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1. INTRODUCTION 

PROBLEM 

​ Wireless communications predominantly use electromagnetic waves as a means 

to communicate control and telemetry signals. However, in conductive media such as 

water, electromagnetic waves do not propagate well. As a result, much of the planet is 

inaccessible to remotely operated vehicles which communicate with their operators 

exclusively through electromagnetic waves. 

​ This challenge is particularly posed towards all industries that require the use of 

submersibles, such as deep sea oceanography and the inspection of underwater 

structures. As a result, submersibles are either operated directly by a pilot, which poses 

a safety risk, or are operated through tethered communication. Startups such as 

OceanComm have explored ROVs that communicate acoustically with the controller, but 

these are very expensive.  

 

SOLUTION 

​  We intend to develop a proof of concept for a lower cost acoustically controlled 

ROV which operates in air, using cheap ultrasonic transducers designed for range 

finding. 

​ We would like to develop a low-cost method of wireless communication using 

acoustics for remote control that will fit within the budget of ECE 445. For simplicity of 

the project, we will use the ECE 110 car as the mechanical basis of our design. 
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VISUAL AID 

 

Figure 1: Visual aid of overall project 

HIGH LEVEL REQUIREMENTS 

●​ Reliable transmission of control signals over distances of at least 3 meters. 

●​ The acoustic transmitter should be able to use differential binary phase shift 

keying (DBPSK) modulation at around the 40[KHz] range The resulting signal 

should have a bandwidth of 2 KHz.  

●​ The vehicle should be able to demodulate and act from an instruction with a 

carrier SPL of 100 dB (0dB = 0.02 mPa). 

 

3 



 

2. DESIGN 

 

Figure 2: Block Diagram of project 

 

I.​ MICROCONTROLLER 

​ The microcontroller on the transmitter will read the value of the input buttons 

using its GPIOs and generate throttle and steering commands to be transmitted to the 

car.  

 

Figure 3: Schematic of STM32H7B3RITx Implemetation [3] 
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ANALOG REFERENCE CIRCUIT, ADC RESOLUTION 

A 3.0 V clamping circuit is set to define VDDA on the microcontroller at 3.0 V in 

order to make resolution mathematically easier. The ADC and DAC for potentiometer 

sensing will both be 12 bits, therefore allowing the resolution scale to be: 

 
𝑉

𝑖𝑛

212 =  3[𝑉]
4096[𝐼𝑁𝑇 𝑀𝐴𝑋]  =  0. 7324 *  10−4[ 𝑉

𝑖𝑛𝑡 ] =  𝑉
𝑚𝑖𝑛

TRANSMITTER DSP 

​ The STM32 will apply error control coding to the user input. It will then  generate 

a differential BPSK signal centered at 40 KHz containing coded control signals. If the 

transmitter is on the car, it will apply error control coding to the telemetry data 

produced by its sensors. The data from each will be transmitted to the other using the 

Differential BPSK scheme described below. 

​ To a 1 bit, the transmitter will send a carrier with the same phase as the carrier 

during the previous symbol time. For example if the previous symbol was: 

 

 

 

then the current symbol will be: 

 

 

 

To send a 0 bit, the transmitter will send a carrier with the opposite phase as the carrier 

during the previous symbol. For example, if the previous symbol was: 

 

 

  

then the current symbol will be:  

 

 

 

​ The error control code is a 12/24 Golay code. The codeword is computed by the 

application of a generator polynomial. Our implementation is borrowed from 

LiquidDSP.  

RECEIVER DSP 

​ The ADC on the STM32 microcontroller will sample the incoming signal at 250 

KHz. The sampled signal will then be band-pass filtered with a hard coded filter 

generated in python using the window method. The bits are recovered directly from the 
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filtered signal by delaying it and multiplying it with itself. The exact delay used is very 

important for the proper functioning of the receiver. It must be the closest integer 

multiple of the carrier period to the sample period. The delay d is computed using the 

following formula: 

 

 

 

where [x] denotes x rounded to the nearest integer. 

 

The output of the demodulator can be expressed as 

 

 

 

Whenever the input the receiver transitions from 

 

 ​ to​   

 

the output of the demodulator is 

 

 

 

and when the input does not transition, the output of the demodulator is 

 

 

 

in both cases, the  term is removed by the application of a low pass pulse 

shaping filter, leaving behind the +/- 1/2 term. This low pass filter is implemented as a 

cascaded integrator-comb (CIC), and has a rectangular impulse response. The following 

recurrence describes the CIC implementation: 

 

 

 

where sps is the number of samples per symbol (250). 
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MICROCONTROLLER DSP/UNIT TEST PROCEDURE 

The majority of the DSP unit testing was performed using a loopback 

configuration, where the DAC output is connected to the ADC input of the same 

microcontroller. This allows both the TX and TX DSP chains to be tested simultaneously 

with only one board. To test the TX and RX chains in isolation, the Analog Devices M2K 

module can be used to sample the DAC output, which is used with a simulated receiver 

in python. 

 

II.​ AMPLIFIER, TRANSDUCER AND 

COMMUNICATION SYSTEM 

​ A resistive network and Op-Amp or transistor will be used to amplify the signal 

from the DAC on the microcontroller. This amplifier has peak to peak output voltage of 

9v from battery bias voltage. This will be limited by the maximum voltage swing of our 

amplifier, which is limited to the supply voltage. The 1 V headroom is fit for the TL082 

amplifier. We will use the Murata MA40S4S/R transducers for their wide gain pattern 

and high sensitivity. 

Recent tests performed by this group indicate that we can expect the output 

voltage of the MA40S4R to be ~ 50 mV when the transmitter is driven with 10v 

peak-to-peak sine wave at 40 kHz with the ADALM M2K. We will use the TL082 

Op-Amp with a 1 [MΩ] negative feedback resistor to amplify the signal from the 

MA40S4R, which results in roughly 2V peak-to-peak output when tested as described. 

 

Figure 5: Directivity pattern of MA40S4S [1] 
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Figure 6: Schematic of Transmitter Circuit 

 

Figure 7: Schematic of Receiver Circuit [10] 

Receive Amplifier Output 

​ The receiver piezo is matched to an amplifier whose output is sampled by the 

ADC on the microcontroller 

 

Unit Testing Procedure 

The output of the receiver can be observed on an oscilloscope while the 

transmitter is being used as described above. 

​
 

III.​ POWER DISTRIBUTION 

​ A non-isolated buck DC-DC converter will be used to step down the input voltage 

of a 9V battery to power the STM32 at 3.3VDC. This will then be cascaded into the  
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​ In the following iteration of using the 9V to 0V rail, The negative bias for the 

MAX1044 charge pump [2] in the design document became unnecessary for the 

amplifiers. In order to mitigate the susceptibility of switching noise to the power rail, a 

choke is designed with a 12uH inductor with various capacitors placed in parallel. 

 

 

 

 

Figure 10 (Above): DC-DC Buck Converter Circuit cascaded with a 3v3 Linear Voltage 

Regulator. 

Figure 11 (Below): USB C Receptacle Circuit with FT232RL RS232 Serial to USB module 

and schematic errata. 

 

For debugging purposes, a USB-C port was designed with power delivery 

negotiation on the CC pins, transient voltage suppression, and connection to the 

FT232RL to send  
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IV.​ ACTUATOR 

The DC Motors are driven using the L293 H-Bridge in normal operation with 

rectifier flyback diodes. The STM32 will drive the H-Bridge through logic latch control 

and PWM for motor angular velocity control.  

 

 

Figure 13: Motor Controls using the L293 H-Bridge integrated circuit with digital PWM 

control from the STM32H7.  

 

The desired switching frequency for the H-Bridge does not consider the switch 

strain or sink current of the device, instead with consideration for the switching noise 

that may be picked up by the STM32 ADC for the receiver. In order to be effectively 

avoided from the ADC, we chose a switching frequency to be half of the carrier 

frequency of the digital communication 

 

State Definition Motor Directions STM32 Timer 

Channels Driven 

0 Immobile N/A  

1 Forward Left CW, Right CCW T1Ch2, T1Ch3 

2 Reverse Left CCW, Right CW T1Ch1, T3Ch4 

3 Left Pivot Forward Left CW, Right Neutral T1Ch3 

4 Left Pivot Reverse Left CCW, Right Neutral T3Ch4 

5 Right Pivot Forward Left Neutral, Right CW T1Ch1 

6 Right Pivot Reverse Left Neutral, Right CCW T1Ch2 

Table 1 (Above): List of states and H-bridge motor direction outputs.  
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STM32 PWM FIRMWARE 

​ In order to program the STM32 to adjust the duty cycle and switching frequency 

for motor control PWM, the firmware must consider the CCR and the ARR. The CCR 

defines the threshold value of a digital comparator to an increasing counter to set a 

signal pin high or low. The ARR sets the maximum integer value the counter will reach 

before resetting. Given the STM32 has an internal 64 MHz clock, we determine our 

values for a 20 kHz switching frequency given.  

 

 𝑓
𝑠𝑤 

=  
𝑓

𝑐𝑙𝑘

𝐴𝑅𝑅 + 1  ⇒ 𝐴𝑅𝑅 =  
𝑓

𝑐𝑙𝑘

𝑓
𝑠𝑤

− 1  =  64𝐸6
20𝐸3 − 1 =  3200 − 1 =  3199 =  𝐴𝑅𝑅 

 

​ PWM is limited at maximum duty cycle of 95%, or, . The duty 𝐶𝐶𝑅 ∈  (0,  3039)
cycle is updated in the main loop of the STM32’s firmware and passed by reference to 

the HAL_TIM_PWM_Start function.  

 

Figure 14 (above): Diagram of STM32 PWM generation through comparator register 

and output. [11] 

V.​ LAYOUT 

​  

Figure 15: Main schematic of all system sheets in KiCAD 
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 The PC Board is divided into 9 volt, 5 volt, and 3v3 net regions. The 9 volt region 

is the location of the battery and the H bridge, the 5 volt region is the region of the 

transducer elements and USB-C power and serial communication for debugging with 

UART. The 3v3 net is set for the microcontroller and other circuitry required for the 

ADC for sensing.  

The PCB was designed with intended flexibility to be soldered as either the 

controller or the receiver of the commands. Changing the jumpers allows a quick change 

in the PCB’s hardware to either work like a controller or a vehicle.  

 

Figure 16 (above): Layout of the Fourth Round PCB order. 

 

Further accommodations included eight additional STM32 pin ports to a header 

on the PCB. This is a failsafe for manufacturing errors in case that traces are stripped 

while soldering or features of pins are no longer supported.  

In order to fit on the prints of the ECE 110 car, the dimensions of the PCB are 

12[cm]x10[cm] with 3.5 [mm] diameter mounting holes tapped at 11[cm]x9[cm].  

 

Figure 17 (above): The final PCB design fastened with spacers on the vehicle chassis. 
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3. VERIFICATION 

I.​ MICROCONTROLLER 

Acceptance Criteria Testing  Criterion Met 

STM32H7 flashes over 

SWD  

Using the ST-Link 

connections and harness, 

wire to 3v3, GND, !RESET, 

SWCLK, SWDIO  

Microcontroller on PCB is 

able to flash LED blinking 

firmware, confirmed by 

observing LED 

STM32H7 shall output full 

functionality of PWM 

Outputs, ADC, and DAC 

implementation in PCB 

Testpoints of STM32H7 

pin outputs will be probed 

using the oscilloscope to 

observe for proper 

waveforms.  

Not fully met. DAC and 

ADC was not tested on the 

STM32H7 PCB. PWM with 

timer interrupts weremet, 

however.  

Table 2 (above): Verification criteria for the microcontroller implementation 

II.​ AMPLIFIER, TRANSDUCER, COMMUNICATION SYSTEM 

The full acoustic communication system should be able to achieve a bit error rate 

of less than  in poor to average channel conditions at a distance of 3 meters. The 103

required SNR to achieve the specified error rate is difficult to compute for DBPSK. This 

is because it requires finding the cumulative distribution function of the product of 

normally distributed random variables. Instead, we can simulate the receiver at 

different SNR values. 

 

Figure 18: Simulated BER at various SNRs. 

The receiver BER was measured using software on the microcontroller which 

generates a sequence of packets where the 12 bit payload is incremented by 1 from each 

packet to the next. The receiver computes the hamming distance between each received 
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packet and its corresponding expected packet, then sums all the hamming distances to 

find the total number of bit errors, which it can use to find the average error rate. 

The raw data transmission rate bits per second. This requirement exists to ensure 

that 20 12-bit update packets can be sent per second, guaranteeing a latency of 50 ms, 

not including propagation delay, to ensure drivability. The latency can be measured by 

using an oscilloscope to plot the control inputs and the corresponding GPIO outputs, 

then comparing the delay between when the control input is applied and when there is a 

corresponding change in pin voltage. The data rate requirement can be verified using 

test patterns known by both the receiver and transmitter. The data rate test will be 

implemented in software on the microcontroller. 

 

Acceptance Criteria Testing Results 

BER of < 0.001 Software comparison of 

received bits with a test 

pattern. Software will 

continue to loop the test 

pattern until 30 bit errors 

are observed, or the test 

times out. 

 

Required BER is obtained 

at distances of up to 3 

meters only when the 

space around the receiver 

is clear enough to prevent 

multipath interference. 

BER remains within limits 

when the relative speed 

between the transmitter 

and receiver falls between 

[0, 1] m/s. 

Timer and meter stick are 

used to measure relative 

velocity. 

Required BER is obtained 

when the transmitter 

moves away from the 

receiver at ~0.5 m/s.  

Maximum Data 

Transmission Rate of > 

640 error free bits per 

second 

Transmission rate is fixed 

at 1000 bits per second 

and other functions are 

confirmed working 

Software comparison of 

received bits with a test 

pattern at 3 meters, yields 

error-free transmission of 

1000 bits per second 

Table 2 (above): Verification standards and results of Wireless communication 
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Figure 19: Oscilloscope results of receive amplifier circuit in figure 7 from 80mVp-p 

excitement signal 

III. POWER DISTRIBUTION SYSTEM 

Acceptance Criteria Testing  Criterion Met 

The circuit will receive 5V 

from the USB-C receptacle 

at a limit 0.5 A. 

Probe the 5V terminal and 

ground with a multimeter 

 

Yes, serial communication 

over RS232 and USB was 

also successful 

The voltage of buck 

cascade shall have a 

peak-to-peak ripple voltage 

no greater than 90 

millivolts at the STM32 

This will be checked using 

an oscilloscope to probe 

3v3 waveform 

Yes. The STM32H7 on the 

PCB was able to be 

properly powered. 

Table 4 (above): Verification standards and  

IV. ACTUATOR  

Acceptance Criteria Testing  Criterion Met. 

H bridge is able to vary the 

speed of the motor with the 

duty cycle.  

Observe the motor RPM 

while adjusting the duty 

cycle of the PWM 

waveform.  

 

At a 0% duty cycle, the 

motor should not be 

moving 

 

Yes the RPM of the motor 

changes with the change in 

PWM. 

The duty cycle of the 

switching waveform will be 

limited at 90% under the 

control unit 

There is a function that 

limits the PWM to a 

percentage of the 

waveform and can be 

tested by measuring the 

waveform.  

Yes the waveform changes 

accurately to the change in 

percentage of the PWM.  

Table 5: Acceptance Criteria and testing for the Actuator subsystem 
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4. COSTS 

I.​ Bill Of Materials 

Total Bill: $58.14  

Manufacturer Part 

Number Link Price (USD) Part Description 

Amount 

For 

Project 

Total 

Price of 

each part 

MA40S4S Mouser 

$5.06 
40 kHz Ultrasonic 

Transducer 4 20.24 

STM32H7B3RIT6 Digikey 8.673 Microcontroller 2 17.346 

R-78E5.0-0.5 LCSC $2.58 

9-5V DC-DC BUCK 

Converter 1 2.58 

YF16-DFL7.2-B5Ko(45-1

0)B5Ko(55)-RG-A22 LCSC $0.45 Joystick 1 0.45 

12BH611-GR Mouser 1.35 9V Battery Holder 1 1.35 

MAX1044 Analog Devices 6.18 Charge Pump 2 12.36 

REF3030 LCSC 0.88 3.0 V Ref for Analog 2 1.76 

SF-1206F080-2 Digikey 0.57 0.8 A Fuse 1 0.57 

MF-MSMF150/24X-2 Digikey 0.22 

PTC RESET FUSE 

1.5A 1 0.22 

USB4105-GF-A Digikey 0.78 USB C PORT 1 0.78 

22272021 Digikey 0.24 

MOTOR 

CONNECTOR 2 0.48 

Table 6: Bill of Materials for project budget for parts that were sourced from suppliers 

that were not the ECE E-Shop 

 

​ It took about 6 hours to fully solder a receiver board. Assuming that the time it 

takes to solder the transmitter takes equally, it takes a total of 12 hours to assemble the 

full hardware on the PCB. While 3D printing the chassis may be automated, the time it 

takes to tap the standoffs to the chassis takes roughly half an hour. Assuming a wage 

ranging from $15 an hour to $30 an hour, cost of labor can range from $180 to $360. 
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3. Conclusion 

I.​ Results 

 

Overall, the ultrasonic communication hardware and firmware worked and the 

ROV hardware and firmware worked. However, the combination between the two parts 

of the project was not successful. The ultrasonic transmitter and receiver was able to 

transmit usable data packets over 3 meters while stationary and in movement, which 

was an important goal in our high level requirements. The ROV was able to support the 

ultrasonic communication through hardware and was able to have its motors turn via 

commands sent to the microcontroller with data packets, however the firmware for the 

ultrasonic receiver never made it onto the ROV. Additionally, the design document 

called for the use of a dual potentiometer navigation stick, but without an 

implementation of the ADC for the voltage divider, buttons were used instead.  

II.​ Reflection 

 

There were many communication issues throughout the project such as different 

board designs that were functionally similar, board revision and schematic revisions 

that were not adequately communicated. This led to two boards being produced. What 

should have been done was have scheduled meetings earlier in the semester rather than 

later in the semester. Having meetings in person ensured that communication issues 

were resolved as waiting for confirmation on a specification was not an issue in those 

situations.  

The design document originally called for the use of GFSK modulation, but only 

DBPSK was used instead as our modulation scheme. This is because the limited 

bandwidth of the transducers led to worsened performance with GFSK, which requires 

more bandwidth than (D)BPSK for the same symbol rate.​ Modular circuits proved to be 

very time consuming, so a switch was made to use an IC. There were two separate 

boards that functioned similarly, so only one board made it onto the report.  

There were errors that occurred throughout the design process. The first design 

of the PCB round did not have the right pinouts for flashing the STM32H7 over serial 

wire. (i.e. PA13 for SWDIO was left with no trace), as a result the microcontroller could 

not flash for the first week. Another minor error was the lack of consideration for 

interrupts required in PWM. Layout assumed that PWM could be implemented through 

any GPIO pin without the need for interrupt, and so bodges were required to the proper 

timer pins. The last error was flipping USB D+ and D- by accident. Stripping the trace 

and bodging a twist pair fixed this. Lack of peer review is a clear culprit in this.  
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Figure 20: Bodges of points for leftover STM32 pins that supported timer outputs 

to the L293 H-Bridge gate control inputs on the bottom side of the PCB. 

 

 

Figure 21: Bodge of the USB D+ and D- and corrected connection to the FT232RL 

USB to UART transceiver. [13] 

III.​ Further work 

 

Programming the receiver board with the communication firmware would finish 

all high level requirements. This would mean merging the firmware from the driver 

controllers, and the firmware from the motor drivers. The controller board was also not 

finished, but it would be a replication of the receiver board. Implementation of a 

coherent demodulation so that higher order modulation and a linear demodulation 

scheme can be used can also be considered. Higher order coherent modulation will 

enable higher data rates with the same bandwidth, and linear modulation will enable 

proper channel/ISI correction.​ 
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APPENDIX A: LIST OF ACRONYMS 

ARR: Auto Reload Register 

BER: Bit Error Rate 

CCR: Contrast Control Register 

CIC: Cascaded Integrator-Comb 

CW: Clockwise 

CCW: Counter-Clockwise 

DBPSK: Differential Binary Phase Shift Keying 

DSP: Digital Signal Processing 

EMC: Electromagnetic Compliance 

GPIO: General Purpose Input Output 

PCB: Printed Circuit Board 

PWM: Pulse Width Modulation 

ROV: Remotely Operated Vehicle 

SNR: Signal to Noise Ratio 

TxChx: Timer X Channel X 

UART: Universal Asynchronous Receiver Transmitter 
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APPENDIX B: STM32H7 FIRMWARE 

Main Loop Implementation of Duty Cycle sweeping with UART print 

statements. 

MX_GPIO_Init(); 
MX_ADC1_Init(); 
MX_TIM1_Init(); 
MX_TIM3_Init(); 
MX_UART4_Init(); 
uint16_t dutyCycle = 0; 
uint16_t minDutyCycle = 0; // Setting minimum constraint on duty cycle 
uint16_t maxDutyCycle = htim1.Init.Period * 95 / 100; 
uint8_t state = 1; 
HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_2);  // Right Motor Forward 
HAL_TIM_PWM_Start(&htim1,  TIM_CHANNEL_3);  // Left Motor Forward 
HAL_TIM_PWM_Start(&htim1,  TIM_CHANNEL_1);  // Right Motor Reverse 
HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_4);  // Left Motor Reverse 
uint8_t tx_buffer[27]; 
while (1){ 
​   /* Set the duty cycle */ 
​   sConfigOC.Pulse = dutyCycle; 
​   MotorFSM_Handle(state, dutyCycle, dutyCycle); 
​   ​     // Sweep duty cycle from 10% to 90% 
​   while (dutyCycle < maxDutyCycle){ 
​   ​  dutyCycle += 100; 
​   ​  MotorFSM_Handle(state, dutyCycle, dutyCycle); 
​   ​  uint8_t tx_buffer[32] = " "; 
​   ​  HAL_UART_Transmit(&huart4, tx_buffer, sprintf(tx_buffer, "State: 
%u , Duty Cycle: %lu\r\n", state, dutyCycle * 100 / htim1.Init.Period), 10); 
​   ​  HAL_Delay(100); 
​   } 
​   dutyCycle = htim1.Init.Period / 10; 
​   ​     // Cycle through FSM states (0 to 6) 
​   state = (state + 1) % 7;  // Cycle through states 0-6 
 } 

Motor Control Method 

void MotorFSM_Handle(uint8_t state, uint16_t dutyCycleLeft, uint16_t 
dutyCycleRight) 
{ 
   // First, stop all channels (set duty cycle to 0) 
   __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, 0); // Right Forward 
   __HAL_TIM_SET_COMPARE(&htim1,  TIM_CHANNEL_3, 0); // Left Forward 
   __HAL_TIM_SET_COMPARE(&htim1,  TIM_CHANNEL_1, 0); // Right Reverse 
   __HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_4, 0); // Left Reverse 
   switch(state) 
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   { 
       case 1: // Both forward 
           __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, dutyCycleRight); 
           __HAL_TIM_SET_COMPARE(&htim1,  TIM_CHANNEL_3, dutyCycleLeft); 
           break; 
       case 2: // Both reverse 
           __HAL_TIM_SET_COMPARE(&htim1,  TIM_CHANNEL_1, dutyCycleRight); 
           __HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_4, dutyCycleLeft); 
           break; 
       case 3: // Left forward 
           __HAL_TIM_SET_COMPARE(&htim1,  TIM_CHANNEL_3, dutyCycleLeft); 
           break; 
       case 4: // Left reverse 
           __HAL_TIM_SET_COMPARE(&htim3, TIM_CHANNEL_4, dutyCycleLeft); 
           break; 
       case 5: // Right forward 
           __HAL_TIM_SET_COMPARE(&htim1, TIM_CHANNEL_2, dutyCycleRight); 
           break; 
       case 6: // Right reverse 
           __HAL_TIM_SET_COMPARE(&htim1,  TIM_CHANNEL_1, dutyCycleRight); 
           break; 
       default: // 0 or unknown → Stop all 
           break; 
   } 
} 

 

 

 

Example Instantiation of the 20 kHz switching frequency in Timer 1 with 

IOC code generation: 

 

static void MX_TIM1_Init(void) 
{ 
 TIM_MasterConfigTypeDef sMasterConfig = {0}; 
 TIM_OC_InitTypeDef sConfigOC = {0}; 
 TIM_BreakDeadTimeConfigTypeDef sBreakDeadTimeConfig = {0}; 
 htim1.Instance = TIM1; 
 htim1.Init.Prescaler = 0; 
 htim1.Init.CounterMode = TIM_COUNTERMODE_UP; 
 htim1.Init.Period = 3200; 
 htim1.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; 
 htim1.Init.RepetitionCounter = 0; 
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 htim1.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; 
 if (HAL_TIM_PWM_Init(&htim1) != HAL_OK) 
 { 
   Error_Handler(); 
 } 
. 
. 
. 
} 

 

Receiver Implementation in C++: 

 

/* 

 *  From receiver.cpp 

 * 

 *  Created on: Mar 11, 2025 

 *      Author: Ted Josephson 

 */ 

 

 

void receiver::process(float *x) { 

 

    for (unsigned i = 0; i < blocksize; i++) { 

        // compute demodulator output 

        float dbpsk_out = ac_delay_buf[ac_delay_i] * x[i]; 

        // update auto correlation buffer with new value, now that old one 

is no longer needed 

        ac_delay_buf[ac_delay_i] = x[i]; 

 

        // compute output of pulse shaping filter 

        float next_psf_state = psf_state + dbpsk_out - 

psf_delay_buf[symbol_phase]; 

        // update psf buffer with new value, now that old is no longer 

needed 

        psf_delay_buf[symbol_phase] = dbpsk_out; 

 

        // zero crossing detection 

        if (psf_state * next_psf_state < 0) { 

            target_phase = (symbol_phase + SPS / 2) % SPS; 

        } 

 

        // resampling and timing recovery 
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        if (symbol_phase == target_phase) { 

            push_sample(next_psf_state); 

            time_since_last_zc = 0; 

        } else { 

            time_since_last_zc ++; 

        } 

 

        psf_state = next_psf_state; 

 

        // update periodic indices 

        ac_delay_i = (ac_delay_i + 1) % ac_delay; 

        symbol_phase = (symbol_phase + 1) % SPS; 

    } 

} 

 

void receiver::push_sample(float b) { 

 

    //print(std::to_string(b) + "\n\r"); 

 

    bool bit = b > 0 ? true : false; 

 

    float score = 0; 

 

    for (unsigned i = 0; i < preamble_length; i++) { 

        unsigned si = (bit_index + i) % frame_size; 

        if(bits[si]) { 

            score += preamble[i]; 

        } else { 

            score -= preamble[i]; 

        } 

    } 

 

    if(score > 14) { 

        unsigned payload = 0; 

        std::string outstr = ""; 

        unsigned msg_start = bit_index + 2 * preamble_length; 

 

        // assemble message bits into payload 

        for (unsigned i = 0; i < payload_size; i++) { 

            payload |= bits[(msg_start + i) % frame_size] << i; 
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            outstr += std::to_string(bits[(msg_start + i) % frame_size]); 

        } 

 

        uint32_t decoded_message = fec_golay2412_decode_symbol(payload); 

 

        if (decoded_message == 0x1000) { 

            //print("error decoding message"); 

        } else { 

            print("payload: " + std::to_string(decoded_message) + " bits: 

" + outstr + " score: " + std::to_string(score) + "\n\r"); 

        } 

        last_payload = decoded_message; 

    } 

 

 

 

    bits[bit_index] = bit; 

 

    bit_index = (bit_index + 1) % frame_size; 

 

 

}; 
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