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Abstract

Modern advancements in the field of deep learning has enabled the development of mod-
els directly optimized for speech recognition, translation, and synthesis. The open source
availability of these models has made it possible for the creation of end-to-end language
translation systems. Our project focuses on integrating such a system onto an embedded
platform, capable of running entirely offline and anywhere in the world. The system lis-
tens for spoken input, transcribes to source language text, translates to target language
text, synthesizes target language speech, and plays back the translated speech. We focus
on the challenges of performance and resource constraints by integrating multiple sub-
systems to ensure accurate and low-latency inference directly on-chip. We demonstrate
translation in real-time with low latency and intelligible speech output across multiple
languages.
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1 Introduction

1.1 Purpose

Traveling is an exciting part of life that can bring joy and new experiences. Trips are
the most memorable when everything goes according to plan. However, the language
barrier can limit communication with others, causing unnecessary stress on an otherwise
enjoyable trip. Although most modern phones provide translation applications, these
require a reliable internet connection. In times when the connection is weak or there is no
connection at all, translation apps may not be a solution.

1.2 Functionality

We want to solve this problem by building a portable translator that you can ideally use
anywhere in the world without internet connection. The idea is to have a small device
that can be programmed to make translations between two different languages, then is
able to listen what the person says, converts the speech to text, translates the text to the
target language, then converts the translated text back to speech, and drives a speaker
with the target translated speech. We want to design our translator to encompass a few
subsystems: Main Processing Subsystem (ESP32-S3), Secondary Processing Subsystem
(Raspberry Pi CM5), Audio Subsystem, User Interface Subsystem, and Power Manage-
ment Subsystem. Through this design, someone should be able to turn on the device, set
the languages up and start talking into the device, and after a few seconds the translated
speech will be played. Ideally, this will facilitate communication between people without
a common language and make things simpler while traveling.

1.3 Performance Requirements

1.3.1 Translation Latency

During the project proposal, we intended on having our system to be capable of trans-
lating spoken input to text and vice versa within 3 seconds to ensure real-time usability.
This will be the time that it takes from once the person stops talking to the time that the
person is able to hear audio on the speaker. Throughout the semester, we encountered
various issues with memory and performance requirements on the compute subsystem
that required higher latency than anticipated.

1.3.2 Translation Accuracy

This system should be capable of maintaining an accuracy of at least 90% for common
phrases and vocabulary. This is going to be very dependent on the model size, where
models that have more parameters are capable of recognizing more languages with higher
accuracy and responding better to prompts given. This stage can be calculated through
the first recognition model capable of interpreting through a score of 90% on the semantic
similarity score. Then on the translation model capable of scoring 90% on a multilingual

1



sentence transformer. Then finally another semantic similarity score of 90% on the text to
speech model.

1.3.3 Intelligible Speech Output

The speaker output should be clear and audible within typical decibel ranges (e.g 60db)
of normal conversation. This will ensure that we are able to understand what the output
language is saying and conversation can flow with ease.

1.4 Subsystem Overview

1.4.1 Block Diagram

Figure 1: Block diagram of the translator system

1.4.2 Block-Level Changes

We had to make many changes for this block diagram throughout the semester to make
our development easier. The first thing that we started working in the semester was de-
veloping the inference pipeline prototpe on a general purpose computer which we later
integrated it into the compute module. We validated the working of the pipeline working
and simulated working from other modules. Later on when integrating the other com-
ponents including the main processing unit, we had many issues reading data from the
audio sensor, and we also had problems in complicated PCB design for the STM32 micro-
controller. We were able to change our design to use the ESP32-S3 MCU that easily works
with the INMP441 microphone. We were able to read data from the microphone and then
we setup the SPI interface to the compute module, we were then able to reconstruct the
wave file on the compute module to validate that we were able to transmit data. We also
had some plans to drive the LCD display using the main processing unit but then we
made the change to manage the display on the CM5 and then multiplex between the SPI
transfer and updates to the display.
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2 Design

2.1 MCU Subsystem

The MCU subsystem is made up of the firmware flashed on the ESP32-S3 to be able to
interact with audio peripherals via I2S, transfer audio data to the CM5 [1] via SPI, and
finally interact with the GPIO to start the state machine.

2.1.1 Design Details

• I2S Audio System:

– Microphone Configuration: We utilized the INMP441 [2] I2S based micro-
phone. We configured it as an I2S master reciever with a 16kHz sampling rate
and a 16-bit mono channel. The audio samples are read via DMA into a circular
buffer to separate audio capture and transmit.

– Speaker Configuration: We used the MAX98357A 4Ω and 2W Class D am-
plifier with can receive digital 16-bit mono PCM data. We used a I2S master
transmit configuration to write the recieved PCM data from the compute mod-
ule. [3] [4]

• SPI Communication: We configured the ESP to work as a SPI slave. The CM5 will
work as the master and can request audio chunks from the ESP [5]. In order to notify
the CM5 to request data, we sent over a GPIO interrupt to the Pi. The Pi would then
poll the ESP until we stop holding the button.

• Circular Buffer: We implemented a circular buffer to be able to make sure that
the SPI and I2S data communication protocols are better aligned. Since there is
some delay in reading the data over SPI, and it takes some time to load the buffer,
we need to make sure we are not starving for data and we are not overloading the
buffer. Therefore we can make a circular buffer large enough to prevent these issues.
We used a read and write pointer to coordinate communication.

Figure 2: Circular Buffer

• MCU State Machine: This is our main state machine for the main processing unit
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where we are going to synchronize data collection, communication, and transmis-
sion.

Figure 3: MCU State Machine

2.1.2 Design Alternatives

We could have configured the ESP32 to work as a SPI master instead of a slave. We could
have been able to transmit all of the data required over to the Pi and manage all the timing
on the ESP. The main issue from this was that the Pi does not have support to act as a SPI
slave without significant kernel code.
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2.1.3 Subsystem Schematic

Figure 4: MCU Schematic

2.2 Compute Subsystem

2.2.1 Design Description

The main purpose of the compute module is to offload high compute tasks, including
speech to text transcription, translation, and text to speech conversion. It would be too
computationally complex to host all three models on the ESP32-S3 while processing I/O
data. We specifically chose the RPI Compute Module because it has the computational
power to run the AI models, it can interface over SPI to the MCU, it runs Linux, and it has
eMMC Flash to store the models on board. We decided that we need to use SPI in this case
since we offloaded data in real time from the MCU. For this subsystem, we built an infras-
tructure around querying the models, reading and sending data to and from the MCU,
and a data processing pipeline to move through different stages of translation.

Effectively the model framework we used is the one based around a tensor library for
machine learning called ggml that has branching projects capable of doing inference for
speech recognition and speech translation. The two projects that we used are whisper.cpp
[6] and llama.cpp [7]. When the speech data comes through as 16-bit mono PCM, we re-
construct this data and then do some data processing such as sign extensions to be able
to provide it to the 32-bit based whisper.cpp framework that will return tokens in the de-
sired language, from these tokens we have them as a string that will be used to prompt the
llama.cpp framework to translate to a desired language with some prompt engineering to
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extract the desired language extracted. Once we get the translated language, we provide
this to a text to speech model, Piper [8], that will interpret the tokens and regenerate the
PCM data to be delivered back in SPI to the ESP32.

2.2.2 Design Alternatives

The main design alternative that we can do to this design for the compute subsystem
is making changes to the models that we used for inference. We used a multilingual
transcription model made up 809 million parameters, this is a very large model that is
very memory intensive and requires significant performance to be able to do inference.
One way that we can improved this is using a smaller model (e.g. 39 million parameters)
that will only require 1 GB of memory.

Another thing that we could have changed in our design was using a trained model that
is capable of only doing inference between two languages. Currently we have a prompt
based model, using a decoder only transformer. Instead we could use a larger encoder-
decoder translator for translation between two particular languages. We could have re-
duced the generalization of our translator by having a few models capable of doing trans-
lation for a particular set of languages.

2.2.3 Subsystem Diagram

Figure 5: Inference Pipeline Diagram

2.3 Audio I/O Subsystem

2.3.1 Design Description

In this subsystem, we had two I2S devices including a microphone and amplifier. These
both will manage our analog to digital, and digital to analog conversion for speech in-
put and output. In both cases, we used 16-bit mono audio configuration for our PCM
audio.

6



2.3.2 Subsystem Schematic

Figure 6: Audio Schematic

2.4 User I/O Subsystem

2.4.1 Design Description

In this subsystem, we had a LCD display [9] allows the user decide which languages
to translate between and some push buttons to be able to decide. We also added push
buttons that will start listening on the microphone, then stop listening so we can ensure
that all of the data has been stored.

2.4.2 Subsystem Diagram

Figure 7: LCD Diagram
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2.5 Power Management Subsystem

2.5.1 Design Description

This portable power management system uses a Samsung 25R 18650 2500mAh 20A recharge-
able Li-Ion battery to supply stable voltage to two power rails. The 5V power rail will be
used for the Raspberry Pi Compute Module (CM), while the 3.3V power rail will support
the MCU, LCD, and audio subsystem.The system includes two LM317DCYR adjustable
LDO regulators for a 3.3V and 5V output.

The current Power Management Subsystem contains two adjustable LDO voltage regu-
lators. To further enhance this subsystem, DC-DC converters can provide efficiency (up
to 95%), reduced heat dissipation, and lower power loss. Furthermore, a combination of
LDO and DC-DC converters would use a switching regulator for the main power conver-
sion, followed by an LDO for noise-sensitive analog circuits. Lastly, minor improvements
to thermal management such as the addition of heats sinks would improve the perfor-
mance of linear regulators.

2.5.2 Design Alternatives

The following design alternatives can be applied:

• Switching Regulators (DC-DC Converters)

• Combination of LDO and DC-DC Converter

• Thermal Management Enhancements

2.5.3 Equations & Simulations

The following equation is used to calculate the output voltage Vout for the LM317 voltage
regulator:

Vout = 1.25×
(
1 +

R2

R1

)
3.3 V calculation:

• R1 = 330Ω

• Vdesired = 3.3V

• R2 =
(

3.3
1.25

− 1
)
×R1 ≈ 540Ω

5 V calculation:

• R1 = 330Ω

• Vdesired = 5V

• R2 =
(

5
1.25

− 1
)
×R1 ≈ 1kΩ
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2.5.4 Subsystem Schematic

Figure 8: Power Schematic
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3 Costs & Schedule

3.1 Costs

The total cost for parts, as shown in table below, is $127.44 before shipping. Considering
a 5% shipping cost, which adds $6.37, and a 10% sales tax, which adds $12.74, the total
cost will be $146.56.

Figure 9: Costs Table
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3.2 Schedule

Figure 10: Schedule Table
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4 Requirements & Verification

4.1 Completeness of Requirements

• Microcontroller Subsystem (ESP32-S3)

– Captures 16kHz, 16-bit mono PCM audio via I2S Microphone.

– Drives 16kHz, 16-bit mono PCM audio via I2S Amplifier.

– Buffers audio data into a circular buffer of 16 chunks made up of 1024 samples
within 1.024 seconds.

• Compute Subsystem (Raspberry Pi Compute Module 5)

– Runs STT, translation, and TTS models locally within 50 seconds for end-to-end
latency and with 90% accuracy in semantic similarity.

• Power Subsystem

– Regulates 5V for Raspberry Pi and 3.3V rails for MCU, and peripherals.

4.2 Appropriate Verification Procedures

• Microcontroller Subsystem (ESP32-S3)

– Verified I2S audio capture and transmission via a oscilloscope to validate data
packets being sent are aligned. We can also validate the clock speed for the
desired frequency.

– Create a sample audio array made up of the size of the buffer and read sample
data from the microphone, then using the timer function on the ESP to check if
the buffer was filled in 1.024 seconds.

• Compute Subsystem (Raspberry Pi Compute Module 5)

– Run the pipeline with a sample PCM audio file and then log the timestamp that
it takes at the start of transcription and then the end of the speech synthesis.
We can validate that the time it takes is less than 50 seconds. We came up with
this time because of the average of the times that we had for most language
translations.

• Power Subsystem

– Validated voltage levels at 3.3V and 5V rails using DMM and bench-top power
supply.

– Utilized oscilloscope under full workload to analyze load and line regulation.
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4.3 Quantitative Results

4.3.1 Compute Subsystem

• Translation Latency: We configured out our translation latency by taking a dataset
of audio data and sending into our inference pipeline and evaluating the total run-
time and the timestamps for each models along with the memory utilization. We
validated that our design is capable of a runtime of under 50 seconds.

– Configuration:

* llama.cpp: mistral-7b.Q4 K M.gguf

* whisper.cpp: ggml-tiny.bin

– Results:

* Total Runtime: 38s

* Whisper Inference Duration: 19s

* Translation + TTS Duration: 6s

* Peak RSS: 4500 MB

* Peak VSZ: 4900 MB

Figure 11: Translation Pipeline Memory Usage

• Translation Accuracy: For translation accuracy, we would take the dataset of sam-
ples of PCM data with their transcription to validate the edit distance for the whis-
per model and then the translation for semantic similarity.

– Configuration:

* llama.cpp: mistral-7b.Q4 K M.gguf

* whisper.cpp: ggml-tiny.bin
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* Speech Dataset: LibriSpeech (16kHz PCM + transcriptions)

– Results:

* Average Levenshtein Accuracy: 92.3%

* Average Semantic Similarity: 90.5%

4.3.2 Power Subsystem

• 3.3V Channel:

– Target Voltage: 3.3V

– Measured Voltage: 3.24V (±0.01V tolerance)

– Load Current: Up to 500mA (measured at full load)

– Ripple Voltage: < 20mV (measured at full load)

• 5V Channel:

– Target Voltage: 5.0V

– Measured Voltage: 5.13V (±0.02V tolerance)

– Load Current: Up to 1A (measured at full load)

– Ripple Voltage: < 30mV (measured at full load)
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5 Conclusion

5.1 Accomplishment

Built a portable, offline translator that performs real-time speech to speech translation.
We integrated embedded systems ESP32-S3 and Raspberry Pi CM5 for on-chip inference
while dealing with real world bottlenecks from embedded machine learning. We were
able to integrate various subsystems including the main processing unit firmware and
allowed it to communicate with the secondary processing unit to do real time inference.
We were also able to build a power subsystem for power regulation for different voltage
levels for each processor and peripherals. Additionally, we were successful in our speech
translation pipeline capable of doing translation to and from more than 50 languages.
Our transcription model, whisper, was multilingual and capable of resisting to variable
noise and accents. We then took the transcribed text from the model into the prompt
based translation model capable of supporting multiple languages and generates high
accuracy text. Finally we had our TTS model, Piper, capable of generating the necessary
translated speech data in 16-bit PCM audio format. Finally, we designed a custom PCB
with reliable power deliver with voltage regulation and ESD protection. We validated all
power pathways through test points to ensure the system remained functional.

5.2 Uncertainties

Some of the main uncertainties for this project was the speech translation pipeline latency
on embedded hardware. What we found out about this project is that embedded machine
learning is difficult to optimize fully to reduce the latency. We had to cut back on many
functionality points of the device to ensure that the device would be able to be usable in
a real world setting. We also would need to reduce the performance of the system by
using quantized models with less parameters and potentially less understood languages.
Using these models will put less strain on the memory and power usage, and then have
a better performance. We could have also integrated some level of cooling for the com-
pute module to ensure that the heat levels of the Pi were low to have good performance
levels.

5.3 Future Work

In the future, we hope to improve the functionality of the translator by improving the
translation latency. We want to get rid of the prompt based translation. The prompt
based decoder model is more GPT-like and is very general. In a more specialized case, we
could use trained models for particular language translation that are optimized to work
on embedded hardware. These local models would be able to use much less memory
therefore improving latency. Another thing we could do is expand the storage capacity of
the Pi so that we can store more of these specialized models and then multiplex between
them when needing to load them into memory for different use cases. We also want to
resolve PCB related issues caused at boot mode. We hope to add test points and bench-top
equipment to be able to debug the PCB issues.
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5.4 Ethical Considerations

• Open Source Usage: Our project is based on many open source projects. We have
adapted these projects to meet our projects needs. We cited the original authors and
comply with their licenses.

• Battery Safety: We incorporated mechanisms for protecting overcharging, over-
heating, and short circuiting. We did this to comply with industry standards, in-
cluding IEEE 1725-2021 for rechargeable battery safety.

• Translation Misuse: Our project can be subject to translating sensitive language that
can cause harm to other people. We integrated models that able to prevent possible
generation of foul language.
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