During the development of our External Ventricular Drain (EVD) Automation Project, we

prioritized ethical engineering and regulatory alignment with IEEE and medical device standards.

Although the system is a non-clinical prototype, the risks of excessive or insufficient cerebrospinal fluid

(CSF) drainage demanded a strong focus on patient safety and system reliability. In line with the IEEE

Code of Ethics (2025), Clause I.1, we integrated fail-safes such as a normally-closed solenoid valve that

defaults to a closed state during power or microcontroller failure, and a GUI-enabled manual override for

emergency control. The GUI also displays real-time valve status to support user awareness.

For future clinical deployment, the system would require compliance with FDA 21 CFR Part 820

and likely a 510(k) premarket notification to establish equivalence to existing devices. By proactively

addressing these ethical and regulatory considerations, we aimed to uphold the highest standards of

safety, accountability, and professional integrity.

17

5.4 Future work

The most important improvement that could be made to the system is to make it lighter and more
compact. Our current design utilizes an enclosure that is space-inefficient and excessively bulky for use
on a real patient. Additionally, the use of metal pipe adapters instead of plastic ones was an oversight that
significantly increased the system's overall weight.

A practical solution to make the system viable for real-world use would be to divide it into two
parts. This separation would allow the portion mounted to the patient’s head to be smaller and lighter. The
first part would be housed in a compact enclosure secured to the patient’s head, while the second part
would be located downstream of the drainage tube and connected to the flow line. The two enclosures
would be linked via wiring. The head-mounted enclosure would contain the pressure sensor, input tee, and
plastic tubing inputs. The second enclosure would house the flow sensor, PCB, and solenoid valve. By
separating these components, only the necessary elements are mounted to the patient’s head, thereby
improving patient comfort and enabling more secure attachment.

The device should also be modified to be MRI-safe. Since EVDs are often used in settings where
MRI scans are necessary to assess intracranial conditions, the device must not contain ferrous metals such
as iron or nickel. This can be achieved by replacing the pipe tee adapters with plastic versions, selecting a
solenoid valve made from plastic and bronze (e.g., BMT AMV-MVN-24-01), and using a pressure sensor
with a titanium housing (e.g., TE Connectivity XP5).

Lastly, the graphical user interface (GUI) could be improved for better usability. While functional
in its current state, the GUI is unintuitive for new users. The interface should be redesigned to include
individual text boxes for each input parameter, replacing the existing command-line style input terminal.
Additionally, override commands should be implemented as clickable buttons rather than text inputs.
These updates would significantly enhance the system’s ease of use, making the interface more intuitive
and reducing the need for extensive user training.

5.5 Special Thanks
We would like to extend our sincere thanks to our TA, Jason Jung, our course supervisor, Dr. Yang

Zhao, and our project advisor, Dr. Suguna Pappu, for their invaluable support throughout the

development of this project. Their mentorship and guidance were instrumental to our progress, and we

are deeply grateful for their contributions. We hope to continue refining and advancing this project

toward its full potential.

18

References

[1] IEEE, “IEEE Code of Ethics,” ieee.org,

https://www.ieee.org/about/corporate/governance/p7-8.html. Accessed 13 Feb. 2025.

[2] Bertuccio, Alessandro et al. “External Ventricular Drainage: A Practical Guide for

Neuro-Anesthesiologists.” Clinics and practice vol. 13,1 219-229. 31 Jan. 2023,

doi:10.3390/clinpract13010020

[3] FDA Class II Medical Devices, “FDA Class II medical devices. (n.d.).”,

https://www.rimsys.io/blog/fda-class-ii-medical-devices. Accessed 6 March 2025.

[4] The Python Standard Library, “Graphical User Interfaces with Tk”,

https://docs.python.org/3/library/tk.html. Accessed 20 March 2025.

[5] SLF3S-0600F Liquid Flow Sensor. SLF3S-0600F Liquid Flow Sensor.

[6] NovaSensor NPI-19 Digital I2C Pressure Sensor.

Appendix A Requirement and Verification Table

Table 3 System Requirements and Verifications

19

https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.rimsys.io/blog/fda-class-ii-medical-devices
https://docs.python.org/3/library/tk.html
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6165/SensirionLiquidFlowSensorsSLF3S0600FDatasheetPreliminary.pdf
https://sensirion.com/media/documents/C4F8D965/66F56F53/LQ_DS_SLF3S-0600F_Datasheet.pdf
https://www.amphenol-sensors.com/hubfs/AAS-920-699F-NovaSensor-NPI-19-I2C-061322-web.pdf

Subsystem Requirement Verification Verificat
ion

status
(Y or N)

1. Microcontroller

Subsystem

1. Must support I²C and
must Support bluetooth
communication for
sensor data acquisition
and real-time
transmission

1. Serial Monitor will
display results of
pressure , flow, and also
bluetooth connection
availability.

2. GUI reflects data from
ESP32 (communicated
via Bluetooth)

Y

2. Pressure Control

Subsystem

1. Must have an accuracy

of at least ±1 mmHg for

precise pressure

regulation.

1. Results displayed in

Serial Monitor on

Arduino IDE

2. GUI reflects atmospheric

pressure and also shows

change in pressure on

graph from liquid input

3. Average pressure is also

displayed on the GUI.

Y

3. Flow Control

Subsystem

1. Must have an accuracy

of 5% for water for 2

ml/min full scale flow

rate otherwise 10%

accuracy

1. Flow Data (cc/min) will
be displayed in text and
graph in the GUI

2. Total Volume / Hour (cc)
will be displayed in text
in the GUI

Y

4. Drainage Subsystem 1. The solenoid must have

a response time less

than 1 second when

receiving a HIGH/Low

signal

1. GUI reflects when the

solenoid valve is

open/closed.

2. Water will drain to the

collection container

when solenoid valve is

open and vice-versa

when closed

Y

 5. Graphical User

Interface Subsystem

1. Must display real-time

pressure and flow data

with at most a

10–30-second delay.

1. Text box shows almost

instantaneous values

measured by pressure

and flow sensor along

with solenoid status

(open/close)

2. Log of data can be saved

in csv file

Y

20

 6. Power Subsystem 1. Must supply at least
25mA continuously at
5V ± 0.1V to support
output components.

1. Board powers on

2. Sensors power on and

accurately display

results in Arduino IDE

3. Solenoid Valve can be

open or closed by

manual input

Y

21

	1 Introduction
	1.1 Problem
	1.2 Solution
	1.3 Visual Aid
	1.4 High-Level Requirements

	2 Design
	2.1 Block Diagram
	2.2 Physical Design
	2.3 Subsystem Description & Requirements
	2.3.1 Microcontroller Subsystem
	2.3.2 Power Subsystem
	2.3.3 Drainage Subsystem
	2.3.4 Pressure Subsystem
	2.3.5 Flow Control Subsystem
	2.3.6 Graphical User Interface Subsystem

	3. Design Verification
	3.1 Microcontroller Subsystem
	3.2 Power Subsystem
	3.3 Drainage Subsystem
	3.4 Pressure Subsystem
	3.5 Flow Control Subsystem
	3.6 Graphical User Interface Subsystem

	4. Costs
	4.1 Parts
	4.2 Labor

	5. Conclusion
	5.1 Accomplishments
	5.2 Failures
	5.3 Ethical considerations
	5.4 Future work
	5.5 Special Thanks

	References
	Appendix ARequirement and Verification Table

