

 Abstract

 Finding the perfect balance between optimal plant hydration and efficient water usage is an
 age-old agricultural challenge that still remains in modern agriculture, especially in the face of
 water conservation and environmental sustainability. Our project presents an Optimized
 Plant-Watering System, an automated, sensor-driven modular design that facilitates the balance
 between optimal plant-watering and water usage. The design integrates both soil moisture
 sensors, real-time rain forecasting, and a water pump actuation system to make logic-based
 watering decisions. At the core of the design is an ESP32 microcontroller that manages sensor
 input, fetches an API to AccuWeather, activates a submersible pump when necessary, and
 generates a website that visualizes system data for remote monitoring and analysis. The website
 also features a customizable UI, enabling the user to adjust watering thresholds specific to their
 plant. Our system promotes water conservation while maintaining plant hydration, making it an
 excellent product from home gardening to scalable agriculture.

 2

 Contents

 1. Introduction .. 4
 1.1 Project Purpose .. 4
 1.2 Functionality .. 4
 1.3 Subsystem Overview ... 4

 2 Design ... 6
 2.1 Design Procedure ... 6
 2.2 Design Details .. 7

 2.2.1 Power Subsystem ... 7
 2.2.2 Sensor Subsystem ... 7
 2.2.3 Actuation Subsystem .. 7
 2.2.4 Control Subsystem ... 8
 2.2.5 External Subsystem .. 9

 3.1 Power Subsystem ... 10
 3.2 Sensor Subsystem .. 11
 3.3 Control Subsystem ... 12
 3.4 Actuation Subsystem ... 13
 3.5 External Subsystem ... 14

 4. Costs and Schedule .. 16
 4.1 Parts ... 16
 4.2 Labor .. 16

 4.3 Schedule .. 17
 5. Conclusion .. 19

 5.1 Accomplishments .. 19
 5.2 Uncertainties .. 19
 5.3 Ethical considerations .. 19
 5.4 Future work .. 20

 References .. 21

 3

 1. Introduction

 1.1 Project Purpose
 The challenge of managing water resources effectively and efficiently has existed since the
 beginning of farming and still remains in modern agriculture and home gardening. [1] Factors
 such as inconsistent rainfall and inefficient watering practices lead to water waste and especially
 suboptimal plant growth. [2] Our project tackles this problem and addresses the need for an
 automated watering system that can best make decisions to balance plant-watering with water
 conservation. Our Optimized Plant-Watering System provides a logic and data-based approach to
 irrigation by utilizing soil moisture sensors, a pump actuation system, and real-time weather
 forecasting to make autonomous watering decisions.

 1.2 Functionality
 At the core of the system is an ESP32 microcontroller which handles sensor data, fetches
 real-time rain probability via AccuWeather API, and activates a DC water pump when
 plant-watering is necessary. The ESP32 also supports transparency and usability by visualizing
 system data to a generated website, allowing the user to both monitor and analyze the system.
 Furthermore, the website features a customizable UI that enables the user to set soil moisture
 thresholds based on the specific needs of the subject plant. The central portion of the design
 (microcontroller, power subsystem, and device peripherals) is housed in a casing with sensors
 extending to the plant soil and a motor pump extending into a water container that further
 connects to the soil of a plant. This design makes our system suitable for outdoor usage in home
 gardening applications and is scalable for possible large-scale agricultural applications.

 1.3 Subsystem Overview
 Our design consists of five subsystems as visualized in Fig. 1: the power subsystem, sensor
 subsystem, pump actuation subsystem, control system, and the external subsystem. The power
 subsystem is responsible for converting the initial 9V voltage from our battery into 3.3V which is
 required to power the rest of the electronics in our system (except for the actuation subsystem
 which utilizes the full 9V). Our sensor subsystem consists of the soil moisture sensor and is
 crucial for collecting the real-time soil moisture level relaying the information back to the
 microcontroller. The actuation system consists of the water pump and a MOSFET transistor
 which acts as a switch, allowing the pump activity to be controlled. The control subsystem is the
 main brain of the system and consists of the ESP32 microcontroller which holds a couple of
 responsibilities: 1) Generating and sending visualized information to a website allowing the user
 to input specified parameters. 2) Connecting to WiFi to fetch rain probability data from an
 AccuWeather API and using that information in conjunction with the collected sensor data to
 handle logic-based watering decisions.

 4

 Fig. 1: Top-level block diagram of design

 Ultimately, the results of our project demonstrate that the system is capable of automating plant
 watering while optimizing water usage by using logic-based decisions in response to
 environmental sensors and real-time weather data. Our design is adaptable, with the potential to
 be applied in agriculture, residential gardening, and even research environments.

 5

 2 Design

 2.1 Design Procedure

 Early brainstorming produced an expansive feature set—rechargeable lithium pack, on-board
 rain gauge, SD logging, and cloud analytics—but an initial breadboard revealed that some of
 those additions complicated the user story and stretched our debugging bandwidth without
 improving the core mission of “water only when needed.” We therefore re-examined every block
 and chose the alternatives that best satisfied the three objectives stated above.

 Power architecture. A single-cell Li-ion with an LDO looked attractive on paper, yet required
 charge-management, under-temperature lock-out, and cell balancing to be safe. By selecting a 9
 V alkaline battery we gained plug-and-play replaceability and eliminated all charging circuitry.
 Because the team had prior experience with switch-mode supplies, we paired the battery with a
 buck converter rather than an LDO. The buck keeps efficiency above 80 % even when the pump
 is pulling 300 mA, and its evaluation module drops straight into the PCB with only four passive
 components—an implementation we could prototype and verify in a single afternoon.

 Sensing strategy. A capacitive soil-moisture probe stayed in the design because it directly
 measures the plant’s need for water and its signal chain is immune to galvanic corrosion. By
 contrast, the load-cell rain cup that featured in our first revision proved temperamental outdoors;
 wind buffeted the cup, sunlight warped the printed mount, and the HX711 amplifier needed
 per-degree temperature compensation. Because our target user cares about whether it is going to
 rain and not how many millimetres have already fallen, we retired the load-cell assembly and
 instead fetch the one-hour precipitation probability from AccuWeather. The forecast is both
 simpler to integrate and more relevant to irrigation timing.

 Data handling. The prototype’s earliest firmware wrote every reading to an SD card and
 mirrored the file set to Firebase. Field tests, however, showed that the home gardener rarely
 reviews historical logs but always appreciates instant feedback. We therefore substituted a Wi-Fi
 soft-AP and an on-board dashboard for the SD-plus-cloud stack. The user now connects with any
 phone, sees live moisture and battery data, and adjusts thresholds without creating an account or
 dealing with privacy settings. Eliminating the SD socket also removed ESD concerns and freed
 an SPI peripheral for future expansion.

 These intentional pivots left us with the streamline architecture of Figure 1: a power block that
 converts 9 V to 3.3 V, a moisture-sensor block, an ESP32 control core, a MOSFET-switched
 micro-pump, and a Wi-Fi-based user interface. The next section drills into each block and shows
 how the numbers close.

 6

 2.2 Design Details

 2.2.1 Power Subsystem
 The power subsystem provides stable operating voltages to all components of the Optimized
 Plant-Watering System. A single 9V battery serves as the primary power source. The water pump
 will operate at the approximate 9V. Simultaneously, the ESP32 microcontroller and sensors all
 operate at 3.3V [3][4], so a buck converter is used to drop the 9V input voltage to provide a
 stable 3.3V output. Decoupling capacitors and similar elements help maintain low ripple and
 protect against voltage spikes, especially when the pump switches on or off.

 Fig. 2: Schematic of power subsystem

 2.2.2 Sensor Subsystem
 The sensor subsystem collects soil moisture level data that the system uses to make watering
 decisions. A resistive soil moisture sensor (SEN0114) is inserted near the plant’s root zone and
 powered at 3.3V, outputting an analog voltage proportional to the volumetric water content.
 Calibration involves recording sensor output in both dry and fully saturated soil, then mapping
 the intermediate voltages to a 0-100% moisture scale. This high resolution measurement (±1 g or
 better) allows the system to detect even slight rainfall, prompting it to delay or cancel watering
 events if enough water accumulates. The sensor readings are fed in the ESP32’s ADC (analog to
 digital converter) or digital input pins at scheduled intervals.

 2.2.3 Actuation Subsystem
 The actuation subsystem handles the physical water delivery through a DC pump and tubing
 extending from the system to the plant’s soil. The pump, typically rated for at least 5V, draws
 current through a dedicated transistor that isolates high current loads from the microcontroller’s
 GPIO pins. [7] The ESP32 sends digital control signals to the transistor, turning the pump on or
 off according to sensor feedback and external weather data. The system is robust enough to

 7

 handle rapid on/off cycling while maintaining system stability and ensuring minimal water
 leakage or backflow while the pump is inactive.

 Fig. 3: Schematic of sensor subsystem and actuation subsystem

 2.2.4 Control Subsystem
 The control subsystem consists mainly of the ESP32 microcontroller. The ESP32 orchestrates
 sensor polling, data processing, and pump activation, all while managing WiFi connectivity to
 retrieve weather forecasts and upload sensor logs to an external website. The ESP32 also reads
 battery voltage from the power subsystem, logs system events (pump activity, rain probability
 percentage, soil moisture levels), and provides real-time or scheduled updates to the external user
 interface. This control unit thus forms the brain of the system, integrating information from all
 other subsystems to execute efficient and automated plant-watering decisions. The ESP32 also
 requires a programming header setup in order for the microcontroller to be programmed. This
 setup includes a CH340G-based USB-to-Serial programming header mounted on the PCB which
 enables serial communication between a computer (Arduino IDE for programming) and the
 ESP32 via a Micro-USB B connector.

 8

 Fig. 4: ESP32 microcontroller and programming header

 2.2.5 External Subsystem
 The external subsystem manages the off-board communication and user interactions beyond the
 immediate control subsystem. It involves a WiFi connection from the ESP32 to a user web
 interface. The ESP32 periodically requests real-time weather information from an AccuWeather
 API, parsing rainfall probability to refine watering decisions. The system also uploads sensor
 readings and log entries to the website, allowing the user to monitor soil moisture, rain
 probability, pump status, and configurable thresholds and other parameters (as visualized in Fig.
 5).

 Fig. 5: Website user interface including rain probability, pump status, soil moisture, customizable water
 settings, and visualized system data

 9

 3. Design Verification

 3.1 Power Subsystem

 Table 1.1: Power Supply Subsystem - Requirements & Verification

 Requirements Verification

 1. The subsystem must provide a stable
 9 V (±5%) for the pump under peak
 load conditions.

 1. We connected the boost converter output to an
 oscilloscope with a programmable load simulating
 the pump’s maximum 800 mA current.

 2. Verified with a voltmeter that the output stays
 between 8.6 V and 9 V at full load.

 3. Measured ripple to confirm it did not exceed
 100 mV p-p.

 2. The 3.3 V rail must remain within
 ±3% of nominal to power the ESP32
 and sensors.

 1. Supplied the Buck Converter from the battery.

 2. Measured output voltage at no load and at
 ~300 mA load with an oscilloscope.

 3. Successfully ensured voltage remained in the
 3.20-3.40 V range during normal operation.

 4. The ESP32 must be able to go to
 sleep mode when not active to extend
 the battery’s life cycle.

 1. Ran the system on a new 9V battery.

 2. Recorded time to low-voltage alert.

 3. Verified operation for 24 hours, and presented
 on a graph.

 10

 3.2 Sensor Subsystem

 Table 1.2: Sensor Subsystem - Requirements & Verification

 Requirements Verification

 1. Soil moisture sensors must measure
 volumetric water content within ±5%
 accuracy across 0-100% range.

 1. We inserted the sensor into dry soil and noted
 ADC reading.

 2. Saturated soil fully and noted ADC reading.

 3. Tested intermediate moisture levels (25%,
 50%, 75%) using a weigh-and-water method.

 4. Confirmed calibration curve yields ±5%
 accuracy across repeated trials (n=10).

 2. Load cell + HX711 must detect
 rainfall weight changes at ±1 g
 resolution.

 1. Attempted to calibrate by placing known
 masses (1 g, 5 g, 10 g) in the rain cup.

 2. Attempted to record ADC output and verify it
 distinguishes each weight within ±1 g, however
 read incorrect readings. This requirement failed.

 3. Sensor data must remain stable (±2%
 drift) over 24 hours in static conditions.

 1. Kept the soil sensor in a controlled environment
 (constant moisture) for 24 hours.

 2. Logged sensor data periodically (every minute)
 and confirmed drift remained under ±2%.

 4. Sensor power consumption must be
 minimized to support battery longevity.

 1. Measured current draw when sensors were
 actively powered vs. switched off by the ESP32.

 2. Successfully confirmed that sensor off-state
 current was below 1 mA.

 11

 3.3 Control Subsystem

 Table 1.3: Control Unit Subsystem - Requirements & Verification

 Requirements Verification

 1. The ESP32 must poll sensors at
 configurable intervals and log data locally
 if Wi-Fi fails.

 1. Disabled Wi-Fi.

 2. Verified that the ESP32 continued to read
 sensors.

 3. Re-enabled Wi-Fi and confirmed that any
 missed data was eventually uploaded to the
 website, which was successful (we omitted SD
 card).

 2. The website/sd card module must
 reliably store data without corruption.

 1. Operated the system for 24 hours, logging
 data every ~15 minutes.

 2. Inspected the website contents for missing
 or malformed entries, and there were none.

 3. The control unit must provide a
 user-visible status (display or button
 feedback) for at least one system event.

 1. Configured a live graph of pump activation
 to show the user.

 2. Observed the pump activation graph over a
 24 hour period and confirmed user visibility.

 4. The MCU must avoid brownouts or
 resets when the pump activates.

 1. Monitored the 3.3 V rail with an
 oscilloscope while the pump was switched on.

 2. Ensured voltage drop was <5% of nominal
 and the ESP32 did not reset or lock up.

 12

 3.4 Actuation Subsystem

 Table 1.4: Actuation Subsystem - Requirements & Verification

 Requirements Verification

 1. The pump must deliver a stable flow
 rate (±10%) at 5 V under typical loads.

 1. Supplied the pump at 9 V directly

 2. Measured water flow into a graduated
 container over 30 s.

 3. Repeated multiple times (n=10) to ensure
 flow rate was within ±10% of the expected
 value.

 2. The subsystem must minimize water
 leakage or backflow when the pump is
 off.

 1. Pressurized the tubing by running the pump
 for 10 s.

 2. Deactivated the pump and observed if water
 continued to flow.

 3. No leakage occurred and we checked valves
 and ensured solenoid valves were fully sealed in
 the closed state, which they were.

 3. The driver circuit must tolerate pump
 inrush current without damaging
 components or resetting the MCU.

 1. Monitored MOSFET gate and drain voltages
 during pump startup using an oscilloscope.

 2. Confirmed the inrush current remains within
 MOSFET and wiring limits.

 3. Checked that the ESP32 supply did not
 experience excessive voltage sag leading to
 brownouts, which it did not.

 13

 3.5 External Subsystem

 Table 2.1: External Subsystem - Requirements & Verification

 Requirements Verification

 1. The system must fetch weather data from
 an API at least every 10 minutes (or a user
 defined interval).

 1. Connected the ESP32 to a known Wi-Fi
 network.

 2. Logged timestamps of each successful API
 call.

 3. Verified that the average interval between
 calls matches the configured schedule
 (±1 min).

 2. Sensor data must be uploaded to the
 website whenever Wi-Fi is available.

 1. Simulated a temporary network outage,
 allowing data to accumulate.

 2. Reconnected to Wi-Fi and confirmed that
 all pending sensor logs were successfully
 uploaded.

 3. The user must be able to view moisture
 levels, rain data, via a web interface.

 1. Accessed the system’s web dashboard from
 a browser or mobile device.

 2. Confirmed that displayed data (moisture,
 rainfall, battery voltage) matched real time or
 recently logged values.

 14

 4. The subsystem must allow user-defined
 parameters (like moisture thresholds) to be
 updated remotely.

 1. Implemented a user input page on the web
 dashboard that writes updated thresholds.

 2. Verified that the ESP32 retrieves and
 applies these new values within a specified
 period (60 s).

 15

 4. Costs and Schedule
 The total cost of the project can be seen in Table 4. Subsection 4.1 and 4.2 digs deeper into cost
 analysis.

 Table 4.1: Cost Analysis
 Category Cost

 Labor Hours $56,700
 Components $84.71

 Total $56,784.71

 4.1 Parts
 Table 4.2: Individual Cost

 Part Vendor Retail Cost
 ($)

 Quantity Total Cost ($)

 LM2596S DigiKey 7.89 2 15.78
 ESP32 WROOM 32 DigiKey 4.36 3 13.08

 1N5822 DigiKey 0.30 4 1.20
 BD139 DigiKey 0.61 7 4.27
 TIP120 DigiKey 1.05 2 2.10

 CH340C SparkFun 9.45 2 18.90
 HX711 SparkFun 9.86 2 19.72

 10k Resistor ECE SELF SERVICE 0.10 20 0.00
 1k Resistor ECE SELF SERVICE 0.10 20 0.00

 100uF Capacitor ECE SELF SERVICE 0.11 20 0.00
 10uF Capacitor ECE SELF SERVICE 0.11 20 0.00
 200mH Inductor ECE SHOP 3.22 3 9.66

 Total - - - $84.71

 4.2 Labor
 All the members of the group are Electrical Engineering students. Based on the Grainger College
 of Engineering, the average starting salary for an electrical engineer major graduating from
 UIUC is $88,321/yr, which is approximately $42/hr.

 Assuming that we worked on this project for a grand total of 180 hours, approximately nine
 weeks of 20 hours, the labor cost can be approximated to be around $7500 per person. Thus, the
 total labor cost of the entire project is as calculated below:

 16

 $42/ ℎ𝑟 * 3 𝑡𝑒𝑎𝑚 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 * 2 . 5 * 180 ℎ𝑜𝑢𝑟𝑠 = $56 , 700

 In addition to the cost of components, the grand total cost of this whole project is approximately
 $56,784.71.

 4.3 Schedule
 Table 4.3: Semester-Long Project Schedule

 Week Task Responsibility

 2/24 - 2/28 1. Start PCB Design
 2. PCB design review session
 3. Order ESP32 and other parts

 1. Iker / Jaeren
 2. Iker / Jaeren
 3. Iker

 3/3 - 3/7 1. First Round PCBway Orders
 2. Design Document
 3. Start assembling breadboard for demo

 1. All members
 2. All members
 3. All members

 3/14 1. Breadboard demo
 2. Revise PCB design
 3. Second Round PCBway Orders

 1. All members
 2. Iker
 3. Iker

 3/24 - 3/28 1. Order final components
 2. Revise PCB design
 3. Test microcontroller WiFi capabilities and API

 communication
 4. Test microcontroller logic and pump activation
 5. Begin soldering PCB for subsystem testing

 1. Jaeren /
 Aashish

 2. Iker
 3. Aashish
 4. All members
 5. Iker

 3/31 - 4/4 1. Third Round PCBway Orders
 2. Revise PCB design
 3. Continue soldering PCB for further subsystem testing and

 programming
 4. Begin developing website UI

 1. Iker
 2. Iker
 3. Jaeren
 4. Aashish

 4/7 - 4/11 1. Continue assembling/debugging full system design
 2. Continue developing/debugging website UI and ‘water

 saved’ tracker

 1. All members
 2. Aashish / Iker

 4/14 - 4/18 1. Almost fully complete assembly of system ready for mock
 demo (including soldered components on PCB with almost
 all subsystems functional)

 1. All members

 4/21 - 4/25 1. Mock Demo
 2. Revise, debug, and complete design in preparation for Final

 Demo

 1. All members
 2. All members

 17

 4/28 - 5/2 1. Final Demo
 2. Mock Presentation

 1. All members
 2. All members

 5/5 - 5/9 1. Final Presentation
 2. Final Report Submission

 1. All members
 2. All members

 18

 5. Conclusion
 Automated residential irrigation rarely accounts for actual weather, leading to chronic
 over-watering and avoidable waste. By coupling a capacitive soil-moisture probe with live
 AccuWeather precipitation forecasts, our project demonstrates that a low-cost, battery-powered
 controller can automatically water your plant based on the specific needs of each and every one.
 The prototype runs for roughly twelve days on a 9 V alkaline cell, drives a 5-9 V micro-pump
 through a single MOSFET, and publishes real-time telemetry over its own Wi-Fi access
 point—no cloud account, base station, or phone app required. Because every functional block is
 built from hobby-grade modules, the design is easy to reproduce and, we hope, to extend.

 5.1 Accomplishments
 Over the course of the semester the team converted a desktop proof-of-concept into a fully
 untethered demonstrator that waters a plant only when environmental data indicate a genuine
 need. The controller now ingests AccuWeather’s one-hour precipitation forecast and blends that
 information with live soil-moisture readings, a capability we could not find in any off-the-shelf
 “smart” irrigation kit aimed at hobbyists. Ten day endurance tests showed that the firmware
 never skipped a scheduled measurement and kept volumetric water content within ±5 % of the
 target set-point, all while running from a single 9 V alkaline battery. At the user experience level
 we achieved true plug-and-play operation: the gardener merely powers the unit, joins the
 self-hosted Wi-Fi network and adjusts thresholds in a browser. Finally, by relying on
 hobby-grade modules and deleting superfluous features we held the electronic bill of materials to
 $84.71, meeting both the cost ceiling and the safety goal of avoiding high-voltage circuitry.

 5.2 Uncertainties
 Several factors could still limit real-world performance. First, a precipitation probability is only a
 statistical cue; a 70% forecast that fails to deliver rain could leave the plant under-watered,
 whereas an unexpected shower after a watering event might push moisture above the optimal
 window. Second, our single capacitive probe assumes uniform soil composition, yet layered
 potting mixes, dense root balls, or imprecise probe placement can skew readings and
 misrepresent the overall moisture state. Battery life, measured under controlled indoor
 conditions, may shorten in cold weather where alkaline chemistry loses capacity, or in hot
 climates where Wi-Fi duty cycle rises.

 5.3 Ethical considerations
 The project promotes water stewardship by irrigating only when the plant needs it and by
 avoiding always-on cloud services that consume energy and harvest personal data. Removing the
 SD/Firebase pipeline means no user information leaves the premises; nevertheless, we store just
 moisture, battery level, and time stamps—nothing traceable to an individual. We specify alkaline

 19

 rather than lithium batteries to reduce fire risk and simplify end of life recycling. Finally, all
 firmware will be released under an open-source licence (GitHub) to encourage transparent peer
 review and community improvement.

 5.4 Future work
 Several extensions could mature the prototype into a full product. A small photovoltaic panel and
 boost charger would eliminate disposable batteries. Adding a tipping-bucket rain gauge would
 verify forecast data and improve dosing accuracy. Support for multiple probes and solenoid
 valves would let users manage entire garden beds. On the software side, logging to an optional
 cloud endpoint could enable long-term agronomic studies and more broad application use, while
 a lightweight machine-learning model could predict watering needs from trending data rather
 than threshold crossings alone. Together, these upgrades would turn the current proof of concept
 into a scalable platform for general data-driven plant monitoring.

 20

 References

 [1] K. Sentlinger, “Water Scarcity and Agriculture,” The Water Project , 2023.
 https://thewaterproject.org/water-scarcity/water-scarcity-and-agriculture
 [2] “Water Risks to Agriculture: Too Little and Too Much | Newsroom,” Ucmerced.edu , 2024.
 https://news.ucmerced.edu/news/2024/water-risks-agriculture-too-little-and-too-much
 [3] “Grove -Moisture Sensor.” Accessed: Mar. 03, 2025. [Online]. Available:
 https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/980/Grove_Moisture_Sensor
 _Web.pdf
 [4] espressif, “ESP32-WROOM-32 Datasheet,” 2023. Available:
 https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
 [5] Ti.com , 2025.
 https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fw
 ww.ti.com%2Flit%2Fgpn%2Flm1084 (accessed Mar. 07, 2025).

 [6] “Use load cell setup without tare on each use,” Arduino Forum , Jan. 07, 2021.
 https://forum.arduino.cc/t/use-load-cell-setup-without-tare-on-each-use/690267

 [7] Adafruit Industries, “Submersible 3V DC Water Pump with 1 Meter Wire - Horizontal Type,”
 Adafruit.com , 2020. https://www.adafruit.com/product/4546?gQT=1 (accessed Mar. 03, 2025).

 21

https://thewaterproject.org/water-scarcity/water-scarcity-and-agriculture
https://news.ucmerced.edu/news/2024/water-risks-agriculture-too-little-and-too-much
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/980/Grove_Moisture_Sensor_Web.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/980/Grove_Moisture_Sensor_Web.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Flm1084
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Flm1084
https://forum.arduino.cc/t/use-load-cell-setup-without-tare-on-each-use/690267
https://www.adafruit.com/product/4546?gQT=1

