

‭Abstract‬

‭Finding the perfect balance between optimal plant hydration and efficient water usage is an‬
‭age-old agricultural challenge that still remains in modern agriculture, especially in the face of‬
‭water conservation and environmental sustainability. Our project presents an Optimized‬
‭Plant-Watering System, an automated, sensor-driven modular design that facilitates the balance‬
‭between optimal plant-watering and water usage. The design integrates both soil moisture‬
‭sensors, real-time rain forecasting, and a water pump actuation system to make logic-based‬
‭watering decisions. At the core of the design is an ESP32 microcontroller that manages sensor‬
‭input, fetches an API to AccuWeather, activates a submersible pump when necessary, and‬
‭generates a website that visualizes system data for remote monitoring and analysis. The website‬
‭also features a customizable UI, enabling the user to adjust watering thresholds specific to their‬
‭plant. Our system promotes water conservation while maintaining plant hydration, making it an‬
‭excellent product from home gardening to scalable agriculture.‬

‭2‬

‭Contents‬

‭1.‬‭Introduction‬‭..‬‭4‬
‭1.1‬‭Project‬‭Purpose‬‭..‬‭4‬
‭1.2‬‭Functionality‬‭..‬‭4‬
‭1.3‬‭Subsystem‬‭Overview‬‭...‬‭4‬

‭2‬‭Design‬‭...‬‭6‬
‭2.1‬‭Design‬‭Procedure‬‭...‬‭6‬
‭2.2‬‭Design‬‭Details‬‭..‬‭7‬

‭2.2.1‬‭Power‬‭Subsystem‬‭...‬‭7‬
‭2.2.2‬ ‭Sensor‬‭Subsystem‬‭...‬‭7‬
‭2.2.3‬‭Actuation‬‭Subsystem‬‭..‬‭7‬
‭2.2.4‬‭Control‬‭Subsystem‬‭...‬‭8‬
‭2.2.5‬‭External‬‭Subsystem‬‭..‬‭9‬

‭3.1‬‭Power‬‭Subsystem‬‭...‬‭10‬
‭3.2‬‭Sensor‬‭Subsystem‬‭..‬‭11‬
‭3.3‬‭Control‬‭Subsystem‬‭...‬‭12‬
‭3.4‬‭Actuation‬‭Subsystem‬‭...‬‭13‬
‭3.5‬‭External‬‭Subsystem‬‭...‬‭14‬

‭4.‬‭Costs‬‭and‬‭Schedule‬‭..‬‭16‬
‭4.1‬‭Parts‬‭...‬‭16‬
‭4.2‬‭Labor‬‭..‬‭16‬

‭4.3‬‭Schedule‬‭..‬‭17‬
‭5.‬‭Conclusion‬‭..‬‭19‬

‭5.1‬‭Accomplishments‬‭..‬‭19‬
‭5.2‬‭Uncertainties‬‭..‬‭19‬
‭5.3‬‭Ethical‬‭considerations‬‭..‬‭19‬
‭5.4‬‭Future‬‭work‬‭..‬‭20‬

‭References‬‭..‬‭21‬

‭3‬

‭1. Introduction‬

‭1.1 Project Purpose‬
‭The challenge of managing water resources effectively and efficiently has existed since the‬
‭beginning of farming and still remains in modern agriculture and home gardening. [1] Factors‬
‭such as inconsistent rainfall and inefficient watering practices lead to water waste and especially‬
‭suboptimal plant growth. [2] Our project tackles this problem and addresses the need for an‬
‭automated watering system that can best make decisions to balance plant-watering with water‬
‭conservation. Our Optimized Plant-Watering System provides a logic and data-based approach to‬
‭irrigation by utilizing soil moisture sensors, a pump actuation system, and real-time weather‬
‭forecasting to make autonomous watering decisions.‬

‭1.2 Functionality‬
‭At the core of the system is an ESP32 microcontroller which handles sensor data, fetches‬
‭real-time rain probability via AccuWeather API, and activates a DC water pump when‬
‭plant-watering is necessary. The ESP32 also supports transparency and usability by visualizing‬
‭system data to a generated website, allowing the user to both monitor and analyze the system.‬
‭Furthermore, the website features a customizable UI that enables the user to set soil moisture‬
‭thresholds based on the specific needs of the subject plant. The central portion of the design‬
‭(microcontroller, power subsystem, and device peripherals) is housed in a casing with sensors‬
‭extending to the plant soil and a motor pump extending into a water container that further‬
‭connects to the soil of a plant. This design makes our system suitable for outdoor usage in home‬
‭gardening applications and is scalable for possible large-scale agricultural applications.‬

‭1.3 Subsystem Overview‬
‭Our design consists of five subsystems as visualized in Fig. 1: the power subsystem, sensor‬
‭subsystem, pump actuation subsystem, control system, and the external subsystem. The power‬
‭subsystem is responsible for converting the initial 9V voltage from our battery into 3.3V which is‬
‭required to power the rest of the electronics in our system (except for the actuation subsystem‬
‭which utilizes the full 9V). Our sensor subsystem consists of the soil moisture sensor and is‬
‭crucial for collecting the real-time soil moisture level relaying the information back to the‬
‭microcontroller. The actuation system consists of the water pump and a MOSFET transistor‬
‭which acts as a switch, allowing the pump activity to be controlled. The control subsystem is the‬
‭main brain of the system and consists of the ESP32 microcontroller which holds a couple of‬
‭responsibilities: 1) Generating and sending visualized information to a website allowing the user‬
‭to input specified parameters. 2) Connecting to WiFi to fetch rain probability data from an‬
‭AccuWeather API and using that information in conjunction with the collected sensor data to‬
‭handle logic-based watering decisions.‬

‭4‬

‭Fig. 1: Top-level block diagram of design‬

‭Ultimately, the results of our project demonstrate that the system is capable of automating plant‬
‭watering while optimizing water usage by using logic-based decisions in response to‬
‭environmental sensors and real-time weather data. Our design is adaptable, with the potential to‬
‭be applied in agriculture, residential gardening, and even research environments.‬

‭5‬

‭2 Design‬

‭2.1 Design Procedure‬

‭Early brainstorming produced an expansive feature set—rechargeable lithium pack, on-board‬
‭rain gauge, SD logging, and cloud analytics—but an initial breadboard revealed that some of‬
‭those additions complicated the user story and stretched our debugging bandwidth without‬
‭improving the core mission of “water only when needed.” We therefore re-examined every block‬
‭and chose the alternatives that best satisfied the three objectives stated above.‬

‭Power architecture.‬‭A single-cell Li-ion with an LDO‬‭looked attractive on paper, yet required‬
‭charge-management, under-temperature lock-out, and cell balancing to be safe. By selecting a 9‬
‭V alkaline battery we gained‬‭plug-and-play replaceability‬‭and eliminated all charging circuitry.‬
‭Because the team had prior experience with switch-mode supplies, we paired the battery with a‬
‭buck converter rather than an LDO. The buck keeps efficiency above 80 % even when the pump‬
‭is pulling 300 mA, and its evaluation module drops straight into the PCB with only four passive‬
‭components—an implementation we could prototype and verify in a single afternoon.‬

‭Sensing strategy.‬‭A capacitive soil-moisture probe‬‭stayed in the design because it directly‬
‭measures the plant’s need for water and its signal chain is immune to galvanic corrosion. By‬
‭contrast, the load-cell rain cup that featured in our first revision proved temperamental outdoors;‬
‭wind buffeted the cup, sunlight warped the printed mount, and the HX711 amplifier needed‬
‭per-degree temperature compensation. Because our target user cares about‬‭whether‬‭it is going to‬
‭rain and not‬‭how many millimetres‬‭have already fallen,‬‭we retired the load-cell assembly and‬
‭instead fetch the one-hour precipitation probability from AccuWeather. The forecast is both‬
‭simpler to integrate and more relevant to irrigation timing.‬

‭Data handling.‬‭The prototype’s earliest firmware wrote‬‭every reading to an SD card and‬
‭mirrored the file set to Firebase. Field tests, however, showed that the home gardener rarely‬
‭reviews historical logs but always appreciates instant feedback. We therefore substituted a Wi-Fi‬
‭soft-AP and an on-board dashboard for the SD-plus-cloud stack. The user now connects with any‬
‭phone, sees live moisture and battery data, and adjusts thresholds without creating an account or‬
‭dealing with privacy settings. Eliminating the SD socket also removed ESD concerns and freed‬
‭an SPI peripheral for future expansion.‬

‭These intentional pivots left us with the streamline architecture of Figure 1: a power block that‬
‭converts 9 V to 3.3 V, a moisture-sensor block, an ESP32 control core, a MOSFET-switched‬
‭micro-pump, and a Wi-Fi-based user interface. The next section drills into each block and shows‬
‭how the numbers close.‬

‭6‬

‭2.2 Design Details‬

‭2.2.1 Power Subsystem‬
‭The power subsystem provides stable operating voltages to all components of the Optimized‬
‭Plant-Watering System. A single 9V battery serves as the primary power source. The water pump‬
‭will operate at the approximate 9V. Simultaneously, the ESP32 microcontroller and sensors all‬
‭operate at 3.3V [3][4], so a buck converter is used to drop the 9V input voltage to provide a‬
‭stable 3.3V output. Decoupling capacitors and similar elements help maintain low ripple and‬
‭protect against voltage spikes, especially when the pump switches on or off.‬

‭Fig. 2: Schematic of power subsystem‬

‭2.2.2 Sensor Subsystem‬
‭The sensor subsystem collects soil moisture level data that the system uses to make watering‬
‭decisions. A resistive soil moisture sensor (SEN0114) is inserted near the plant’s root zone and‬
‭powered at 3.3V, outputting an analog voltage proportional to the volumetric water content.‬
‭Calibration involves recording sensor output in both dry and fully saturated soil, then mapping‬
‭the intermediate voltages to a 0-100% moisture scale. This high resolution measurement (±1 g or‬
‭better) allows the system to detect even slight rainfall, prompting it to delay or cancel watering‬
‭events if enough water accumulates. The sensor readings are fed in the ESP32’s ADC (analog to‬
‭digital converter) or digital input pins at scheduled intervals.‬

‭2.2.3 Actuation Subsystem‬
‭The actuation subsystem handles the physical water delivery through a DC pump and tubing‬
‭extending from the system to the plant’s soil. The pump, typically rated for at least 5V, draws‬
‭current through a dedicated transistor that isolates high current loads from the microcontroller’s‬
‭GPIO pins. [7] The ESP32 sends digital control signals to the transistor, turning the pump on or‬
‭off according to sensor feedback and external weather data. The system is robust enough to‬

‭7‬

‭handle rapid on/off cycling while maintaining system stability and ensuring minimal water‬
‭leakage or backflow while the pump is inactive.‬

‭Fig. 3: Schematic of sensor subsystem and actuation subsystem‬

‭2.2.4 Control Subsystem‬
‭The control subsystem consists mainly of the ESP32 microcontroller. The ESP32 orchestrates‬
‭sensor polling, data processing, and pump activation, all while managing WiFi connectivity to‬
‭retrieve weather forecasts and upload sensor logs to an external website. The ESP32 also reads‬
‭battery voltage from the power subsystem, logs system events (pump activity, rain probability‬
‭percentage, soil moisture levels), and provides real-time or scheduled updates to the external user‬
‭interface. This control unit thus forms the brain of the system, integrating information from all‬
‭other subsystems to execute efficient and automated plant-watering decisions. The ESP32 also‬
‭requires a programming header setup in order for the microcontroller to be programmed. This‬
‭setup includes a CH340G-based USB-to-Serial programming header mounted on the PCB which‬
‭enables serial communication between a computer (Arduino IDE for programming) and the‬
‭ESP32 via a Micro-USB B connector.‬

‭8‬

‭Fig. 4: ESP32 microcontroller and programming header‬

‭2.2.5 External Subsystem‬
‭The external subsystem manages the off-board communication and user interactions beyond the‬
‭immediate control subsystem. It involves a WiFi connection from the ESP32 to a user web‬
‭interface. The ESP32 periodically requests real-time weather information from an AccuWeather‬
‭API, parsing rainfall probability to refine watering decisions. The system also uploads sensor‬
‭readings and log entries to the website, allowing the user to monitor soil moisture, rain‬
‭probability, pump status, and configurable thresholds and other parameters (as visualized in Fig.‬
‭5).‬

‭Fig. 5: Website user interface including rain probability, pump status, soil moisture, customizable water‬
‭settings, and visualized system data‬

‭9‬

‭3. Design Verification‬

‭3.1 Power Subsystem‬

‭Table 1.1: Power Supply Subsystem - Requirements & Verification‬

‭Requirements‬ ‭Verification‬

‭1.‬‭The subsystem must provide a stable‬
‭9 V (±5%) for the pump under peak‬
‭load conditions.‬

‭1. We connected the boost converter output to an‬
‭oscilloscope with a programmable load simulating‬
‭the pump’s maximum 800 mA current.‬

‭2. Verified with a voltmeter that the output stays‬
‭between 8.6 V and 9 V at full load.‬

‭3. Measured ripple to confirm it did not exceed‬
‭100 mV p-p.‬

‭2.‬‭The 3.3 V rail must remain within‬
‭±3% of nominal to power the ESP32‬
‭and sensors.‬

‭1. Supplied the Buck Converter from the battery.‬

‭2. Measured output voltage at no load and at‬
‭~300 mA load with an oscilloscope.‬

‭3. Successfully ensured voltage remained in the‬
‭3.20-3.40 V range during normal operation.‬

‭4.‬‭The ESP32 must be able to go to‬
‭sleep mode when not active to extend‬
‭the battery’s life cycle.‬

‭1. Ran the system on a new 9V battery.‬

‭2. Recorded time to low-voltage alert.‬

‭3. Verified operation for 24 hours, and presented‬
‭on a graph.‬

‭10‬

‭3.2 Sensor Subsystem‬

‭Table 1.2: Sensor Subsystem - Requirements & Verification‬

‭Requirements‬ ‭Verification‬

‭1.‬‭Soil moisture sensors must measure‬
‭volumetric water content within ±5%‬
‭accuracy across 0-100% range.‬

‭1. We inserted the sensor into dry soil and noted‬
‭ADC reading.‬

‭2. Saturated soil fully and noted ADC reading.‬

‭3. Tested intermediate moisture levels (25%,‬
‭50%, 75%) using a weigh-and-water method.‬

‭4. Confirmed calibration curve yields ±5%‬
‭accuracy across repeated trials (n=10).‬

‭2.‬‭Load cell + HX711 must detect‬
‭rainfall weight changes at ±1 g‬
‭resolution.‬

‭1. Attempted to calibrate by placing known‬
‭masses (1 g, 5 g, 10 g) in the rain cup.‬

‭2. Attempted to record ADC output and verify it‬
‭distinguishes each weight within ±1 g, however‬
‭read incorrect readings. This requirement failed.‬

‭3.‬‭Sensor data must remain stable (±2%‬
‭drift) over 24 hours in static conditions.‬

‭1. Kept the soil sensor in a controlled environment‬
‭(constant moisture) for 24 hours.‬

‭2. Logged sensor data periodically (every minute)‬
‭and confirmed drift remained under ±2%.‬

‭4.‬‭Sensor power consumption must be‬
‭minimized to support battery longevity.‬

‭1. Measured current draw when sensors were‬
‭actively powered vs. switched off by the ESP32.‬

‭2. Successfully confirmed that sensor off-state‬
‭current was below 1 mA.‬

‭11‬

‭3.3 Control Subsystem‬

‭Table 1.3: Control Unit Subsystem - Requirements & Verification‬

‭Requirements‬ ‭Verification‬

‭1.‬‭The ESP32 must poll sensors at‬
‭configurable intervals and log data locally‬
‭if Wi-Fi fails.‬

‭1. Disabled Wi-Fi.‬

‭2. Verified that the ESP32 continued to read‬
‭sensors.‬

‭3. Re-enabled Wi-Fi and confirmed that any‬
‭missed data was eventually uploaded to the‬
‭website, which was successful (we omitted SD‬
‭card).‬

‭2.‬‭The website/sd card module must‬
‭reliably store data without corruption.‬

‭1. Operated the system for 24 hours, logging‬
‭data every ~15 minutes.‬

‭2. Inspected the website contents for missing‬
‭or malformed entries, and there were none.‬

‭3.‬‭The control unit must provide a‬
‭user-visible status (display or button‬
‭feedback) for at least one system event.‬

‭1. Configured a live graph of pump activation‬
‭to show the user.‬

‭2. Observed the pump activation graph over a‬
‭24 hour period and confirmed user visibility.‬

‭4.‬‭The MCU must avoid brownouts or‬
‭resets when the pump activates.‬

‭1. Monitored the 3.3 V rail with an‬
‭oscilloscope while the pump was switched on.‬

‭2. Ensured voltage drop was <5% of nominal‬
‭and the ESP32 did not reset or lock up.‬

‭12‬

‭3.4 Actuation Subsystem‬

‭Table 1.4: Actuation Subsystem - Requirements & Verification‬

‭Requirements‬ ‭Verification‬

‭1.‬‭The pump must deliver a stable flow‬
‭rate (±10%) at 5 V under typical loads.‬

‭1. Supplied the pump at 9 V directly‬

‭2. Measured water flow into a graduated‬
‭container over 30 s.‬

‭3. Repeated multiple times (n=10) to ensure‬
‭flow rate was within ±10% of the expected‬
‭value.‬

‭2.‬‭The subsystem must minimize water‬
‭leakage or backflow when the pump is‬
‭off.‬

‭1. Pressurized the tubing by running the pump‬
‭for 10 s.‬

‭2. Deactivated the pump and observed if water‬
‭continued to flow.‬

‭3. No leakage occurred and we checked valves‬
‭and ensured solenoid valves were fully sealed in‬
‭the closed state, which they were.‬

‭3.‬‭The driver circuit must tolerate pump‬
‭inrush current without damaging‬
‭components or resetting the MCU.‬

‭1. Monitored MOSFET gate and drain voltages‬
‭during pump startup using an oscilloscope.‬

‭2. Confirmed the inrush current remains within‬
‭MOSFET and wiring limits.‬

‭3. Checked that the ESP32 supply did not‬
‭experience excessive voltage sag leading to‬
‭brownouts, which it did not.‬

‭13‬

‭3.5 External Subsystem‬

‭Table 2.1: External Subsystem - Requirements & Verification‬

‭Requirements‬ ‭Verification‬

‭1.‬‭The system must fetch weather data from‬
‭an API at least every 10 minutes (or a user‬
‭defined interval).‬

‭1. Connected the ESP32 to a known Wi-Fi‬
‭network.‬

‭2. Logged timestamps of each successful API‬
‭call.‬

‭3. Verified that the average interval between‬
‭calls matches the configured schedule‬
‭(±1 min).‬

‭2.‬‭Sensor data must be uploaded to the‬
‭website whenever Wi-Fi is available.‬

‭1. Simulated a temporary network outage,‬
‭allowing data to accumulate.‬

‭2. Reconnected to Wi-Fi and confirmed that‬
‭all pending sensor logs were successfully‬
‭uploaded.‬

‭3.‬‭The user must be able to view moisture‬
‭levels, rain data, via a web interface.‬

‭1. Accessed the system’s web dashboard from‬
‭a browser or mobile device.‬

‭2. Confirmed that displayed data (moisture,‬
‭rainfall, battery voltage) matched real time or‬
‭recently logged values.‬

‭14‬

‭4.‬‭The subsystem must allow user-defined‬
‭parameters (like moisture thresholds) to be‬
‭updated remotely.‬

‭1. Implemented a user input page on the web‬
‭dashboard that writes updated thresholds.‬

‭2. Verified that the ESP32 retrieves and‬
‭applies these new values within a specified‬
‭period (60 s).‬

‭15‬

‭4. Costs and Schedule‬
‭The total cost of the project can be seen in Table 4. Subsection 4.1 and 4.2 digs deeper into cost‬
‭analysis.‬

‭Table 4.1: Cost Analysis‬
‭Category‬ ‭Cost‬

‭Labor Hours‬ ‭$56,700‬
‭Components‬ ‭$84.71‬

‭Total‬ ‭$56,784.71‬

‭4.1 Parts‬
‭Table 4.2: Individual Cost‬

‭Part‬ ‭Vendor‬ ‭Retail Cost‬
‭($)‬

‭Quantity‬ ‭Total Cost ($)‬

‭LM2596S‬ ‭DigiKey‬ ‭7.89‬ ‭2‬ ‭15.78‬
‭ESP32 WROOM 32‬ ‭DigiKey‬ ‭4.36‬ ‭3‬ ‭13.08‬

‭1N5822‬ ‭DigiKey‬ ‭0.30‬ ‭4‬ ‭1.20‬
‭BD139‬ ‭DigiKey‬ ‭0.61‬ ‭7‬ ‭4.27‬
‭TIP120‬ ‭DigiKey‬ ‭1.05‬ ‭2‬ ‭2.10‬

‭CH340C‬ ‭SparkFun‬ ‭9.45‬ ‭2‬ ‭18.90‬
‭HX711‬ ‭SparkFun‬ ‭9.86‬ ‭2‬ ‭19.72‬

‭10k Resistor‬ ‭ECE SELF SERVICE‬ ‭0.10‬ ‭20‬ ‭0.00‬
‭1k Resistor‬ ‭ECE SELF SERVICE‬ ‭0.10‬ ‭20‬ ‭0.00‬

‭100uF Capacitor‬ ‭ECE SELF SERVICE‬ ‭0.11‬ ‭20‬ ‭0.00‬
‭10uF Capacitor‬ ‭ECE SELF SERVICE‬ ‭0.11‬ ‭20‬ ‭0.00‬
‭200mH Inductor‬ ‭ECE SHOP‬ ‭3.22‬ ‭3‬ ‭9.66‬

‭Total‬ ‭-‬ ‭-‬ ‭-‬ ‭$84.71‬

‭4.2 Labor‬
‭All the members of the group are Electrical Engineering students. Based on the Grainger College‬
‭of Engineering, the average starting salary for an electrical engineer major graduating from‬
‭UIUC is $88,321/yr, which is approximately $42/hr.‬

‭Assuming that we worked on this project for a grand total of 180 hours, approximately nine‬
‭weeks of 20 hours, the labor cost can be approximated to be around $7500 per person. Thus, the‬
‭total labor cost of the entire project is as calculated below:‬

‭16‬

‭$42/‬‭ℎ𝑟‬‭ ‬ * ‭ ‬‭3‬‭ ‬‭𝑡𝑒𝑎𝑚‬‭ ‬‭𝑚𝑒𝑚𝑏𝑒𝑟𝑠‬ * ‭2‬. ‭5‬ * ‭180‬‭ ‬‭ℎ𝑜𝑢𝑟𝑠‬ = ‭$56‬, ‭700‬‭ ‬

‭In addition to the cost of components, the grand total cost of this whole project is approximately‬
‭$56,784.71.‬

‭4.3 Schedule‬
‭Table 4.3: Semester-Long Project Schedule‬

‭Week‬ ‭Task‬ ‭Responsibility‬

‭2/24 - 2/28‬ ‭1.‬ ‭Start PCB Design‬
‭2.‬ ‭PCB design review session‬
‭3.‬ ‭Order ESP32 and other parts‬

‭1.‬ ‭Iker / Jaeren‬
‭2.‬ ‭Iker / Jaeren‬
‭3.‬ ‭Iker‬

‭3/3 - 3/7‬ ‭1.‬ ‭First Round PCBway Orders‬
‭2.‬ ‭Design Document‬
‭3.‬ ‭Start assembling breadboard for demo‬

‭1.‬ ‭All members‬
‭2.‬ ‭All members‬
‭3.‬ ‭All members‬

‭3/14‬ ‭1.‬ ‭Breadboard demo‬
‭2.‬ ‭Revise PCB design‬
‭3.‬ ‭Second Round PCBway Orders‬

‭1.‬ ‭All members‬
‭2.‬ ‭Iker‬
‭3.‬ ‭Iker‬

‭3/24 - 3/28‬ ‭1.‬ ‭Order final components‬
‭2.‬ ‭Revise PCB design‬
‭3.‬ ‭Test microcontroller WiFi capabilities and API‬

‭communication‬
‭4.‬ ‭Test microcontroller logic and pump activation‬
‭5.‬ ‭Begin soldering PCB for subsystem testing‬

‭1.‬ ‭Jaeren /‬
‭Aashish‬

‭2.‬ ‭Iker‬
‭3.‬ ‭Aashish‬
‭4.‬ ‭All members‬
‭5.‬ ‭Iker‬

‭3/31 - 4/4‬ ‭1.‬ ‭Third Round PCBway Orders‬
‭2.‬ ‭Revise PCB design‬
‭3.‬ ‭Continue soldering PCB for further subsystem testing and‬

‭programming‬
‭4.‬ ‭Begin developing website UI‬

‭1.‬ ‭Iker‬
‭2.‬ ‭Iker‬
‭3.‬ ‭Jaeren‬
‭4.‬ ‭Aashish‬

‭4/7 - 4/11‬ ‭1.‬ ‭Continue assembling/debugging full system design‬
‭2.‬ ‭Continue developing/debugging website UI and ‘water‬

‭saved’ tracker‬

‭1.‬ ‭All members‬
‭2.‬ ‭Aashish / Iker‬

‭4/14 - 4/18‬ ‭1.‬ ‭Almost fully complete assembly of system ready for mock‬
‭demo (including soldered components on PCB with almost‬
‭all subsystems functional)‬

‭1.‬ ‭All members‬

‭4/21 - 4/25‬ ‭1.‬ ‭Mock Demo‬
‭2.‬ ‭Revise, debug, and complete design in preparation for Final‬

‭Demo‬

‭1.‬ ‭All members‬
‭2.‬ ‭All members‬

‭17‬

‭4/28 - 5/2‬ ‭1.‬ ‭Final Demo‬
‭2.‬ ‭Mock Presentation‬

‭1.‬ ‭All members‬
‭2.‬ ‭All members‬

‭5/5 - 5/9‬ ‭1.‬ ‭Final Presentation‬
‭2.‬ ‭Final Report Submission‬

‭1.‬ ‭All members‬
‭2.‬ ‭All members‬

‭18‬

‭5. Conclusion‬
‭Automated residential irrigation rarely accounts for actual weather, leading to chronic‬
‭over-watering and avoidable waste. By coupling a capacitive soil-moisture probe with live‬
‭AccuWeather precipitation forecasts, our project demonstrates that a low-cost, battery-powered‬
‭controller can automatically water your plant based on the specific needs of each and every one.‬
‭The prototype runs for roughly twelve days on a 9 V alkaline cell, drives a 5-9 V micro-pump‬
‭through a single MOSFET, and publishes real-time telemetry over its own Wi-Fi access‬
‭point—no cloud account, base station, or phone app required. Because every functional block is‬
‭built from hobby-grade modules, the design is easy to reproduce and, we hope, to extend.‬

‭5.1 Accomplishments‬
‭Over the course of the semester the team converted a desktop proof-of-concept into a fully‬
‭untethered demonstrator that waters a plant only when environmental data indicate a genuine‬
‭need. The controller now ingests AccuWeather’s one-hour precipitation forecast and blends that‬
‭information with live soil-moisture readings, a capability we could not find in any off-the-shelf‬
‭“smart” irrigation kit aimed at hobbyists. Ten day endurance tests showed that the firmware‬
‭never skipped a scheduled measurement and kept volumetric water content within ±5 % of the‬
‭target set-point, all while running from a single 9 V alkaline battery. At the user experience level‬
‭we achieved true plug-and-play operation: the gardener merely powers the unit, joins the‬
‭self-hosted Wi-Fi network and adjusts thresholds in a browser. Finally, by relying on‬
‭hobby-grade modules and deleting superfluous features we held the electronic bill of materials to‬
‭$84.71, meeting both the cost ceiling and the safety goal of avoiding high-voltage circuitry.‬

‭5.2 Uncertainties‬
‭Several factors could still limit real-world performance. First, a precipitation probability is only a‬
‭statistical cue; a 70% forecast that fails to deliver rain could leave the plant under-watered,‬
‭whereas an unexpected shower after a watering event might push moisture above the optimal‬
‭window. Second, our single capacitive probe assumes uniform soil composition, yet layered‬
‭potting mixes, dense root balls, or imprecise probe placement can skew readings and‬
‭misrepresent the overall moisture state. Battery life, measured under controlled indoor‬
‭conditions, may shorten in cold weather where alkaline chemistry loses capacity, or in hot‬
‭climates where Wi-Fi duty cycle rises.‬

‭5.3 Ethical considerations‬
‭The project promotes water stewardship by irrigating only when the plant needs it and by‬
‭avoiding always-on cloud services that consume energy and harvest personal data. Removing the‬
‭SD/Firebase pipeline means no user information leaves the premises; nevertheless, we store just‬
‭moisture, battery level, and time stamps—nothing traceable to an individual. We specify alkaline‬

‭19‬

‭rather than lithium batteries to reduce fire risk and simplify end of life recycling. Finally, all‬
‭firmware will be released under an open-source licence (GitHub) to encourage transparent peer‬
‭review and community improvement.‬

‭5.4 Future work‬
‭Several extensions could mature the prototype into a full product. A small photovoltaic panel and‬
‭boost charger would eliminate disposable batteries. Adding a tipping-bucket rain gauge would‬
‭verify forecast data and improve dosing accuracy. Support for multiple probes and solenoid‬
‭valves would let users manage entire garden beds. On the software side, logging to an optional‬
‭cloud endpoint could enable long-term agronomic studies and more broad application use, while‬
‭a lightweight machine-learning model could predict watering needs from trending data rather‬
‭than threshold crossings alone. Together, these upgrades would turn the current proof of concept‬
‭into a scalable platform for general data-driven plant monitoring.‬

‭20‬

‭References‬

‭[1] K. Sentlinger, “Water Scarcity and Agriculture,”‬‭The Water Project‬‭, 2023.‬
‭https://thewaterproject.org/water-scarcity/water-scarcity-and-agriculture‬
‭[2] “Water Risks to Agriculture: Too Little and Too Much | Newsroom,”‬‭Ucmerced.edu‬‭, 2024.‬
‭https://news.ucmerced.edu/news/2024/water-risks-agriculture-too-little-and-too-much‬
‭[3] “Grove -Moisture Sensor.” Accessed: Mar. 03, 2025. [Online]. Available:‬
‭https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/980/Grove_Moisture_Sensor‬
‭_Web.pdf‬
‭[4] espressif, “ESP32-WROOM-32 Datasheet,” 2023. Available:‬
‭https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf‬
‭[5]‬‭Ti.com‬‭, 2025.‬
‭https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fw‬
‭ww.ti.com%2Flit%2Fgpn%2Flm1084‬‭(accessed Mar. 07,‬‭2025).‬

‭‌[6] “Use load cell setup without tare on each use,”‬‭Arduino Forum‬‭, Jan. 07, 2021.‬
‭https://forum.arduino.cc/t/use-load-cell-setup-without-tare-on-each-use/690267‬

‭[7] Adafruit Industries, “Submersible 3V DC Water Pump with 1 Meter Wire - Horizontal Type,”‬
‭Adafruit.com‬‭, 2020.‬‭https://www.adafruit.com/product/4546?gQT=1‬ ‭(accessed Mar. 03, 2025).‬

‭21‬

https://thewaterproject.org/water-scarcity/water-scarcity-and-agriculture
https://news.ucmerced.edu/news/2024/water-risks-agriculture-too-little-and-too-much
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/980/Grove_Moisture_Sensor_Web.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/980/Grove_Moisture_Sensor_Web.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Flm1084
https://www.ti.com/general/docs/suppproductinfo.tsp?distId=10&gotoUrl=https%3A%2F%2Fwww.ti.com%2Flit%2Fgpn%2Flm1084
https://forum.arduino.cc/t/use-load-cell-setup-without-tare-on-each-use/690267
https://www.adafruit.com/product/4546?gQT=1

