
 

 

 
 



 

Abstract 

Our beginner friendly FPV drone allows customers to control a drone that is budget friendly, has 

additional sensors to increase the robustness of the drone, and utilizes open-source software to run 

diagnostics and calibrate their drone with ease. The proposed system features full integration with 

Betaflight, ensuring access to a robust suite of configuration and tuning tools widely adopted by the FPV 

community. To enhance flight stability and reliability, additional sensors are incorporated to increase 

environmental awareness and system redundancy. This modular and scalable flight controller serves as 

an accessible platform for new drone enthusiasts while offering upgrade potential for more advanced 

applications. 
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1. Introduction 
First Person View Drones, or FPV drones, first were invented in 1999, but the term FPV was coined 

officially in 2002/2003 by an online forum user “Cyber-Flyer” [1]. Quickly after, these drones went from 

something engineers were building themselves to being commercially available. As FPV drones became 

more accessible for hobbyists and the technology was getting better, these drones became even more 

popular. It’s common to even see one flying across the quad on a warm Spring day. The problem with 

this popularity is that the average person who wants to pick up this hobby can be intimidated by all of 

the expensive drones that aren’t beginner friendly. In the FPV Reddit thread FPV drone users have said to 

have crashed at least 8 drones before they finally got the hang of how to use them safely without 

damage. [2] The cost of building an FPV drone is estimated to be between $400-1800, which can be a 

steep price for beginners who will most likely crash their first drones. [3] This makes getting into the 

hobby of FPV drone flying daunting for people who may not have an income that would allow them to 

spend -at minimum estimation- $400*6 = $2400 just to get the hang of flying drones without crashing 

them. When looking at the current drone market, there are categories of ‘quadcopters’, ‘GPS’, ‘FPV’, 

‘Mini”, etc. There is a gap in the current market for beginner friendly drones that are specialized to be 

cheap, durable, and an easy way to ease into the FPV drone hobby. 

1.1 Proposed Solution 
To address this gap in the current market for FPV, we will create our own custom flight controller and put 

together a drone to display its functionality. This custom flight controller (FC) will have all the necessary 

components to control the FPV drone ie. camera, IMU, radio controller/transmitter. On top of these basic 

components, we will add a humidity sensor to the FC, to let the user know if it’s going to rain while 

they’re flying.  The FC will be compatible with the most common Open Source software for FPV drones, 

which is Betaflight, so that new users can get accustomed to the software they will most likely be using 

for their more advanced future FPV drones as well. If the user is content with our FC, they can easily 

continue to use it for their future drones, since they can customize their frames/Electronic Speed 

Controllers (ESCs) because our FC will be compatible with a range of ESCs and drone frames.  
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1.3 High Level Requirements 
To determine that we have successfully made the custom FC, our project must complete the following 

requirements:  

1. Demonstrate a functional flight controller that controls the motors to make balanced motions in 

the entire 360° plane. Motors can be powered and controlled for up to a full minute. 

2. Demonstrates that the flight controller receives/sends accurate data from/to the microcontroller 

and integrated sensors. Video can stream 20+ FPS and sensors receive accurate live data within 

5% error. Latency is below 100ms. 

3. Drone has a functional system that turns on an LED and beeps when humidity sensors sense 90% 

air humidity or any raindrops. Humidity alert is audible and visible to users up to 10 feet away. 

We believe fulfilling all these requirements demonstrates fully functional subsystems that should come 

together to accomplish our initial goals. 

2 Design 

2.1 Physical Design 

 

Figure 1: Physical Drone Design  
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2.2 Block Diagram 
 

Figure 2: Block Diagram of Flight Controller Subsystem Integration 

2.3 Functional Overview and Subsystems 

2.3.1 Control Subsystem 
For the main control unit, we are opting for an ESP32S3 microcontroller to provide communication 

between all the subsystems. By modifying the open-source Betaflight software to add additional 

capabilities, it will be responsible for controlling the ESC to control the speeds of the brushless motors 

and receiving data back on the motor speed, triggering the alarm system in high humidity conditions, 

transmitting video data to the user’s device, receiving input from the remote controller to change the 

direction of flight through the radio receiver, and recording IMU data. 
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Figure 3: Schematic of ESP32-S3 on the custom flight controller with assigned GPIO pins. 

For our ESP32, we are utilizing primarily a direct USB connection with a backup plan to utilize an external 

UART to USB device. For using the direct USB connection, there are two concerns: the GPIO0 pin and the 

physical traces. For flashing, we must ensure we are able to pull the pin to low. A user must hold the 

button low during the entire duration of the reprogramming process, which is tedious, however, most of 

the breakout boards provided within class use this configuration. With this in mind, we continued with 

this method as the primary way to flash our ESP32. Using the USB method, however, impedance 

matching, trace length, and trace spacing has been heavily studied. Due to the high-speed nature of USB, 

the lack of symmetry and distance will negatively impact the signal being transmitted. The USB traces 

also has a TVS array for overvoltage protection. With the varying levels of voltages being carried on 

voltage lines, it is easy to accidentally short devices when going from higher voltage devices to lower 

voltage devices. We have a JTAG that may be used as backup, but the USB worked. Additional capacitors 

at the VDD and Vin pins in conjunction with the TVS arrays an logic level shifters will provide enough 

protection for our FC. 
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Figure 4: Schematic of USB and JTAG that is utilized for flashing 

 

2.3.2 Power Subsystem 
The power subsystem is responsible for powering the components on board. The 14.8V LiPo battery is 

lightweight and a commonly used component for FPV drones. The total calculated current draw is 

around 33A with a predicted motor control time of around one 1 minute. The regulators will step down 

the voltage to 5V and 3.3V to power the different subsystems. Specifically, the control and sensor 

subsystems will require 3.3V while the remaining subsystems (outside of the Motor Subsystem) will 

require 5V. The 5V will be provided by an additional battery to reduce the noise generated from the 

14.8V battery and increase modularity of our design. 
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Figure 5: Power Subsystem containing a TVS, 5V to 3.3V voltage regulator, coupling capacitors, and an indicator LED that 
signifies when 5V is supplied to the board. 

2.3.3 Sensor Subsystem 
The IMU consists of an accelerometer, gyroscope, and magnetometer. Linear acceleration, angular 

rotation, and magnetic field of the drone are measured by the IMU. Using this data, we can detect at 

what speed the drone is under maximum load, what angle the drone is at to allow the user to correct the 

flight path, and the position of the drone. Having a functional and accurate IMU is integral to controlling 

the drone properly. All data collected by the IMU should be communicated to the ESP32 through SPI. 

This data is used to calculate roll, pitch, yaw, and throttle to allow for user control of motors through the 

radio transmitter. 

The humidity sensor measures both humidity and temperature. All data collected by the humidity sensor 

should be communicated to the ESP32 through I2C. This data is then used to calculate the potential for 

rain/water damage to the flight controller. Once past a certain humidity threshold, an alert signal is sent 

to the alarm subsystem. 
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Figure 6: Sensor Subsystem containing IMU and Humidity Sensor communicating to ESP32 through SPI and I2C respectively 

2.3.4 Alarm Subsystem 
The alarm subsystem is what we will define as our Passive Buzzer, controlled by the alert signal sent from 

the ESP32 and Humidity Sensor. This allows for audible feedback to the user when humidity levels are 

dangerous/potentially damaging for the drone to fly in. A 5V Passive Buzzer will be used for our Alarm 

Subsystem. 

 

Figure 7: Alarm Subsystem consisting of the Passive Buzzer triggered by an Alert Signal 

2.3.5 Motor and ESC Subsystem 
The motors subsystem consists of the speed controller, the brushless motors, propellers, and quadcopter 

frame. Located in all 4 corners of the quadcopter frame will be the brushless motors that are controlled 
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by the ESC to control the direction and speed of travel. The drone must be able to navigate through the 

entire 360° range of motion using the joysticks on the remote controller. User inputs should be 

communicated through the flight controller to the ESC, controlling all motors.  

Each motor draws up to 8A and must be continuous during flight. Additionally, their maximum thrust 

output must be able to support beyond the physical weight of the flight controller and frame. Our 

motors and propellers' maximum thrust is calculated to be 1375 grams, which can fully support our 

estimated 305 gram drone. 

Our quadcopter frame must be within our estimated weight limit while being able to house our PCB, 

ESC, wiring, and batteries. 

 

Figure 8: Wiring Diagram of ESC and motors  

2.3.6 User Subsystem 
The user should be able to fully control the drone via a radio transmitter. The radio transmitter must be 

able to communicate to the radio receiver to ESP32 sending roll, pitch, yaw, and throttle signals.  

Additionally, the user can view a live camera view during flight through their smartphone.  

2.3.7 Camera Subsystem 
The camera subsystem is what we will define as an ‘FPV’ for our drone. This allows new users to view 

what the drone sees. The ESP32 Cam Module will be responsible for taking digital video data and 

sending it to the Control Subsystem to be streamed. 
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Figure 9: ESP32 Cam Module 

3. Design Verification – go into R&V details here (table is in appendix) 
The verifications of BetaFlight compatibility can be seen in Figures 10 and 11, where we have connected 

to BetaFlight successfully. In Figure 10, the DSHOT600 protocol that we used to communicate between 

the motors, ESC, and ESP32 can is visible and in the right corner of the 4 motors and slide bars is how 

each individual motor was spun and tested.  

 

Figure 10: BetaFlight Interfacing with ESC and Motors 

As seen in Figure 11 below, BetaFlight was also able to verify that our radio transmitter, radio receiver, 
and ESP32 connections to the receiver were correct. The visualized drone in the center of Figure 11 
moves according to the yee, yaw and pitch of the radio transmitter.  In Figure 12, there is a graph from 
data that my group collected as we moved the radio transmitter’s switches. This data actually is provided 
in BetaFlight and the software creates its own graph, but for the sake of clarity our own graphed data 
can be seen below. As we increased the throttle using the transmitter, the throttle would simultaneously 
increase in the graph as well.  
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    Figure 11: BetaFlight Interfacing with Radio Transmitter  

 

Figure 12: BetaFlight’s Radio Receiver/ Transmitter Data 

The sensor verifications were performed by using the Serial Monitor in Arduino to print out the data 

calculated by the humidity sensor and IMU. For the humidity sensor, my team increased the humidity by 

breathing onto the sensor. In Arduino, the instantaneous increase was visible. An example of this 

increase with the data that was measured by the humidity sensor is seen in Figure 13. The alert was also 

verified this way by setting the max humidity level in Arduino to send out the high signal to the buzzer.  

For the IMU’s verification Arduino would confirm if the IMU was abruptly moved its acceleration would 

increase and if the IMU was flipped upside down, the gyroscope would display it in the serial monitor. 

The data from the accelerometer and gyroscope of the IMU can be seen in Figures 14 and 15, 

respectively.  
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Figure 13: Humidity Sensors Data  

 

Figure 14: Raw Data From the IMU’s Accelerometer  

 

 Figure 15: Raw Data From the IMU’s Accelerometer  

3.1 Hardware and PCB Design Choices 

3.1.1 Signal Integrity and Protection 
Since noise and there are critical parts needed to operate in order ensure the success of our project, 

voltage regulators as well as additional resistors and capacitors were used across power traces. From the 

battery, a 5V voltage regulator and a 3.3V voltage regulator. Our camera, receivers, and other peripherals 
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need a constant 5V to operate while our microcontroller and sensors require a constant 3.3V. 100 

microfarad decoupling capacitors are placed at the input and 10 nanofarad decoupling capacitors output 

terminals of the voltage regulators in order to prevent static-hazard glitches as well as send in cleaner 

signals. 

For the EN and VDD pins, we are using 10 kOhm resistors as pull-up resistors to ensure we have a 

constant high during operation. Similar to the using I2C and UART lines, we will be using 10 kOhm to 

ensure the signals are clean at the input due to the importance of sensor data for our drone. 

3.1.2 ESP32 Microcontroller Communication with Sensors and Choices 
With BetaFlight being able to flash onto the ESP32, we can run diagnostics to ensure communication is 

being handled properly. In Figure 10, Betaflight can test the ESC and the radio receiver. The motors can 

receive DSHOT signals replicating a signal from a radio transmitter to spin up and spin down the motors. 

For the radio receiver, there is a 3D simulation of a quadcopter drone that can simulate the current yee, 

yaw, and pitch. With this in mind, we are able to verify that we can achieve the right thrust and on top of 

that see the potential latency from the radio transmitter as seen in Figure 11.     

3.1.3 Power Subsystem Design 
To verify our 5V to 3.3V process, we utilized a PMOS and a voltage regulator as shown in the simulation 

in Figure 11 to protect from overvoltage events and clean any noise from the voltage source. Due to the 

inherent voltage drop across the PMOS when conducting, the output at the source of the PMOS is 

approximately 4.25V. This 4.25V power source then serves as the input to our voltage regulator which 

steps the voltage down to a regulated 3.3V output. From here, we now have power that can supply both 

the entire flight controller assembly.

 

Figure 16: LTSpice simulation of Power Subsystem. 

3.1.5 Weight and Size Management 
Our main limitations with our FPV drone to achieve lift under its total physical weight are our motor 

RPM, propeller size, and battery capacity. Most sensors and control subsystems are chosen beforehand 

to achieve functionality. Their total weight (PCB & ESC) comes out to around 42.5 grams. For ease and 

efficiency, we chose a standard 5” frame to house our components as all components laid out fit 

comfortably within such a standard frame. With 5” propellers, we can decide on an efficient motor 

paired with a compatible battery. A motor with high documentation weighing below 50 grams we found 
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was the EMAX RS2205S 2300KV. Pairing this with the LiPo battery, Or 14.8V 4S 650mAh 80C, gives us a 

total compatible system of motor and battery weighing under 100 grams total. This gives us ample room 

in terms of weight for our 5” frame and additional components, as this motor consistently provides 442+ 

grams of thrust at 50% PWM [7]. 

3.2 Software Design Choices 

3.2.1 BetaFlight 
We chose to use Betaflight for its popularity and open-source documentation. This provides us and 

future users with widespread support and debugging resources. Additionally, the long-time development 

of Betaflight gives it ease of use, polish, and quicker debugging. 

However, Betaflight lacks support for fully custom flight controllers. Most flight controllers use STM32 

F405 microcontrollers. This provided some difficulties in flashing an ESP32 microcontroller with 

Betaflight firmware. Additionally, Betaflight contains a limited number of IMU libraries, preventing 

integration of most outside IMU’s. Lastly, Betaflight lacks support for custom sensor integration. 

3.2.2 Arduino for IMU and Humidity Sensor 
The lack of flexible sensor integration in Betaflight required us to write custom Arduino code to 

communicate with our sensor subsystem. This allowed us to have fully functional sensor and alarm 

subsystems.  

However, there was difficulty in actually integrating our Arduino code with our Betaflight firmware, 

preventing us from compiling all subsystems on one ESP32. 

3.3 Tolerance Analysis 

3.3.1 Motor Thrust vs Weight 
Another risk to our design is achieving lift despite the drone’s weight. The table below shows our motor 

paired with a similar ESC and similar 5” propellers with thrust measurements at different percentage 

PWMs [7]. As seen below, all propellers provide 350+ [g] thrust at 50% PWM, achieving lift with our 

design specifications. Additionally, calculating the total weight of our drone and its parts, we find that 

our weight is well below 442g. This gives us plenty of weight room to prevent potential risks. 
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Figure 16: Table of thrust tests and measurements for RS2205S Motor 

4. Costs 

4.1 Parts 
Part Manufacturer Cost Quantity Description 

RS2205 2300KV 
Brushless Motors 

EMax $8.5 4 Brushless motors 
for drone 

Lumenier Mini 
Razor Pro  ESC 
45A 

GetFPV $59.99 1 ESC for motors 

ICM-20948 DigiKey $7.11 1 9-axis IMU that 
has 
accelerometer, 
gyro, and uses I2C 
and SPI protocol 

SHT30-DIS-B10kS DigiKey $2.70 1 Humidity Sensor 
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Humidity Sensor for drone that 
uses I2C protocol 

ESP32 Cam AI Thinker $5.80 1 Mini camera for 
FPV camera 

ELRS LiteReceiver 
V1.1 

BetaFPV $9 1 Radio Receiver 

ESP32-S3-WROO
M-U1-N4 

DigiKey $2.95 1 Microcontroller 

LiteRadio 2 Radio 
Transmission 

BetaFPV $24 1 Radio 
Transmission 

LiPo 14.8V 4S 650 
mAh 80C 

Flyfive33 $15 1 14.8V battery 

5 Inch Propellers 
(16 Pack) 

Gemfan Hurricane $13 1 Propellers for 
motors 

5-Inch Frame 
(Carbon Fiber) 

Amazon $13.47 1 Frame for Drone 

Tax (11.5%)     

Shipping (5%)     

  Total: $217.88   

 

4.2 Labor 
Our team is made up of two Computer Engineers and one Electrical Engineer. Looking at the UIUC report 

about starting pay of $109,176 and $87,769 respectfully, after taking the average of these two salaries 

and assuming 30 days per month as well as 8 hour work days, we can assume (if we are charging hourly 

and not on a salary) that each member of the team has an hourly rate of around $34. [5] Each week, 

members are expecting to work 6 hours for 12 weeks, giving us a total of $7344 for labor. However, we 

can expect finals costs to be around 7344*2.5 or $18360. 

4.3 Schedule 
Week Tasks Person 

February 23 - March 1st ● Finalize and order parts 
● Flash Betaflight onto 

ESP32 using GitHub port 
● Begin schematic design 

● Jaelynn 
 

● Jaelynn & Muhammad 
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● Hulya 

March 2nd - March 8th ● Begin breadboard demo 
for placement 

● Update schematic design 
and create PCB 

● All 
 

● Hulya & Jaelynn 

March 9th - March 15th ● Second round of PCB 
Design 

● Work on ESC and motors 
● Solder PCB 
● Demo breadboard 

● All 
 

● Jaelynn & Muhammad 
● Hulya 

 
● All 

March 16th - March 22nd ● SPRING BREAK  

March 23rd - March 29th ● Debug PCB 
● Redesign PCB 
● Functional motors/ESC 

with Betaflight 
● Have the frame ordered 

● Hulya 
● Hulya & Jaelynn 
● Muhammad & Jaelynn 

 
● Muhammad 

March 30th - April 5th ● Correct weight balancing 
● Functional camera stream 

video to WiFi 
● Debug PCB 
● Redesign PCB 

● Muhammad 
 

● Jaelynn 
 
 

● Hulya 
● Hulya & Jaelynn 

April 6th - April 12th ● Order third round of PCB 
● Have Humidity Sensor 

calibrated to activate LED 
and Alarm system at 
desired humidity 
environment 

● Ensure Motors are 
calibrated to Radio 
Transmitter 

● Jaelynn & Hulya 
 

● Muhammad & Hulya 
 
 
 
 
 

● Muhammad & Jaelynn 

April 13th - April 19th ● Order final round of PCB 
● Solder the new PCB 
● Debug PCB 
● Work on IMU and sensors 

connecting to ESP32 

● Jaelynn 
● All 
● Hulya & Jaelynn 
● Hulya & Jaelynn 
● Muhammad 

April 20th - April 26th ● PCB flashing and 
integration 

● Final debugging 
● System integration 
● Ensure entire system 

● All 
● All 
● All 
● All 
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achieves high level 
requirements 

April 27th - May 3rd Mock Demo All 

May 4th - May 10th Final Presentation 
Final Paper 

All 

5. Conclusion 

5.1 Accomplishments 
Our project has achieved several key milestones, marking significant progress in both hardware and 

software integration. One of the major successes was successfully flashing the ESP32 directly on our 

custom PCB, which validated our hardware design. We also integrated Betaflight, which allowed us to 

leverage its advanced flight control features and tuning capabilities, greatly enhancing our development 

efficiency. The use of breakout boards for the IMU and humidity sensor ensured modularity and ease of 

debugging, giving us flexibility in sensor placement and data acquisition during early testing. 

On the control side, we achieved full functionality of the motors and our ESC, which are now reliably 

receiving commands from the radio transmitter via the ESP32. This demonstrates robust signal 

processing and control pipeline execution from user input to mechanical actuation. The system's 

responsiveness to radio commands confirms successful UART communication and software coordination 

across multiple subsystems. Collectively, these achievements show that our hardware-software approach 

is effective and that the foundation is firmly in place for further development and testing of more 

complex autonomous behaviors. 

5.2 Uncertainties 
Despite our many successes, the project faced several notable challenges that highlighted areas for 

improvement. One major failure was within the camera subsystem: although the camera module was 

functional during initial tests, after soldering it onto the PCB, a critical design mistake was discovered — 

the 5V trace and ground pin were reversed, resulting in a short and rendering the camera inoperative. 

This issue might have been avoided by designing the PCB with a dedicated ribbon head connector, 

eliminating the need to rely on a separate camera module and reducing the risk of manual soldering 

errors. Another challenge arose with the integration of the IMU and humidity sensor into Betaflight. We 

found that Betaflight supports only a limited selection of IMUs and sensors, restricting our ability to 

bring all sensor data into the flight control system. Additionally, the use of small, QFN-packaged ICs made 

debugging more difficult, suggesting that future iterations should consider non-QFN components for 

ease of access during troubleshooting. Finally, full PCB integration proved problematic; although flashing 

the ESP32 worked, integration with the IMU and humidity sensor failed due to shorts between the small 

IC pins and unresolved layout issues. More time spent on breadboard prototyping before finalizing the 
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PCB layout could have provided critical insights, allowing us to catch and address these integration 

challenges earlier in the prototyping cycle. 

5.3 Ethical considerations 
With open-source hardware and software, we have a responsibility to ensure that our final product 

should be available for the public to continue the development of beginner friendly drones in 

accordance with IEEE 7.8.I.2 [6]. Moreover, with our criteria, we want to ensure that the user has honest 

performance reports with the appropriate tolerancing to upkeep safety and the integrity of our project.  

 

Additionally, we have a responsibility to address ethical concerns regarding military applications and 

privacy violations. While our drone is meant for civilian recreational use, we acknowledge the potential 

misuse of our FPV drone in illegal and unauthorized aerial reconnaissance and surveillance. To prevent 

such abuse, we provide strict guidelines to any users and implement altitude restrictions and geofencing 

capabilities through our intended drone flight capability range. The limited range of our drone will allow 

us to mitigate any risk of potential military or surveillance abuse. Through this, we uphold IEEE 7.8.I.1 by 

prioritizing public welfare to ensure responsible technological use [6]. 

 

5.4 Safety and Safety Procedures 
These and other safety considerations are based around 7.8.I.1 in IEEE’s Code of Ethics to ensure the 

safety and use ethical design practices [6].  Moreover, by recognizing that the users are newer, in 

accordance with IEEE 7.8.I.6 [6], considerations were made into the design to limit the amount of 

training experience required to fly the drone and diagnose issues that occur. The alarm system and the 

built-in protection for the parts we want to order heavily contribute to our goal of protecting our users. 

Ensuring user and environmental safety is a top priority when operating an FPV drone, in alignment with 

IEEE Code of Ethics. Key procedures include checks of batteries, wiring, and propellers, flying only in 

authorized areas under safe weather conditions, and maintaining visual line of sight for FPV. Electrical 

safety involves proper battery handling, charging practices, and thermal management. Post-flight, users 

should disconnect batteries, inspect components, and review logs. For FAA/FCC regulations, privacy 

considerations, and community respect further support responsible and safe drone use. 

5.4 Future Work 
To continue this project, further research must be done into sensor integration with the FC firmware. 

IMU integration can be done through either the usage of a different compatible IMU or experimenting 

with other open-source firmware. Some potential operating firmware to use may be with Flix, Madflight, 

or BLHeli.  Additionally, in terms of design considerations, removing the JTAG can help simplify the PCB 

design and open up RX/TX pins on the ESP32. Similarly, for the camera subsystem, using the camera 

ribbon directly instead of the entire camera module will allow for further PCB design simplicity and 

subsystem safety. 
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Appendix A Requirement and Verification Table 
 

Table 1  System Requirements and Verifications 

____________________________________________________________________ 
Requirements             Verifications 

The ESP32 must be able to take in data 
from the sensor subsystem i.e. the 
speed/orientation of the drone and the 
humidity sensor and send the alert signal 
to the alarm subsystem if humidity is too 
high.   
 
 
 
 

● Use a multimeter to ensure that the 
pin on the microcontroller will be 
an input to the alert subsystem and 
send a voltage>1 V to be accepted 
as a logical 1.  

● Connect the micontroller’s sensor 
ports as outputs of the 
microcontroller to the computer’s 
terminal and send the IMU data to 
the terminal through UART. See the 
data changes as we  
move the IMU’s speed/orientation. 

The ESP32 must be able to take in the RF  
data from the Radio Receiver on how to 
move the drone through UART.  

● Set up a UART port on the ESP32 
that prints incoming CRSF data to 
the computer’s monitor using 
Arduino Framework.  

● Check on BetaFlight’s Ports Tab in 
Betaflight Configurator and ensure 
the UART connected to ESP32 has 
Serial RX enabled and set the 
receiver protocol to CRSF under 
the "Receiver" tab. 

The ESP32 must be able to receive data 
from the ESCs on the speed of the motors. ● In Betaflight Configurator: Go to 

Configuration Tab → ESC/Motor 
Features and enable Bi-directional 
DShot. In the Ports Tab, enable 
ESC Telemetry (RX) on the 
appropriate UART that’s set to 
receive the data from the ESCs. Go 
to the Motors Tab in Betaflight and 
verify that ESC telemetry values 
(RPM, voltage, temperature) update 
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when motors are running. 

The ESP32 must be able to send the 
digitized camera data to the user’s phone 
through Wifi.  

● In the code to connect the ESP32 to 
Wifi, have print statements that 
print out if Wifi is connected and 
print the IP Address that the ESP is 
connected to. 

● Ping the IP address on a nearby 
computer.  

● Open a web browser on a phone 
and type in the provide IP address 
to stream the data on the phone.  

The radio receiver must be able to get the 
data from the radio transmitter (determines 
direction of movement) within the range 
of a 500Hz- 1000Hz receive refresh range 
from the user subsystem.  
 

● Check the LED on the radio 
receiver and ensure it’s a solid 
light, indicating a stable connection 
to the radio transmitter.  

● In Betaflight Configurator, go to 
the Receiver tab to check the 
receiver’s status and make sure that 
the receiver is enabled and properly 
bound to the transmitter and that 
the correct ExpressLRS protocol is 
selected under the Ports tab in 
Betaflight. 

● Go to the Receiver tab in 
BetaFlight and observe the real 
time receiver’s input on the screen. 
Test by moving the radio 
transmitter’s stick and seeing how 
quickly that data appears on screen 
at ranges of 1fr, 4ft, and 10ft away.  

The radio receiver must be able to send 
the received RF data into the ESP32 
through UART.  
 

Verify the same way that we verify the 
ESP32 is inputting that data.  
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Voltage Regulator 5V to 3.3V must 
provide clean 3.3V to power 
microcontroller and sensor subsystem (+/- 
.1V) 
 

 

● Connect a multimeter to the input 
pin of the 5-3.3 regulator and make 
sure the input is 5V +/- .1V.  

● Connect a  multimeter to the output 
pin of the 5-3.3 regulator and make 
sure the output is 3.3V +/- .1V.  

 

Humidity Detector must be able to 
accurately represent the relative 
humidity(RH) percentage in the air around 
the PCB by taking 6 measurements/second 
of the RH and saving this value into a 
16-bit register.  

● Connect the humidity sensor to the 
ESP32 through I2C protocol: 
Sensor’s Vdd is connected to 3.3V, 
Sensor’s GND is connected to 
ESP32’s GND, Sensor’s SDA is 
connected to ESP32’s SDA (Data 
Line) and the sensor’s SCL is 
connected to the ESP32’s SCL 
(Clock Line) 

● In Arduino IDE, download the 
SHT3x library (our sensor’s 
library) and write code to receive 
the temperature and humidity 
measurements from the sensor 
that’s uploaded to the ESP32. Then 
check the Arduino Serial Monitor 
to see these measurements and 
verify their accuracy in given 
environments.  

 

The humidity sensor must be able to 
communicate relative humidity% to the 
Control sub-system  and send the ALERT 
interrupt to the ESP32 if  RH is above 
90%. 
 

● Connect the ALERT pin of the 
sensor to a GPIO pin on the ESP32 
and configure this GPIO pin as an 
interrupt input to detect when the 
ALERT pin is triggered in Arduino 
IDE.  

● Simulate a high humidity 
environment and ensure that the 
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ALERT interrupt goes off when RH 
is 90%.  

 

The IMU’s Accelerometer + Gyroscope 
must be able to accurately represent the 
acceleration of the physical drone by 
taking measurements in the X,Y,Z axis 
with maximum measurable acceleration 
before saturation set to +16g (g equals 
about 9.81 m/s^2) 
 

● Write Arduino code to configure 
the accelerometer to +16g and print 
out the measured X,Y,Z values in 
terms of gravity. Move the IMU 
around at different forces to 
simulate different g’s and verify 
that the raw data should be in the 
range of -32768 to 32767 for +16g.  

● Write Arduino code to configure 
the gyroscope to 2000m/s and print 
its measurements to the serial 
monitor. Ensure when it’s flat on a 
surface the X,Y,Z values are 0. 
Rotate the IMU on only the x-axis 
and ensure only X values change, 
etc.  

Must be able to accurately represent the 
pitch, yaw, and roll of the physical drone 
throughout the full scale 360° range within 
an error of ±15% to the Microcontroller 
through I2C protocol at 400 kHz. 

● Betaflight provides a real-time 
view of the pitch, yaw, and roll of 
the drone in the "Flight Data" tab, 
under the "Angle" indicator. To 
verify this data: gently move the 
IMU in all directions (pitch up, 
pitch down, roll left, roll right, yaw 
left, yaw right) and observe the 
changes in the 3D model or the 
angle indicator in the Betaflight 
Configurator and verify that the 
pitch, roll, and yaw values match 
the expected orientation based on 
our physical movements. 

● To test error margin, rotate the 
drone to known angles (e.g., 0°, 
90°, 180°, 270° for each axis), and 
compare the Betaflight displayed 
values to the expected angles. 
Ensure the displayed angles stay 
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within the required ±15% margin of 
error. 

 

 

5V Passive Buzzer must be able to receive 
high DC input from ESP32 Alert in 
response to the humidity sensor to create a 
sound of 100 dB audible within 100 ft. 

● Apply a 5V high signal directly to 
the buzzer, using a standalone 
multimeter and voltage source. 

● Use a calibrated sound level meter 
to measure the buzzer’s dB output 
to 5V at 3ft, 10ft, 100ft distances 

● Measure voltage from designated 
GPIO pin during ESP32 Alert to 
ensure 3.3V-5V 

● Ensure Alarm buzzes from ESP32 
Alert once all connected 

 
 

Radio Transmitter must be able to 
wirelessly send data to the Radio Receiver 
in accordance with physical joystick 
inputs under 100ms latency. 
 

● In BetaFlight, under the Receiver 
section, set the Receiver Mode to 
Serial-based Receiver and choose 
CRSF for the receiver protocol and 
set the Serial Receiver Provider to 
CRSF. Also, set the Serial Baud 
Rate to 400,000.  

● In the Ports Tab on BetaFlight, find 
the UART that the ELRS receiver 
is connected to and enable Serial 
RX for the appropriate UART port. 
In the Receiver tab in Betaflight 
Configurator while moving the 
joystick of the LiteRadio2 
transmitter, observe the channels 
(e.g., Throttle, Roll, Pitch, Yaw) 
and make sure that the values 
change in real-time as we move the 
joysticks. This confirms that the 
receiver is receiving signals from 
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the transmitter and correctly 
mapping them to the flight 
controller. 

● Measure the seconds between the 
joystick movement and mapping 
onto the channel, ensuring it’s 
consistently less than 100ms at 
different distances with range of the 
transmitter.  

 
 
 
 
Smart phone must be able to receive live 
video stream from the ESP32’s Wifi in 
20+FPS quality and below 100ms latency. 
 

 
 
 
 

● Make sure that the user’s phone can 
connect to Wifi (any Wifi) and then 
specifically the Wifi of the ESP32.  

● Open the video stream on our 
smartphone and start counting 
frames in a 10-second interval to 
ensure that the number of frames 
displayed in this interval equals or 
exceeds 200 frames (for 20 FPS). 

● Setup an LED in front of the 
camera and flash the LED on and 
off every second. Start a stopwatch 
as soon as the LED flashes and 
observe the time it takes for the 
flash to appear on the smartphone 
screen. The latency is the time 
between the moment we initiate the 
flash and the moment we see it on 
the smartphone.  

 

Electronic Speed Control must be able to 
receive control inputs from the ESP32 
from the Radio Transmitter to send 
varying Dshot signals to speed up or slow 
down the motors/propellers.  

● In Betaflight Configurator, 
manually adjust the throttle slider 
in the Motors tab (in the Motors tab 
set Master Switch to do this) to test 
each motor and verify that it is 
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receiving and responding to the 
DShot signal. Make sure that the 
motor’s speed increases or 
decreases as we vary the throttle 
signal in Betaflight, which will 
show the Dshot values should 
change accordingly.  

● Disable Master Switch and use the 
radio transmitter to see how the 
motors will move and if the Dshot 
values are changing in the 
BetaFlight Configurator.  

Quadcopter X-Frame must be able to 
house motors, propellers, PCB, and 
battery and must be able to move 
throughout the 3D plane according to 
motor controls.  
 

● Take measurements of the motors, 
propellers, PCB, and battery to 
make sure that they will fit onto the 
frame.  

● When moving the joysticks of the 
radio transmitter, make sure that the 
drone moves in a balanced manner 
in any X,Y,Z direction.  
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