

Abstract

Our beginner friendly FPV drone allows customers to control a drone that is budget friendly, has

additional sensors to increase the robustness of the drone, and utilizes open-source software to run

diagnostics and calibrate their drone with ease. The proposed system features full integration with

Betaflight, ensuring access to a robust suite of configuration and tuning tools widely adopted by the FPV

community. To enhance flight stability and reliability, additional sensors are incorporated to increase

environmental awareness and system redundancy. This modular and scalable flight controller serves as

an accessible platform for new drone enthusiasts while offering upgrade potential for more advanced

applications.

Contents

1. Introduction... 3
1.1 Proposed Solution.. 3
1.3 High Level Requirements.. 4

2 Design... 4
2.1 Physical Design... 4
2.2 Block Diagram...4
2.3 Functional Overview and Subsystems.. 5

2.3.1 Control Subsystem..5
2.3.2 Power Subsystem..7
2.3.3 Sensor Subsystem...8
2.3.4 Alarm Subsystem.. 9
2.3.5 Motor and ESC Subsystem..10
2.3.6 User Subsystem.. 10
2.3.7 Camera Subsystem... 10

3. Design Verification – go into R&V details here (table is in appendix).. 11
3.1 Hardware and PCB Design Choices... 13

3.1.1 Signal Integrity and Protection... 13
3.1.2 ESP32 Microcontroller Communication with Sensors and Choices.. 14
3.1.3 Power Subsystem Design..14
3.1.5 Weight and Size Management..14

3.2 Software Design Choices.. 15
3.2.1 BetaFlight..15
3.2.2 Arduino for IMU and Humidity Sensor... 15

3.3 Tolerance Analysis...15
3.3.1 Motor Thrust vs Weight..15

4. Costs.. 16
4.1 Parts..16
4.2 Labor...17

2

4.3 Schedule... 17
5. Conclusion... 19

5.1 Accomplishments... 19
5.2 Uncertainties.. 19
5.3 Ethical considerations...20
5.4 Safety and Safety Procedures... 20
5.4 Future Work..20

References... 21
Appendix A Requirement and Verification Table... 22

1. Introduction
First Person View Drones, or FPV drones, first were invented in 1999, but the term FPV was coined

officially in 2002/2003 by an online forum user “Cyber-Flyer” [1]. Quickly after, these drones went from

something engineers were building themselves to being commercially available. As FPV drones became

more accessible for hobbyists and the technology was getting better, these drones became even more

popular. It’s common to even see one flying across the quad on a warm Spring day. The problem with

this popularity is that the average person who wants to pick up this hobby can be intimidated by all of

the expensive drones that aren’t beginner friendly. In the FPV Reddit thread FPV drone users have said to

have crashed at least 8 drones before they finally got the hang of how to use them safely without

damage. [2] The cost of building an FPV drone is estimated to be between $400-1800, which can be a

steep price for beginners who will most likely crash their first drones. [3] This makes getting into the

hobby of FPV drone flying daunting for people who may not have an income that would allow them to

spend -at minimum estimation- $400*6 = $2400 just to get the hang of flying drones without crashing

them. When looking at the current drone market, there are categories of ‘quadcopters’, ‘GPS’, ‘FPV’,

‘Mini”, etc. There is a gap in the current market for beginner friendly drones that are specialized to be

cheap, durable, and an easy way to ease into the FPV drone hobby.

1.1 Proposed Solution
To address this gap in the current market for FPV, we will create our own custom flight controller and put

together a drone to display its functionality. This custom flight controller (FC) will have all the necessary

components to control the FPV drone ie. camera, IMU, radio controller/transmitter. On top of these basic

components, we will add a humidity sensor to the FC, to let the user know if it’s going to rain while

they’re flying. The FC will be compatible with the most common Open Source software for FPV drones,

which is Betaflight, so that new users can get accustomed to the software they will most likely be using

for their more advanced future FPV drones as well. If the user is content with our FC, they can easily

continue to use it for their future drones, since they can customize their frames/Electronic Speed

Controllers (ESCs) because our FC will be compatible with a range of ESCs and drone frames.

3

1.3 High Level Requirements
To determine that we have successfully made the custom FC, our project must complete the following

requirements:

1. Demonstrate a functional flight controller that controls the motors to make balanced motions in

the entire 360° plane. Motors can be powered and controlled for up to a full minute.

2. Demonstrates that the flight controller receives/sends accurate data from/to the microcontroller

and integrated sensors. Video can stream 20+ FPS and sensors receive accurate live data within

5% error. Latency is below 100ms.

3. Drone has a functional system that turns on an LED and beeps when humidity sensors sense 90%

air humidity or any raindrops. Humidity alert is audible and visible to users up to 10 feet away.

We believe fulfilling all these requirements demonstrates fully functional subsystems that should come

together to accomplish our initial goals.

2 Design

2.1 Physical Design

Figure 1: Physical Drone Design

4

2.2 Block Diagram

Figure 2: Block Diagram of Flight Controller Subsystem Integration

2.3 Functional Overview and Subsystems

2.3.1 Control Subsystem
For the main control unit, we are opting for an ESP32S3 microcontroller to provide communication

between all the subsystems. By modifying the open-source Betaflight software to add additional

capabilities, it will be responsible for controlling the ESC to control the speeds of the brushless motors

and receiving data back on the motor speed, triggering the alarm system in high humidity conditions,

transmitting video data to the user’s device, receiving input from the remote controller to change the

direction of flight through the radio receiver, and recording IMU data.

5

Figure 3: Schematic of ESP32-S3 on the custom flight controller with assigned GPIO pins.

For our ESP32, we are utilizing primarily a direct USB connection with a backup plan to utilize an external

UART to USB device. For using the direct USB connection, there are two concerns: the GPIO0 pin and the

physical traces. For flashing, we must ensure we are able to pull the pin to low. A user must hold the

button low during the entire duration of the reprogramming process, which is tedious, however, most of

the breakout boards provided within class use this configuration. With this in mind, we continued with

this method as the primary way to flash our ESP32. Using the USB method, however, impedance

matching, trace length, and trace spacing has been heavily studied. Due to the high-speed nature of USB,

the lack of symmetry and distance will negatively impact the signal being transmitted. The USB traces

also has a TVS array for overvoltage protection. With the varying levels of voltages being carried on

voltage lines, it is easy to accidentally short devices when going from higher voltage devices to lower

voltage devices. We have a JTAG that may be used as backup, but the USB worked. Additional capacitors

at the VDD and Vin pins in conjunction with the TVS arrays an logic level shifters will provide enough

protection for our FC.

6

Figure 4: Schematic of USB and JTAG that is utilized for flashing

2.3.2 Power Subsystem
The power subsystem is responsible for powering the components on board. The 14.8V LiPo battery is

lightweight and a commonly used component for FPV drones. The total calculated current draw is

around 33A with a predicted motor control time of around one 1 minute. The regulators will step down

the voltage to 5V and 3.3V to power the different subsystems. Specifically, the control and sensor

subsystems will require 3.3V while the remaining subsystems (outside of the Motor Subsystem) will

require 5V. The 5V will be provided by an additional battery to reduce the noise generated from the

14.8V battery and increase modularity of our design.

7

Figure 5: Power Subsystem containing a TVS, 5V to 3.3V voltage regulator, coupling capacitors, and an indicator LED that
signifies when 5V is supplied to the board.

2.3.3 Sensor Subsystem
The IMU consists of an accelerometer, gyroscope, and magnetometer. Linear acceleration, angular

rotation, and magnetic field of the drone are measured by the IMU. Using this data, we can detect at

what speed the drone is under maximum load, what angle the drone is at to allow the user to correct the

flight path, and the position of the drone. Having a functional and accurate IMU is integral to controlling

the drone properly. All data collected by the IMU should be communicated to the ESP32 through SPI.

This data is used to calculate roll, pitch, yaw, and throttle to allow for user control of motors through the

radio transmitter.

The humidity sensor measures both humidity and temperature. All data collected by the humidity sensor

should be communicated to the ESP32 through I2C. This data is then used to calculate the potential for

rain/water damage to the flight controller. Once past a certain humidity threshold, an alert signal is sent

to the alarm subsystem.

8

Figure 6: Sensor Subsystem containing IMU and Humidity Sensor communicating to ESP32 through SPI and I2C respectively

2.3.4 Alarm Subsystem
The alarm subsystem is what we will define as our Passive Buzzer, controlled by the alert signal sent from

the ESP32 and Humidity Sensor. This allows for audible feedback to the user when humidity levels are

dangerous/potentially damaging for the drone to fly in. A 5V Passive Buzzer will be used for our Alarm

Subsystem.

Figure 7: Alarm Subsystem consisting of the Passive Buzzer triggered by an Alert Signal

2.3.5 Motor and ESC Subsystem
The motors subsystem consists of the speed controller, the brushless motors, propellers, and quadcopter

frame. Located in all 4 corners of the quadcopter frame will be the brushless motors that are controlled

9

by the ESC to control the direction and speed of travel. The drone must be able to navigate through the

entire 360° range of motion using the joysticks on the remote controller. User inputs should be

communicated through the flight controller to the ESC, controlling all motors.

Each motor draws up to 8A and must be continuous during flight. Additionally, their maximum thrust

output must be able to support beyond the physical weight of the flight controller and frame. Our

motors and propellers' maximum thrust is calculated to be 1375 grams, which can fully support our

estimated 305 gram drone.

Our quadcopter frame must be within our estimated weight limit while being able to house our PCB,

ESC, wiring, and batteries.

Figure 8: Wiring Diagram of ESC and motors

2.3.6 User Subsystem
The user should be able to fully control the drone via a radio transmitter. The radio transmitter must be

able to communicate to the radio receiver to ESP32 sending roll, pitch, yaw, and throttle signals.

Additionally, the user can view a live camera view during flight through their smartphone.

2.3.7 Camera Subsystem
The camera subsystem is what we will define as an ‘FPV’ for our drone. This allows new users to view

what the drone sees. The ESP32 Cam Module will be responsible for taking digital video data and

sending it to the Control Subsystem to be streamed.

10

Figure 9: ESP32 Cam Module

3. Design Verification – go into R&V details here (table is in appendix)
The verifications of BetaFlight compatibility can be seen in Figures 10 and 11, where we have connected

to BetaFlight successfully. In Figure 10, the DSHOT600 protocol that we used to communicate between

the motors, ESC, and ESP32 can is visible and in the right corner of the 4 motors and slide bars is how

each individual motor was spun and tested.

Figure 10: BetaFlight Interfacing with ESC and Motors

As seen in Figure 11 below, BetaFlight was also able to verify that our radio transmitter, radio receiver,
and ESP32 connections to the receiver were correct. The visualized drone in the center of Figure 11
moves according to the yee, yaw and pitch of the radio transmitter. In Figure 12, there is a graph from
data that my group collected as we moved the radio transmitter’s switches. This data actually is provided
in BetaFlight and the software creates its own graph, but for the sake of clarity our own graphed data
can be seen below. As we increased the throttle using the transmitter, the throttle would simultaneously
increase in the graph as well.

11

 Figure 11: BetaFlight Interfacing with Radio Transmitter

Figure 12: BetaFlight’s Radio Receiver/ Transmitter Data

The sensor verifications were performed by using the Serial Monitor in Arduino to print out the data

calculated by the humidity sensor and IMU. For the humidity sensor, my team increased the humidity by

breathing onto the sensor. In Arduino, the instantaneous increase was visible. An example of this

increase with the data that was measured by the humidity sensor is seen in Figure 13. The alert was also

verified this way by setting the max humidity level in Arduino to send out the high signal to the buzzer.

For the IMU’s verification Arduino would confirm if the IMU was abruptly moved its acceleration would

increase and if the IMU was flipped upside down, the gyroscope would display it in the serial monitor.

The data from the accelerometer and gyroscope of the IMU can be seen in Figures 14 and 15,

respectively.

12

Figure 13: Humidity Sensors Data

Figure 14: Raw Data From the IMU’s Accelerometer

 Figure 15: Raw Data From the IMU’s Accelerometer

3.1 Hardware and PCB Design Choices

3.1.1 Signal Integrity and Protection
Since noise and there are critical parts needed to operate in order ensure the success of our project,

voltage regulators as well as additional resistors and capacitors were used across power traces. From the

battery, a 5V voltage regulator and a 3.3V voltage regulator. Our camera, receivers, and other peripherals

13

need a constant 5V to operate while our microcontroller and sensors require a constant 3.3V. 100

microfarad decoupling capacitors are placed at the input and 10 nanofarad decoupling capacitors output

terminals of the voltage regulators in order to prevent static-hazard glitches as well as send in cleaner

signals.

For the EN and VDD pins, we are using 10 kOhm resistors as pull-up resistors to ensure we have a

constant high during operation. Similar to the using I2C and UART lines, we will be using 10 kOhm to

ensure the signals are clean at the input due to the importance of sensor data for our drone.

3.1.2 ESP32 Microcontroller Communication with Sensors and Choices
With BetaFlight being able to flash onto the ESP32, we can run diagnostics to ensure communication is

being handled properly. In Figure 10, Betaflight can test the ESC and the radio receiver. The motors can

receive DSHOT signals replicating a signal from a radio transmitter to spin up and spin down the motors.

For the radio receiver, there is a 3D simulation of a quadcopter drone that can simulate the current yee,

yaw, and pitch. With this in mind, we are able to verify that we can achieve the right thrust and on top of

that see the potential latency from the radio transmitter as seen in Figure 11.

3.1.3 Power Subsystem Design
To verify our 5V to 3.3V process, we utilized a PMOS and a voltage regulator as shown in the simulation

in Figure 11 to protect from overvoltage events and clean any noise from the voltage source. Due to the

inherent voltage drop across the PMOS when conducting, the output at the source of the PMOS is

approximately 4.25V. This 4.25V power source then serves as the input to our voltage regulator which

steps the voltage down to a regulated 3.3V output. From here, we now have power that can supply both

the entire flight controller assembly.

Figure 16: LTSpice simulation of Power Subsystem.

3.1.5 Weight and Size Management
Our main limitations with our FPV drone to achieve lift under its total physical weight are our motor

RPM, propeller size, and battery capacity. Most sensors and control subsystems are chosen beforehand

to achieve functionality. Their total weight (PCB & ESC) comes out to around 42.5 grams. For ease and

efficiency, we chose a standard 5” frame to house our components as all components laid out fit

comfortably within such a standard frame. With 5” propellers, we can decide on an efficient motor

paired with a compatible battery. A motor with high documentation weighing below 50 grams we found

14

was the EMAX RS2205S 2300KV. Pairing this with the LiPo battery, Or 14.8V 4S 650mAh 80C, gives us a

total compatible system of motor and battery weighing under 100 grams total. This gives us ample room

in terms of weight for our 5” frame and additional components, as this motor consistently provides 442+

grams of thrust at 50% PWM [7].

3.2 Software Design Choices

3.2.1 BetaFlight
We chose to use Betaflight for its popularity and open-source documentation. This provides us and

future users with widespread support and debugging resources. Additionally, the long-time development

of Betaflight gives it ease of use, polish, and quicker debugging.

However, Betaflight lacks support for fully custom flight controllers. Most flight controllers use STM32

F405 microcontrollers. This provided some difficulties in flashing an ESP32 microcontroller with

Betaflight firmware. Additionally, Betaflight contains a limited number of IMU libraries, preventing

integration of most outside IMU’s. Lastly, Betaflight lacks support for custom sensor integration.

3.2.2 Arduino for IMU and Humidity Sensor
The lack of flexible sensor integration in Betaflight required us to write custom Arduino code to

communicate with our sensor subsystem. This allowed us to have fully functional sensor and alarm

subsystems.

However, there was difficulty in actually integrating our Arduino code with our Betaflight firmware,

preventing us from compiling all subsystems on one ESP32.

3.3 Tolerance Analysis

3.3.1 Motor Thrust vs Weight
Another risk to our design is achieving lift despite the drone’s weight. The table below shows our motor

paired with a similar ESC and similar 5” propellers with thrust measurements at different percentage

PWMs [7]. As seen below, all propellers provide 350+ [g] thrust at 50% PWM, achieving lift with our

design specifications. Additionally, calculating the total weight of our drone and its parts, we find that

our weight is well below 442g. This gives us plenty of weight room to prevent potential risks.

15

Figure 16: Table of thrust tests and measurements for RS2205S Motor

4. Costs

4.1 Parts
Part Manufacturer Cost Quantity Description

RS2205 2300KV
Brushless Motors

EMax $8.5 4 Brushless motors
for drone

Lumenier Mini
Razor Pro ESC
45A

GetFPV $59.99 1 ESC for motors

ICM-20948 DigiKey $7.11 1 9-axis IMU that
has
accelerometer,
gyro, and uses I2C
and SPI protocol

SHT30-DIS-B10kS DigiKey $2.70 1 Humidity Sensor

16

Humidity Sensor for drone that
uses I2C protocol

ESP32 Cam AI Thinker $5.80 1 Mini camera for
FPV camera

ELRS LiteReceiver
V1.1

BetaFPV $9 1 Radio Receiver

ESP32-S3-WROO
M-U1-N4

DigiKey $2.95 1 Microcontroller

LiteRadio 2 Radio
Transmission

BetaFPV $24 1 Radio
Transmission

LiPo 14.8V 4S 650
mAh 80C

Flyfive33 $15 1 14.8V battery

5 Inch Propellers
(16 Pack)

Gemfan Hurricane $13 1 Propellers for
motors

5-Inch Frame
(Carbon Fiber)

Amazon $13.47 1 Frame for Drone

Tax (11.5%)

Shipping (5%)

 Total: $217.88

4.2 Labor
Our team is made up of two Computer Engineers and one Electrical Engineer. Looking at the UIUC report

about starting pay of $109,176 and $87,769 respectfully, after taking the average of these two salaries

and assuming 30 days per month as well as 8 hour work days, we can assume (if we are charging hourly

and not on a salary) that each member of the team has an hourly rate of around $34. [5] Each week,

members are expecting to work 6 hours for 12 weeks, giving us a total of $7344 for labor. However, we

can expect finals costs to be around 7344*2.5 or $18360.

4.3 Schedule
Week Tasks Person

February 23 - March 1st ● Finalize and order parts
● Flash Betaflight onto

ESP32 using GitHub port
● Begin schematic design

● Jaelynn

● Jaelynn & Muhammad

17

● Hulya

March 2nd - March 8th ● Begin breadboard demo
for placement

● Update schematic design
and create PCB

● All

● Hulya & Jaelynn

March 9th - March 15th ● Second round of PCB
Design

● Work on ESC and motors
● Solder PCB
● Demo breadboard

● All

● Jaelynn & Muhammad
● Hulya

● All

March 16th - March 22nd ● SPRING BREAK

March 23rd - March 29th ● Debug PCB
● Redesign PCB
● Functional motors/ESC

with Betaflight
● Have the frame ordered

● Hulya
● Hulya & Jaelynn
● Muhammad & Jaelynn

● Muhammad

March 30th - April 5th ● Correct weight balancing
● Functional camera stream

video to WiFi
● Debug PCB
● Redesign PCB

● Muhammad

● Jaelynn

● Hulya
● Hulya & Jaelynn

April 6th - April 12th ● Order third round of PCB
● Have Humidity Sensor

calibrated to activate LED
and Alarm system at
desired humidity
environment

● Ensure Motors are
calibrated to Radio
Transmitter

● Jaelynn & Hulya

● Muhammad & Hulya

● Muhammad & Jaelynn

April 13th - April 19th ● Order final round of PCB
● Solder the new PCB
● Debug PCB
● Work on IMU and sensors

connecting to ESP32

● Jaelynn
● All
● Hulya & Jaelynn
● Hulya & Jaelynn
● Muhammad

April 20th - April 26th ● PCB flashing and
integration

● Final debugging
● System integration
● Ensure entire system

● All
● All
● All
● All

18

achieves high level
requirements

April 27th - May 3rd Mock Demo All

May 4th - May 10th Final Presentation
Final Paper

All

5. Conclusion

5.1 Accomplishments
Our project has achieved several key milestones, marking significant progress in both hardware and

software integration. One of the major successes was successfully flashing the ESP32 directly on our

custom PCB, which validated our hardware design. We also integrated Betaflight, which allowed us to

leverage its advanced flight control features and tuning capabilities, greatly enhancing our development

efficiency. The use of breakout boards for the IMU and humidity sensor ensured modularity and ease of

debugging, giving us flexibility in sensor placement and data acquisition during early testing.

On the control side, we achieved full functionality of the motors and our ESC, which are now reliably

receiving commands from the radio transmitter via the ESP32. This demonstrates robust signal

processing and control pipeline execution from user input to mechanical actuation. The system's

responsiveness to radio commands confirms successful UART communication and software coordination

across multiple subsystems. Collectively, these achievements show that our hardware-software approach

is effective and that the foundation is firmly in place for further development and testing of more

complex autonomous behaviors.

5.2 Uncertainties
Despite our many successes, the project faced several notable challenges that highlighted areas for

improvement. One major failure was within the camera subsystem: although the camera module was

functional during initial tests, after soldering it onto the PCB, a critical design mistake was discovered —

the 5V trace and ground pin were reversed, resulting in a short and rendering the camera inoperative.

This issue might have been avoided by designing the PCB with a dedicated ribbon head connector,

eliminating the need to rely on a separate camera module and reducing the risk of manual soldering

errors. Another challenge arose with the integration of the IMU and humidity sensor into Betaflight. We

found that Betaflight supports only a limited selection of IMUs and sensors, restricting our ability to

bring all sensor data into the flight control system. Additionally, the use of small, QFN-packaged ICs made

debugging more difficult, suggesting that future iterations should consider non-QFN components for

ease of access during troubleshooting. Finally, full PCB integration proved problematic; although flashing

the ESP32 worked, integration with the IMU and humidity sensor failed due to shorts between the small

IC pins and unresolved layout issues. More time spent on breadboard prototyping before finalizing the

19

PCB layout could have provided critical insights, allowing us to catch and address these integration

challenges earlier in the prototyping cycle.

5.3 Ethical considerations
With open-source hardware and software, we have a responsibility to ensure that our final product

should be available for the public to continue the development of beginner friendly drones in

accordance with IEEE 7.8.I.2 [6]. Moreover, with our criteria, we want to ensure that the user has honest

performance reports with the appropriate tolerancing to upkeep safety and the integrity of our project.

Additionally, we have a responsibility to address ethical concerns regarding military applications and

privacy violations. While our drone is meant for civilian recreational use, we acknowledge the potential

misuse of our FPV drone in illegal and unauthorized aerial reconnaissance and surveillance. To prevent

such abuse, we provide strict guidelines to any users and implement altitude restrictions and geofencing

capabilities through our intended drone flight capability range. The limited range of our drone will allow

us to mitigate any risk of potential military or surveillance abuse. Through this, we uphold IEEE 7.8.I.1 by

prioritizing public welfare to ensure responsible technological use [6].

5.4 Safety and Safety Procedures
These and other safety considerations are based around 7.8.I.1 in IEEE’s Code of Ethics to ensure the

safety and use ethical design practices [6]. Moreover, by recognizing that the users are newer, in

accordance with IEEE 7.8.I.6 [6], considerations were made into the design to limit the amount of

training experience required to fly the drone and diagnose issues that occur. The alarm system and the

built-in protection for the parts we want to order heavily contribute to our goal of protecting our users.

Ensuring user and environmental safety is a top priority when operating an FPV drone, in alignment with

IEEE Code of Ethics. Key procedures include checks of batteries, wiring, and propellers, flying only in

authorized areas under safe weather conditions, and maintaining visual line of sight for FPV. Electrical

safety involves proper battery handling, charging practices, and thermal management. Post-flight, users

should disconnect batteries, inspect components, and review logs. For FAA/FCC regulations, privacy

considerations, and community respect further support responsible and safe drone use.

5.4 Future Work
To continue this project, further research must be done into sensor integration with the FC firmware.

IMU integration can be done through either the usage of a different compatible IMU or experimenting

with other open-source firmware. Some potential operating firmware to use may be with Flix, Madflight,

or BLHeli. Additionally, in terms of design considerations, removing the JTAG can help simplify the PCB

design and open up RX/TX pins on the ESP32. Similarly, for the camera subsystem, using the camera

ribbon directly instead of the entire camera module will allow for further PCB design simplicity and

subsystem safety.

20

References
[1] CurryKitten. “The History of FPV.” CurryKitten. https://www.currykitten.co.uk/the-history-of-fpv/

(accessed Mar. 5, 2025).

[2] “How many drones have you crashed since you started flying?” Reddit.

https://www.reddit.com/r/fpv/comments/12qhckv/how_many_drones_have_you_crashed_since_y

ou (accessed Mar. 5, 2025).

[3] Le, S. Supporting, I. 11, G. Wi-Fi, and Le), “ESP32-S3 Series Datasheet 2.4 GHz Wi-Fi + Bluetooth

Including.” Available:

https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf

[5] ECE Illinois. “Salary Averages.” University of Illinois Urbana-Champaign.

https://ece.illinois.edu/admissions/why-ece/salary-averages (accessed Mar. 5, 2025).

[6] IEEE. “IEEE Policies: Section 7 – Statement of Policy.” IEEE.

https://www.ieee.org/about/corporate/governance/p7-8.html (accessed Mar. 5, 2025).

[7] Max, et al. “Review - EMAX RS2205S 2300KV Motors.” Oscar Liang, 24 Apr. 2017,

https://oscarliang.com/emax-rs2205s-2300kv-motors/

21

Appendix A Requirement and Verification Table

Table 1 System Requirements and Verifications

__
Requirements Verifications

The ESP32 must be able to take in data
from the sensor subsystem i.e. the
speed/orientation of the drone and the
humidity sensor and send the alert signal
to the alarm subsystem if humidity is too
high.

● Use a multimeter to ensure that the
pin on the microcontroller will be
an input to the alert subsystem and
send a voltage>1 V to be accepted
as a logical 1.

● Connect the micontroller’s sensor
ports as outputs of the
microcontroller to the computer’s
terminal and send the IMU data to
the terminal through UART. See the
data changes as we
move the IMU’s speed/orientation.

The ESP32 must be able to take in the RF
data from the Radio Receiver on how to
move the drone through UART.

● Set up a UART port on the ESP32
that prints incoming CRSF data to
the computer’s monitor using
Arduino Framework.

● Check on BetaFlight’s Ports Tab in
Betaflight Configurator and ensure
the UART connected to ESP32 has
Serial RX enabled and set the
receiver protocol to CRSF under
the "Receiver" tab.

The ESP32 must be able to receive data
from the ESCs on the speed of the motors. ● In Betaflight Configurator: Go to

Configuration Tab → ESC/Motor
Features and enable Bi-directional
DShot. In the Ports Tab, enable
ESC Telemetry (RX) on the
appropriate UART that’s set to
receive the data from the ESCs. Go
to the Motors Tab in Betaflight and
verify that ESC telemetry values
(RPM, voltage, temperature) update

22

when motors are running.

The ESP32 must be able to send the
digitized camera data to the user’s phone
through Wifi.

● In the code to connect the ESP32 to
Wifi, have print statements that
print out if Wifi is connected and
print the IP Address that the ESP is
connected to.

● Ping the IP address on a nearby
computer.

● Open a web browser on a phone
and type in the provide IP address
to stream the data on the phone.

The radio receiver must be able to get the
data from the radio transmitter (determines
direction of movement) within the range
of a 500Hz- 1000Hz receive refresh range
from the user subsystem.

● Check the LED on the radio
receiver and ensure it’s a solid
light, indicating a stable connection
to the radio transmitter.

● In Betaflight Configurator, go to
the Receiver tab to check the
receiver’s status and make sure that
the receiver is enabled and properly
bound to the transmitter and that
the correct ExpressLRS protocol is
selected under the Ports tab in
Betaflight.

● Go to the Receiver tab in
BetaFlight and observe the real
time receiver’s input on the screen.
Test by moving the radio
transmitter’s stick and seeing how
quickly that data appears on screen
at ranges of 1fr, 4ft, and 10ft away.

The radio receiver must be able to send
the received RF data into the ESP32
through UART.

Verify the same way that we verify the
ESP32 is inputting that data.

23

Voltage Regulator 5V to 3.3V must
provide clean 3.3V to power
microcontroller and sensor subsystem (+/-
.1V)

● Connect a multimeter to the input
pin of the 5-3.3 regulator and make
sure the input is 5V +/- .1V.

● Connect a multimeter to the output
pin of the 5-3.3 regulator and make
sure the output is 3.3V +/- .1V.

Humidity Detector must be able to
accurately represent the relative
humidity(RH) percentage in the air around
the PCB by taking 6 measurements/second
of the RH and saving this value into a
16-bit register.

● Connect the humidity sensor to the
ESP32 through I2C protocol:
Sensor’s Vdd is connected to 3.3V,
Sensor’s GND is connected to
ESP32’s GND, Sensor’s SDA is
connected to ESP32’s SDA (Data
Line) and the sensor’s SCL is
connected to the ESP32’s SCL
(Clock Line)

● In Arduino IDE, download the
SHT3x library (our sensor’s
library) and write code to receive
the temperature and humidity
measurements from the sensor
that’s uploaded to the ESP32. Then
check the Arduino Serial Monitor
to see these measurements and
verify their accuracy in given
environments.

The humidity sensor must be able to
communicate relative humidity% to the
Control sub-system and send the ALERT
interrupt to the ESP32 if RH is above
90%.

● Connect the ALERT pin of the
sensor to a GPIO pin on the ESP32
and configure this GPIO pin as an
interrupt input to detect when the
ALERT pin is triggered in Arduino
IDE.

● Simulate a high humidity
environment and ensure that the

24

ALERT interrupt goes off when RH
is 90%.

The IMU’s Accelerometer + Gyroscope
must be able to accurately represent the
acceleration of the physical drone by
taking measurements in the X,Y,Z axis
with maximum measurable acceleration
before saturation set to +16g (g equals
about 9.81 m/s^2)

● Write Arduino code to configure
the accelerometer to +16g and print
out the measured X,Y,Z values in
terms of gravity. Move the IMU
around at different forces to
simulate different g’s and verify
that the raw data should be in the
range of -32768 to 32767 for +16g.

● Write Arduino code to configure
the gyroscope to 2000m/s and print
its measurements to the serial
monitor. Ensure when it’s flat on a
surface the X,Y,Z values are 0.
Rotate the IMU on only the x-axis
and ensure only X values change,
etc.

Must be able to accurately represent the
pitch, yaw, and roll of the physical drone
throughout the full scale 360° range within
an error of ±15% to the Microcontroller
through I2C protocol at 400 kHz.

● Betaflight provides a real-time
view of the pitch, yaw, and roll of
the drone in the "Flight Data" tab,
under the "Angle" indicator. To
verify this data: gently move the
IMU in all directions (pitch up,
pitch down, roll left, roll right, yaw
left, yaw right) and observe the
changes in the 3D model or the
angle indicator in the Betaflight
Configurator and verify that the
pitch, roll, and yaw values match
the expected orientation based on
our physical movements.

● To test error margin, rotate the
drone to known angles (e.g., 0°,
90°, 180°, 270° for each axis), and
compare the Betaflight displayed
values to the expected angles.
Ensure the displayed angles stay

25

within the required ±15% margin of
error.

5V Passive Buzzer must be able to receive
high DC input from ESP32 Alert in
response to the humidity sensor to create a
sound of 100 dB audible within 100 ft.

● Apply a 5V high signal directly to
the buzzer, using a standalone
multimeter and voltage source.

● Use a calibrated sound level meter
to measure the buzzer’s dB output
to 5V at 3ft, 10ft, 100ft distances

● Measure voltage from designated
GPIO pin during ESP32 Alert to
ensure 3.3V-5V

● Ensure Alarm buzzes from ESP32
Alert once all connected

Radio Transmitter must be able to
wirelessly send data to the Radio Receiver
in accordance with physical joystick
inputs under 100ms latency.

● In BetaFlight, under the Receiver
section, set the Receiver Mode to
Serial-based Receiver and choose
CRSF for the receiver protocol and
set the Serial Receiver Provider to
CRSF. Also, set the Serial Baud
Rate to 400,000.

● In the Ports Tab on BetaFlight, find
the UART that the ELRS receiver
is connected to and enable Serial
RX for the appropriate UART port.
In the Receiver tab in Betaflight
Configurator while moving the
joystick of the LiteRadio2
transmitter, observe the channels
(e.g., Throttle, Roll, Pitch, Yaw)
and make sure that the values
change in real-time as we move the
joysticks. This confirms that the
receiver is receiving signals from

26

the transmitter and correctly
mapping them to the flight
controller.

● Measure the seconds between the
joystick movement and mapping
onto the channel, ensuring it’s
consistently less than 100ms at
different distances with range of the
transmitter.

Smart phone must be able to receive live
video stream from the ESP32’s Wifi in
20+FPS quality and below 100ms latency.

● Make sure that the user’s phone can
connect to Wifi (any Wifi) and then
specifically the Wifi of the ESP32.

● Open the video stream on our
smartphone and start counting
frames in a 10-second interval to
ensure that the number of frames
displayed in this interval equals or
exceeds 200 frames (for 20 FPS).

● Setup an LED in front of the
camera and flash the LED on and
off every second. Start a stopwatch
as soon as the LED flashes and
observe the time it takes for the
flash to appear on the smartphone
screen. The latency is the time
between the moment we initiate the
flash and the moment we see it on
the smartphone.

Electronic Speed Control must be able to
receive control inputs from the ESP32
from the Radio Transmitter to send
varying Dshot signals to speed up or slow
down the motors/propellers.

● In Betaflight Configurator,
manually adjust the throttle slider
in the Motors tab (in the Motors tab
set Master Switch to do this) to test
each motor and verify that it is

27

receiving and responding to the
DShot signal. Make sure that the
motor’s speed increases or
decreases as we vary the throttle
signal in Betaflight, which will
show the Dshot values should
change accordingly.

● Disable Master Switch and use the
radio transmitter to see how the
motors will move and if the Dshot
values are changing in the
BetaFlight Configurator.

Quadcopter X-Frame must be able to
house motors, propellers, PCB, and
battery and must be able to move
throughout the 3D plane according to
motor controls.

● Take measurements of the motors,
propellers, PCB, and battery to
make sure that they will fit onto the
frame.

● When moving the joysticks of the
radio transmitter, make sure that the
drone moves in a balanced manner
in any X,Y,Z direction.

28

	1. Introduction
	1.1 Proposed Solution
	1.3 High Level Requirements

	2 Design
	2.1 Physical Design
	
	2.2 Block Diagram
	2.3 Functional Overview and Subsystems
	2.3.1 Control Subsystem
	2.3.2 Power Subsystem
	2.3.3 Sensor Subsystem
	2.3.4 Alarm Subsystem
	2.3.5 Motor and ESC Subsystem
	2.3.6 User Subsystem
	2.3.7 Camera Subsystem

	3. Design Verification – go into R&V details here (table is in appendix)
	3.1 Hardware and PCB Design Choices
	3.1.1 Signal Integrity and Protection
	3.1.2 ESP32 Microcontroller Communication with Sensors and Choices
	3.1.3 Power Subsystem Design
	3.1.5 Weight and Size Management

	3.2 Software Design Choices
	3.2.1 BetaFlight
	3.2.2 Arduino for IMU and Humidity Sensor

	3.3 Tolerance Analysis
	3.3.1 Motor Thrust vs Weight

	4. Costs
	4.1 Parts
	4.2 Labor
	4.3 Schedule

	5. Conclusion
	5.1 Accomplishments
	5.2 Uncertainties
	5.3 Ethical considerations
	5.4 Safety and Safety Procedures
	5.4 Future Work

	References
	Appendix A​Requirement and Verification Table

