


 Abstract 

 Finding the perfect balance between optimal plant hydration and efficient water usage is an 
 age-old agricultural challenge that still remains in modern agriculture, especially in the face of 
 water conservation and environmental sustainability. Our project presents an Optimized 
 Plant-Watering System, an automated, sensor-driven modular design that facilitates the balance 
 between optimal plant-watering and water usage. The design integrates both soil moisture 
 sensors, real-time rain forecasting, and a water pump actuation system to make logic-based 
 watering decisions. At the core of the design is an ESP32 microcontroller that manages sensor 
 input, fetches an API to AccuWeather, activates a submersible pump when necessary, and 
 generates a website that visualizes system data for remote monitoring and analysis. The website 
 also features a customizable UI, enabling the user to adjust watering thresholds specific to their 
 plant. Our system promotes water conservation while maintaining plant hydration, making it an 
 excellent product from home gardening to scalable agriculture. 
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 1. Introduction 

 1.1 Project Purpose 
 The challenge of managing water resources effectively and efficiently has existed since the 
 beginning of farming and still remains in modern agriculture and home gardening. [1] Factors 
 such as inconsistent rainfall and inefficient watering practices lead to water waste and especially 
 suboptimal plant growth. [2] Our project tackles this problem and addresses the need for an 
 automated watering system that can best make decisions to balance plant-watering with water 
 conservation. Our Optimized Plant-Watering System provides a logic and data-based approach to 
 irrigation by utilizing soil moisture sensors, a pump actuation system, and real-time weather 
 forecasting to make autonomous watering decisions. 

 1.2 Functionality 
 At the core of the system is an ESP32 microcontroller which handles sensor data, fetches 
 real-time rain probability via AccuWeather API, and activates a DC water pump when 
 plant-watering is necessary. The ESP32 also supports transparency and usability by visualizing 
 system data to a generated website, allowing the user to both monitor and analyze the system. 
 Furthermore, the website features a customizable UI that enables the user to set soil moisture 
 thresholds based on the specific needs of the subject plant. The central portion of the design 
 (microcontroller, power subsystem, and device peripherals) is housed in a casing with sensors 
 extending to the plant soil and a motor pump extending into a water container that further 
 connects to the soil of a plant. This design makes our system suitable for outdoor usage in home 
 gardening applications and is scalable for possible large-scale agricultural applications. 

 1.3 Subsystem Overview 
 Our design consists of five subsystems as visualized in Fig. 1: the power subsystem, sensor 
 subsystem, pump actuation subsystem, control system, and the external subsystem. The power 
 subsystem is responsible for converting the initial 9V voltage from our battery into 3.3V which is 
 required to power the rest of the electronics in our system (except for the actuation subsystem 
 which utilizes the full 9V). Our sensor subsystem consists of the soil moisture sensor and is 
 crucial for collecting the real-time soil moisture level relaying the information back to the 
 microcontroller. The actuation system consists of the water pump and a MOSFET transistor 
 which acts as a switch, allowing the pump activity to be controlled. The control subsystem is the 
 main brain of the system and consists of the ESP32 microcontroller which holds a couple of 
 responsibilities: 1) Generating and sending visualized information to a website allowing the user 
 to input specified parameters. 2) Connecting to WiFi to fetch rain probability data from an 
 AccuWeather API and using that information in conjunction with the collected sensor data to 
 handle logic-based watering decisions. 
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 Fig. 1: Top-level block diagram of design 

 Ultimately, the results of our project demonstrate that the system is capable of automating plant 
 watering while optimizing water usage by using logic-based decisions in response to 
 environmental sensors and real-time weather data. Our design is adaptable, with the potential to 
 be applied in agriculture, residential gardening, and even research environments. 
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 2 Design 

 2.1 Design Procedure 

 Early brainstorming produced an expansive feature set—rechargeable lithium pack, on-board 
 rain gauge, SD logging, and cloud analytics—but an initial breadboard revealed that some of 
 those additions complicated the user story and stretched our debugging bandwidth without 
 improving the core mission of “water only when needed.” We therefore re-examined every block 
 and chose the alternatives that best satisfied the three objectives stated above. 

 Power architecture.  A single-cell Li-ion with an LDO  looked attractive on paper, yet required 
 charge-management, under-temperature lock-out, and cell balancing to be safe. By selecting a 9 
 V alkaline battery we gained  plug-and-play replaceability  and eliminated all charging circuitry. 
 Because the team had prior experience with switch-mode supplies, we paired the battery with a 
 buck converter rather than an LDO. The buck keeps efficiency above 80 % even when the pump 
 is pulling 300 mA, and its evaluation module drops straight into the PCB with only four passive 
 components—an implementation we could prototype and verify in a single afternoon. 

 Sensing strategy.  A capacitive soil-moisture probe  stayed in the design because it directly 
 measures the plant’s need for water and its signal chain is immune to galvanic corrosion. By 
 contrast, the load-cell rain cup that featured in our first revision proved temperamental outdoors; 
 wind buffeted the cup, sunlight warped the printed mount, and the HX711 amplifier needed 
 per-degree temperature compensation. Because our target user cares about  whether  it is going to 
 rain and not  how many millimetres  have already fallen,  we retired the load-cell assembly and 
 instead fetch the one-hour precipitation probability from AccuWeather. The forecast is both 
 simpler to integrate and more relevant to irrigation timing. 

 Data handling.  The prototype’s earliest firmware wrote  every reading to an SD card and 
 mirrored the file set to Firebase. Field tests, however, showed that the home gardener rarely 
 reviews historical logs but always appreciates instant feedback. We therefore substituted a Wi-Fi 
 soft-AP and an on-board dashboard for the SD-plus-cloud stack. The user now connects with any 
 phone, sees live moisture and battery data, and adjusts thresholds without creating an account or 
 dealing with privacy settings. Eliminating the SD socket also removed ESD concerns and freed 
 an SPI peripheral for future expansion. 

 These intentional pivots left us with the streamline architecture of Figure 1: a power block that 
 converts 9 V to 3.3 V, a moisture-sensor block, an ESP32 control core, a MOSFET-switched 
 micro-pump, and a Wi-Fi-based user interface. The next section drills into each block and shows 
 how the numbers close. 
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 2.2 Design Details 

 2.2.1 Power Subsystem 
 The power subsystem provides stable operating voltages to all components of the Optimized 
 Plant-Watering System. A single 9V battery serves as the primary power source. The water pump 
 will operate at the approximate 9V. Simultaneously, the ESP32 microcontroller and sensors all 
 operate at 3.3V [3][4], so a buck converter is used to drop the 9V input voltage to provide a 
 stable 3.3V output. Decoupling capacitors and similar elements help maintain low ripple and 
 protect against voltage spikes, especially when the pump switches on or off. 

 Fig. 2:  Schematic of  power subsystem 

 2.2.2  Sensor Subsystem 
 The sensor subsystem collects soil moisture level data that the system uses to make watering 
 decisions. A resistive soil moisture sensor (SEN0114) is inserted near the plant’s root zone and 
 powered at 3.3V, outputting an analog voltage proportional to the volumetric water content. 
 Calibration involves recording sensor output in both dry and fully saturated soil, then mapping 
 the intermediate voltages to a 0-100% moisture scale. This high resolution measurement (±1 g or 
 better) allows the system to detect even slight rainfall, prompting it to delay or cancel watering 
 events if enough water accumulates. The sensor readings are fed in the ESP32’s ADC (analog to 
 digital converter) or digital input pins at scheduled intervals. 

 2.2.3 Actuation Subsystem 
 The actuation subsystem handles the physical water delivery through a DC pump and tubing 
 extending from the system to the plant’s soil. The pump, typically rated for at least 5V, draws 
 current through a dedicated transistor that isolates high current loads from the microcontroller’s 
 GPIO pins. [7] The ESP32 sends digital control signals to the transistor, turning the pump on or 
 off according to sensor feedback and external weather data. The system is robust enough to 
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 handle rapid on/off cycling while maintaining system stability and ensuring minimal water 
 leakage or backflow while the pump is inactive. 

 Fig. 3: Schematic of sensor subsystem and actuation subsystem 

 2.2.4 Control Subsystem 
 The control subsystem consists mainly of the  ESP32 microcontroller. The ESP32 orchestrates 
 sensor polling, data processing, and pump activation, all while managing WiFi connectivity to 
 retrieve weather forecasts and upload sensor logs to an external website. The ESP32 also reads 
 battery voltage from the power subsystem, logs system events (pump activity, rain probability 
 percentage, soil moisture levels), and provides real-time or scheduled updates to the external user 
 interface. This control unit thus forms the brain of the system, integrating information from all 
 other subsystems to execute efficient and automated plant-watering decisions. The ESP32 also 
 requires a programming header setup in order for the microcontroller to be programmed. This 
 setup includes a CH340G-based USB-to-Serial programming header mounted on the PCB which 
 enables serial communication between a computer (Arduino IDE for programming) and the 
 ESP32 via a Micro-USB B connector. 

 8 



 Fig. 4: ESP32 microcontroller and programming header 

 2.2.5 External Subsystem 
 The external subsystem manages the off-board communication and user interactions beyond the 
 immediate control subsystem. It involves a WiFi connection from the ESP32 to a user web 
 interface. The ESP32 periodically requests real-time weather information from an AccuWeather 
 API, parsing rainfall probability to refine watering decisions. The system also uploads sensor 
 readings and log entries to the website, allowing the user to monitor soil moisture, rain 
 probability, pump status, and configurable thresholds and other parameters (as visualized in Fig. 
 5). 

 Fig. 5: Website user interface including rain probability, pump status, soil moisture, customizable water 
 settings, and visualized system data 
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 3. Design Verification 

 3.1 Power Subsystem 

 Table 1.1: Power Supply Subsystem - Requirements & Verification 

 Requirements  Verification 

 1.  The subsystem must provide a stable 
 9 V (±5%)  for the pump under peak 
 load conditions. 

 1. We connected the boost converter output to an 
 oscilloscope with a programmable load simulating 
 the pump’s maximum 800 mA current. 

 2. Verified with a voltmeter that the output stays 
 between 8.6 V and 9 V at full load. 

 3. Measured ripple to confirm it did not exceed 
 100 mV p-p. 

 2.  The 3.3 V rail must remain within 
 ±3% of nominal to power the ESP32 
 and sensors. 

 1. Supplied the Buck Converter from the battery. 

 2. Measured output voltage at no load and at 
 ~300 mA load with an oscilloscope. 

 3. Successfully ensured voltage remained in the 
 3.20-3.40 V range during normal operation. 

 4.  The ESP32 must be able to go to 
 sleep mode when not active to extend 
 the battery’s life  cycle. 

 1. Ran the system on a new 9V battery. 

 2. Recorded time to low-voltage alert. 

 3. Verified operation for 24 hours, and presented 
 on a graph. 
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 3.2 Sensor Subsystem 

 Table 1.2: Sensor Subsystem - Requirements & Verification 

 Requirements  Verification 

 1.  Soil moisture sensors must measure 
 volumetric water content within ±5% 
 accuracy across 0-100% range. 

 1. We inserted the sensor into dry soil and noted 
 ADC reading. 

 2. Saturated soil fully and noted ADC reading. 

 3. Tested intermediate moisture levels ( 25%, 
 50%, 75%) using a weigh-and-water method. 

 4. Confirmed calibration curve yields ±5% 
 accuracy across repeated trials (n=10). 

 2.  Load cell + HX711 must detect 
 rainfall weight changes at ±1 g 
 resolution. 

 1. Attempted to calibrate by placing known 
 masses (1 g, 5 g, 10 g) in the rain cup. 

 2. Attempted to record ADC output and verify it 
 distinguishes each weight within ±1 g, however 
 read incorrect readings. This requirement failed. 

 3.  Sensor data must remain stable (±2% 
 drift) over 24 hours in static conditions. 

 1. Kept the soil sensor in a controlled environment 
 (constant moisture) for 24 hours. 

 2. Logged sensor data periodically (every minute) 
 and confirmed drift remained under ±2%. 

 4.  Sensor power consumption must be 
 minimized to support battery longevity. 

 1. Measured current draw when sensors were 
 actively powered vs. switched off by the ESP32. 

 2. Successfully confirmed that sensor off-state 
 current was below 1 mA. 
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 3.3 Control Subsystem 

 Table 1.3: Control Unit Subsystem - Requirements & Verification 

 Requirements  Verification 

 1.  The ESP32 must poll sensors at 
 configurable intervals and log data locally 
 if Wi-Fi fails. 

 1. Disabled Wi-Fi. 

 2. Verified that the ESP32 continued to read 
 sensors. 

 3. Re-enabled Wi-Fi and confirmed that any 
 missed data was eventually uploaded to the 
 website, which was successful (we omitted SD 
 card). 

 2.  The website/sd card module must 
 reliably store data without corruption. 

 1. Operated the system for 24 hours, logging 
 data every ~15 minutes. 

 2. Inspected the website contents for missing 
 or malformed entries, and there were none. 

 3.  The control unit must provide a 
 user-visible status (display or button 
 feedback) for at least one system event. 

 1. Configured a live graph of pump activation 
 to show the user. 

 2. Observed the pump activation graph over a 
 24 hour period and confirmed user visibility. 

 4.  The MCU must avoid brownouts or 
 resets when the pump activates. 

 1. Monitored the 3.3 V rail with an 
 oscilloscope while the pump was switched on. 

 2. Ensured voltage drop was <5% of nominal 
 and the ESP32 did not reset or lock up. 
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 3.4 Actuation Subsystem 

 Table 1.4: Actuation Subsystem - Requirements & Verification 

 Requirements  Verification 

 1.  The pump must deliver a stable flow 
 rate (±10%) at 5 V under typical loads. 

 1. Supplied the pump at 9 V directly 

 2. Measured water flow into a graduated 
 container over 30 s. 

 3. Repeated multiple times (n=10) to ensure 
 flow rate was within ±10% of the expected 
 value. 

 2.  The subsystem must minimize water 
 leakage or backflow when the pump is 
 off. 

 1. Pressurized the tubing by running the pump 
 for 10 s. 

 2. Deactivated the pump and observed if water 
 continued to flow. 

 3. No leakage occurred and we checked valves 
 and ensured solenoid valves were fully sealed in 
 the closed state, which they were. 

 3.  The driver circuit must tolerate pump 
 inrush current without damaging 
 components or resetting the MCU. 

 1. Monitored MOSFET gate and drain voltages 
 during pump startup using an oscilloscope. 

 2. Confirmed the inrush current remains within 
 MOSFET and wiring limits. 

 3. Checked that the ESP32 supply did not 
 experience excessive voltage sag leading to 
 brownouts, which it did not. 
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 3.5 External Subsystem 

 Table 2.1: External Subsystem - Requirements & Verification 

 Requirements  Verification 

 1.  The system must fetch weather data from 
 an API at least every 10 minutes (or a user 
 defined interval). 

 1. Connected the ESP32 to a known Wi-Fi 
 network. 

 2. Logged timestamps of each successful API 
 call. 

 3. Verified that the average interval between 
 calls matches the configured schedule 
 (±1 min). 

 2.  Sensor data must be uploaded to the 
 website whenever Wi-Fi is available. 

 1. Simulated a temporary network outage, 
 allowing data to accumulate. 

 2. Reconnected to Wi-Fi and confirmed that 
 all pending sensor logs were successfully 
 uploaded. 

 3.  The user must be able to view moisture 
 levels, rain data, via a web interface. 

 1. Accessed the system’s web dashboard from 
 a browser or mobile device. 

 2. Confirmed that displayed data (moisture, 
 rainfall, battery voltage) matched real time or 
 recently logged values. 
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 4.  The subsystem must allow user-defined 
 parameters (like moisture thresholds) to be 
 updated remotely. 

 1. Implemented a user input page on the web 
 dashboard that writes updated thresholds. 

 2. Verified that the ESP32 retrieves and 
 applies these new values within a specified 
 period (60 s). 
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 4. Costs and Schedule 
 The total cost of the project can be seen in Table 4. Subsection 4.1 and 4.2 digs deeper into cost 
 analysis. 

 Table 4.1: Cost Analysis 
 Category  Cost 

 Labor Hours  $56,700 
 Components  $84.71 

 Total  $56,784.71 

 4.1 Parts 
 Table 4.2: Individual Cost 

 Part  Vendor  Retail Cost 
 ($) 

 Quantity  Total Cost ($) 

 LM2596S  DigiKey  7.89  2  15.78 
 ESP32 WROOM 32  DigiKey  4.36  3  13.08 

 1N5822  DigiKey  0.30  4  1.20 
 BD139  DigiKey  0.61  7  4.27 
 TIP120  DigiKey  1.05  2  2.10 

 CH340C  SparkFun  9.45  2  18.90 
 HX711  SparkFun  9.86  2  19.72 

 10k Resistor  ECE SELF SERVICE  0.10  20  0.00 
 1k Resistor  ECE SELF SERVICE  0.10  20  0.00 

 100uF Capacitor  ECE SELF SERVICE  0.11  20  0.00 
 10uF Capacitor  ECE SELF SERVICE  0.11  20  0.00 
 200mH Inductor  ECE SHOP  3.22  3  9.66 

 Total  -  -  -  $84.71 

 4.2 Labor 
 All the members of the group are Electrical Engineering students. Based on the Grainger College 
 of Engineering, the average starting salary for an electrical engineer major graduating from 
 UIUC is $88,321/yr, which is approximately $42/hr. 

 Assuming that we worked on this project for a grand total of 180 hours, approximately nine 
 weeks of  20 hours, the labor cost can be approximated to be around $7500 per person. Thus, the 
 total labor cost of the entire project is as calculated below: 
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 $42/  ℎ𝑟    *     3     𝑡𝑒𝑎𝑚     𝑚𝑒𝑚𝑏𝑒𝑟𝑠 *  2 .  5 *  180     ℎ𝑜𝑢𝑟𝑠 =  $56 ,  700    

 In addition to the cost of components, the grand total cost of this whole project is approximately 
 $56,784.71. 

 4.3 Schedule 
 Table 4.3: Semester-Long Project Schedule 

 Week  Task  Responsibility 

 2/24 - 2/28  1.  Start PCB Design 
 2.  PCB design review session 
 3.  Order ESP32 and other parts 

 1.  Iker / Jaeren 
 2.  Iker / Jaeren 
 3.  Iker 

 3/3 - 3/7  1.  First Round PCBway Orders 
 2.  Design Document 
 3.  Start assembling breadboard for demo 

 1.  All members 
 2.  All members 
 3.  All members 

 3/14  1.  Breadboard demo 
 2.  Revise PCB design 
 3.  Second Round PCBway Orders 

 1.  All members 
 2.  Iker 
 3.  Iker 

 3/24 - 3/28  1.  Order final components 
 2.  Revise PCB design 
 3.  Test microcontroller WiFi capabilities and API 

 communication 
 4.  Test microcontroller logic and pump activation 
 5.  Begin soldering PCB for subsystem testing 

 1.  Jaeren / 
 Aashish 

 2.  Iker 
 3.  Aashish 
 4.  All members 
 5.  Iker 

 3/31 - 4/4  1.  Third Round PCBway Orders 
 2.  Revise PCB design 
 3.  Continue soldering PCB for further subsystem testing and 

 programming 
 4.  Begin developing website UI 

 1.  Iker 
 2.  Iker 
 3.  Jaeren 
 4.  Aashish 

 4/7 - 4/11  1.  Continue assembling/debugging full system design 
 2.  Continue developing/debugging website UI and ‘water 

 saved’ tracker 

 1.  All members 
 2.  Aashish / Iker 

 4/14 - 4/18  1.  Almost fully complete assembly of system ready for mock 
 demo (including soldered components on PCB with almost 
 all subsystems functional) 

 1.  All members 

 4/21 - 4/25  1.  Mock Demo 
 2.  Revise, debug, and complete design in preparation for Final 

 Demo 

 1.  All members 
 2.  All members 
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 4/28 - 5/2  1.  Final Demo 
 2.  Mock Presentation 

 1.  All members 
 2.  All members 

 5/5 - 5/9  1.  Final Presentation 
 2.  Final Report Submission 

 1.  All members 
 2.  All members 
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 5. Conclusion 
 Automated residential irrigation rarely accounts for actual weather, leading to chronic 
 over-watering and avoidable waste. By coupling a capacitive soil-moisture probe with live 
 AccuWeather precipitation forecasts, our project demonstrates that a low-cost, battery-powered 
 controller can automatically water your plant based on the specific needs of each and every one. 
 The prototype runs for roughly twelve days on a 9 V alkaline cell, drives a 5-9 V micro-pump 
 through a single MOSFET, and publishes real-time telemetry over its own Wi-Fi access 
 point—no cloud account, base station, or phone app required. Because every functional block is 
 built from hobby-grade modules, the design is easy to reproduce and, we hope, to extend. 

 5.1 Accomplishments 
 Over the course of the semester the team converted a desktop proof-of-concept into a fully 
 untethered demonstrator that waters a plant only when environmental data indicate a genuine 
 need. The controller now ingests AccuWeather’s one-hour precipitation forecast and blends that 
 information with live soil-moisture readings, a capability we could not find in any off-the-shelf 
 “smart” irrigation kit aimed at hobbyists. Ten day endurance tests showed that the firmware 
 never skipped a scheduled measurement and kept volumetric water content within ±5 % of the 
 target set-point, all while running from a single 9 V alkaline battery. At the user experience level 
 we achieved true plug-and-play operation: the gardener merely powers the unit, joins the 
 self-hosted Wi-Fi network and adjusts thresholds in a browser. Finally, by relying on 
 hobby-grade modules and deleting superfluous features we held the electronic bill of materials to 
 $84.71, meeting both the cost ceiling and the safety goal of avoiding high-voltage circuitry. 

 5.2 Uncertainties 
 Several factors could still limit real-world performance. First, a precipitation probability is only a 
 statistical cue; a 70% forecast that fails to deliver rain could leave the plant under-watered, 
 whereas an unexpected shower after a watering event might push moisture above the optimal 
 window. Second, our single capacitive probe assumes uniform soil composition, yet layered 
 potting mixes, dense root balls, or imprecise probe placement can skew readings and 
 misrepresent the overall moisture state. Battery life, measured under controlled indoor 
 conditions, may shorten in cold weather where alkaline chemistry loses capacity, or in hot 
 climates where Wi-Fi duty cycle rises. 

 5.3 Ethical considerations 
 The project promotes water stewardship by irrigating only when the plant needs it and by 
 avoiding always-on cloud services that consume energy and harvest personal data. Removing the 
 SD/Firebase pipeline means no user information leaves the premises; nevertheless, we store just 
 moisture, battery level, and time stamps—nothing traceable to an individual. We specify alkaline 
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 rather than lithium batteries to reduce fire risk and simplify end of life recycling. Finally, all 
 firmware will be released under an open-source licence (GitHub) to encourage transparent peer 
 review and community improvement. 

 5.4 Future work 
 Several extensions could mature the prototype into a full product. A small photovoltaic panel and 
 boost charger would eliminate disposable batteries. Adding a tipping-bucket rain gauge would 
 verify forecast data and improve dosing accuracy. Support for multiple probes and solenoid 
 valves would let users manage entire garden beds. On the software side, logging to an optional 
 cloud endpoint could enable long-term agronomic studies and more broad application use, while 
 a lightweight machine-learning model could predict watering needs from trending data rather 
 than threshold crossings alone. Together, these upgrades would turn the current proof of concept 
 into a scalable platform for general data-driven plant monitoring. 
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