

Autonomous Featherweight (30lb) Battlebot

ECE 445 Senior Design Final Report - Spring 2025

Group #43

Jason Mei (jasonm5)

Qinghuai Yao (qyao6)

Michael Ko (ykko2)

TA: Michael Gamota

Professor: Viktor Gruev

7 May 2025

2

Abstract

This report outlines the design and development progress of an autonomous subsystem

for "CRACK?", a 30lb combat robot intended for autonomous operation within a controlled

arena. The primary focus is on implementing a computer vision-driven pure pursuit control

algorithm that tracks and engages opponent robots based on real-time pose estimation using

AprilTags. A custom simulation environment using Pygame was developed to model robot

dynamics and verify path-planning logic, including a modified avoidance algorithm that avoids

direct weapon-to-weapon contact. The control outputs are transmitted using ESP-NOW between

microcontrollers, achieving low-latency communication. Verification tests were conducted to

validate algorithm accuracy, communication latency, and PWM signal integrity. The system

demonstrates reliable performance in simulation with plans to extend to real-world testing.

Ethical considerations regarding autonomy, safety, and transparency were also evaluated in

accordance with IEEE and ACM codes.

Figure 1: Image of CRACK?.

3

Table of Contents

1 Introduction...4
1.1 Problem..4
1.2 Solution..4
1.3 Functionality..5
1.4 Subsystem Overview... 5

2 Design... 7
2.1 Design Procedure...7
2.2 Alternatives for Design..7
2.3 Design Details..8

2.3.1 Voltage Reader Subsystem...8
2.3.2 PWM I/O Subsystem (Input)... 9
2.3.3 PWM I/O Subsystem (Output)...9
2.3.4 IMU Subsystem..11
2.3.5 Remote Camera and April Tag Subsystem.. 11
2.3.6 Autonomy Subsystem.. 12

3 Verification.. 13
3.1 Voltage Reader Subsystem.. 13
3.2 PWM I/O Subsystem... 13
3.3 IMU Subsystem... 14
3.4 Remote Camera and April Tag Subsystem..15
3.5 Autonomy Subsystem..16

4 Cost and Schedule... 18
4.1 Cost Analysis...18

4.1.1 Labor.. 18
4.1.2 Parts..18
4.1.3 Total Cost... 18

4.2 Schedule...18
5 Conclusion... 19

5.1 Summary of Results and Future Work...19
5.2 Ethical Considerations...20

6 References.. 21
Appendix A. Requirement and Verification Table..23
Appendix B. Data Tables and Example Figures..25
Appendix C. Flowchart and Block Diagram... 29
Appendix D. Costs..31
Appendix E. Schedule..34

4

1 Introduction

1.1 Problem

iRobotics, an RSO on campus, has built multiple battlebots that are entered into

competitions across the U.S. One of the robots that has been developed is called "CRACK?", a

30lb hammer-axe battlebot. The robot has already been designed and completed; however, the

project would be to upgrade this robot from manual control to autonomous control. One of the

main challenges to this project is the transition from the theoretical world to the real world. The

designs that we are working on may be feasible in theory and in simulation, but the real world is

a lot more complex, and doubly so in the world of combat robotics. Our product has been

designed such that it can hold up to the rigors of a typical featherweight match.

In a standard battlebots match, the robots are placed on opposite corners of a 16 ’ x 16’

arena, facing each other. Once the match begins, robots have 3 minutes to attack the other robot

and cause enough damage to get the opponent to stop moving. The match can end in 5 ways [1]:

● The opposing robot is “knocked out” by ceasing all translational motion for 10 seconds.

● The opposing robot is sent out of the arena.

● The opposing robot has an exposed battery, which is a hazard.

● The match reaches the 3-minute time limit, and the judges decide the winner.

● The opposing robot’s driver taps out and forfeits the match.

1.2 Solution

For this project, the plan is to use a camera mounted just outside the polycarbonate walls

for a live state of the arena, sending information to a computer. The computer can then use image

5

transforms to get an accurate top-down view of the field, which allows the computer to then

calculate the next movements, either by using a pure-pursuit algorithm or a machine learning

algorithm, potentially. The control is then passed over to a microcontroller board mounted within

the robot, which sends signals to the motors, and drives the robot or fires the hammer.

1.3 Functionality

Overall, there are three high-level requirements for our project:

● Track both robots within ±12 inches and send PWM signals within 16ms per frame.

○ This requirement ensures real-time decision-making, which is critical for a

battlebot combat scenario.

○ Timely and accurate robot localization enables the robot to get correct instructions

calculated by a pure-pursuit algorithm implemented on a PC.

● Shut off safely on safety violations, with Bluetooth E-STOP and 100ft signal loss

fail-safe.

○ Without safety guarantees, the system will not be practical for real-world usage

and the competition.

● Track and intercept a 5 MPH RC car using the full autonomous system.

○ This is the core functional goal—demonstrating a robot that can autonomously

engage a moving adversary, simulating a combat or pursuit scenario.

1.4 Subsystem Overview

 The project is laid out over multiple blocks: the camera, the virtual environment, the pure

pursuit algorithm, and the on-robot custom board, which consists of the IMU, voltage reader, and

6

PWM control.

Figure 2: Custom board block diagram.

The physical custom board is relatively simple in design. As shown in Figure 2, the board

receives 5V power directly from the BEC (Battery Eliminator Circuit) of the weapon ESC,

which is then stepped down to 3.3V using an LDO (low-dropout) regulator. This is used to power

the microcontroller, of which we will be using the ESP32-S3. Receiver inputs will also be passed

into the ESP32, alongside voltages from the battery leads, converted into an analog voltage from

1.4 - 2.2V to not exceed the rated voltage of the microcontroller pins. Additionally, the LIS331,

our IMU, will send direct data over I2C. Lastly, the ESP32-S3 will also receive a Bluetooth

signal (not shown, as the majority of the Bluetooth circuitry is integrated within the

microcontroller) from the computer. It will then use this information to send a PWM signal to the

three ESCs. All the requirements and the verification table are in Appendix A.

7

2 Design

2.1 Design Procedure

For this project, we want to implement several key functionalities: battery voltage

monitoring, PWM-based motor control, robot detection, pure-pursuit algorithm, and reliable and

fast communication between a computer and the on-robot PCB.

Overall, the navigation capability, based on the pure-pursuit algorithm, is achieved by the

communication between a computer and the ESP32-S3 microcontroller embedded in the

on-robot PCB. A detection subsystem, comprising a camera and an IMU, captures the

environment information (position of both robots). The environment information is sent to the

PC, which processes it with the pure-pursuit algorithm. Then, the control signals are sent to

ESP32-S3 via ESP-NOW protocol.

 For battery reading, we are using a voltage divider because the input voltage of the

battery is larger than the 3.3V pin rating. Then, we are controlling the robot with PWM signals

with the microcontroller ESP32-S3. For robot detection, the camera detects the AprilTags on

both robots, and the IMU works as a backup when the AprilTags are not detected. The protocol

of connection between the PC and the ESP32-S3 is ESP-NOW.

2.2 Alternatives for Design

 Several alternatives were considered during the design process, particularly regarding the

communication protocol and the selection of the sensor for position estimation.

 Initially, we chose Bluetooth as the communication protocol, but the ESP32-S3 supports

only Bluetooth Low Energy (BLE), which has limited throughput and high latency.

8

Subsequently, Wi-Fi was tested, but the high latency rendered it unreliable for low-latency

control. Finally, ESP-NOW was selected due to its low latency. We, however, need to have the

other ESP32-S3 attached to the host PC, because ESP-NOW supports only peer-to-peer

communication.

 In terms of robot detection, an inertial measurement unit (IMU) was chosen when

AprilTag detection fails. An alternative for robot detection is light sensors, which could

potentially provide positional information based on structured lighting. However, this alternative

typically requires higher power and more complex environmental calibration. Also, most light

sensors have lower update rates than IMUs, which makes them less reliable for fast-moving

robots.

2.3 Design Details

2.3.1 Voltage Reader Subsystem

 CRACK was powered by two 6s Tattu R-Line 1400mAh LiPo batteries connected in

parallel. Each 6s battery consisted of six cells in series, with individual cell voltages ranging

from 3.2V to 4.2V. Since discharging below 3.2V risks permanent battery damage [2], we

monitored voltage in real time. This was done by tapping the first and last cells using the balance

leads—specifically pin 7 (25.2V), pin 2 (4.2V), and pin 1 (GND) on the JST-XH connector—to

estimate the full pack voltage with improved accuracy. These leads connected directly to a

custom board.

To safely measure voltages beyond the 3.3V tolerance of the ESP32-S3 microcontroller,

we used voltage dividers built from high-ohm resistors to reduce current draw, paired with zener

diodes for overvoltage protection. At most, the divider circuit drew 5.37 µA—negligible

compared to the battery’s ~40A continuous output. The scaled-down voltages were then fed into

9

the ESP32-S3’s 12-bit ADC, which provided millivolt-level resolution (0.001V) [3]. Figure 3

shows a Falstad simulation of the voltage divider setup.

Figure 3: Voltage divider simulation.

2.3.2 PWM I/O Subsystem (Input)

The receiver outputs a PWM voltage, where 0V is a zero, and 3.3V is high. PWM (pulse

width modulation) is a method of representing a signal as a rectangular wave with a varying duty

cycle. Every period, the receiver will pull each channel high for a certain amount of time, and the

width of the pulse represents the signal that the radio is sending. The ESP32-S3 can capture

pulses to the same accuracy as it can output, which is described below. This PWM system reads

at 50Hz, and from channels 1-5. Each channel’s use is described in Table 1 in Appendix B.

2.3.3 PWM I/O Subsystem (Output)

 The standard within RC cars (which are the ESCs that CRACK uses) is that a “0” signal

is 1.5ms every 20ms (50Hz), a “-100” signal is 1ms every 20ms, and a “100” signal is 2ms every

20ms. However, because the duty cycle can be variable (all that matters is that the period is

between 50-200Hz), we will be sending one signal for each frame that we receive from the

camera. A PWM signal example is shown in Figure 2 of Appendix B.

10

Once the angle difference is obtained, we then need to calculate the outputs that we will

send to the robot. Since the robot is driven with 3 total inputs, we sent those three inputs as

int16s (to minimize the total amount of data sent, from 1000-2000) - Left drive, right drive, and

weapon drive. Technically, the ESCs are precise down to 32 bits [5], but 8 bits is enough to get a

fairly accurate drive, and is still much more precise than human input. We calculated the values

sent using the following formulas, where drobots represents the distance between robots in meters,

and θdiff represents the angle difference in degrees:

 -1.0, 1.0) (3) 𝑜𝑢𝑡𝑝𝑢𝑡
𝑟𝑖𝑔ℎ𝑡

= 𝑐𝑙𝑖𝑝((𝑑
𝑟𝑜𝑏𝑜𝑡𝑠

+ 0. 4) − 1. 5 *
 θ

𝑑𝑖𝑓𝑓

180),

 -1.0, 1.0) (4) 𝑜𝑢𝑡𝑝𝑢𝑡
𝑟𝑖𝑔ℎ𝑡

= 𝑐𝑙𝑖𝑝((𝑑
𝑟𝑜𝑏𝑜𝑡𝑠

+ 0. 4) − 1. 5 *
 θ

𝑑𝑖𝑓𝑓

180),

 The left and right drives will be converted to PWM using the following formula:

 (5) 𝑃𝑊𝑀
𝑙𝑒𝑓𝑡/𝑟𝑖𝑔ℎ𝑡

= 𝑜𝑢𝑡𝑝𝑢𝑡
𝑙𝑒𝑓𝑡/𝑟𝑖𝑔ℎ𝑡

* 200 + 1500

 The ESP32-S3 has a specific peripheral for this - the MCPWM (Motor Control Pulse

Width Modulator) is a versatile PWM generator, which contains various submodules to make it a

key element in power electronic applications like motor control, digital power, and so on. [4] We

will be supplying the microcontroller with a 24 MHz crystal oscillator, so that it can precisely

clock for each period, and give us high precision for the pulse widths. Table 2 in Appendix B

shows the conversion.

11

2.3.4 IMU Subsystem

Figure 4: IMU schematic.

 We used the LIS331 IMU for acceleration data. This allows us to read live acceleration

data from the robot and then send that information over to the computer over Bluetooth. This

IMU allows us to obtain a ground truth, regardless of what the camera is seeing. We will identify

by testing which method of measuring orientation works best, whether it is the April tag or the

IMU. We will perform a calibration at the start of each test, which should allow us to get global

orientation data based on the initial placement of the robot. We understand that the IMU could

potentially be used for global position data, but with the possibility of the robot getting launched

into the air, the global position information would be a lot less accurate.

2.3.5 Remote Camera and April Tag Subsystem

We used the NexiGo N980P USB Camera, which features a 1080p 60fps sensor and a

120° lens, providing a wide-angle view of the arena. The camera was mounted on a tripod in a

fixed location to ensure consistent positioning, allowing for accurate pose estimation without

12

requiring adjustment. It is connected to the computer via USB Type-A, enabling a direct and

reliable data stream for processing.

To identify robot positions, we used AprilTags—visual fiducials that aid in object

localization [5]. Each robot had tags mounted on the top and bottom, which were detected using

OpenCV. We selected 16h5 family tags from the AprilTag library developed by the University of

Michigan’s AprilRobotics team. An example AprilTag is shown below in Figure 5 of Appendix

B. Detection was handled through the AprilTag Python library by Berwin, a PyPI port of the

original Swatbotics codebase [6]. OpenCV provided an efficient calibration workflow, allowing

us to quickly set up the camera using known parameters.

2.3.6 Autonomy Subsystem

The computer took in multiple inputs: live camera feed of the robots in the arena, IMU

information from the robot, and previous location data (from earlier calculations). We used a

standard pure-pursuit algorithm for the initial pass. We did this by obtaining the pose from the

camera subsystem, as well as the IMU information of the robot. Once we had two global

positions, we were able to use line-circle intersection to identify the goal points for the robot. [7]

Effectively, we tried to minimize the angle between the front of CRACK and the

opponent, and minimize the distance between the two robots. Before implementing this design in

the real world, we constructed a Pygame environment where we simulated how the robot would

behave in the world. An example of a Pygame simulation is shown in Figure 4 of Appendix B

 The outline for the robot’s autonomous initialization follows the flowchart, which is

shown in Figure 1 of Appendix C. The robot follows the procedure, which is shown in Figure 2

of Appendix C, for actual autonomous control, assuming the robot is currently in the autonomous

control mode.

13

3 Verification

3.1 Voltage Reader Subsystem

 We successfully completed both tests, which are outlined in Table 1 of Appendix A.

Input voltage Measured voltage Expected Value

1.4 V 0.81 V 0.875 V

1.6 V 0.91 V 1 V

1.8 V 1.01 V 1.125 V

2.0 V 1.11 V 1.25 V

2.2 V 1.21 V 1.375 V

5 V 0.40 V 0.45 V

Table 1: Voltage Divider Test Result

The expected value is calculated with the formula: 𝑉
𝑜𝑢𝑡

 = (𝑉
𝑖𝑛

 × 𝑅
2
) /(𝑅

1
 + 𝑅

2
)

All measured values fall within +/- 0.2 V of the expected values, which indicates the accuracy of

the voltage monitoring subsystem. For the 5 V input case, the measured value remains safely

below 3.3 V, which shows that the voltage divider effectively protects the ADC pins from

overvoltage.

3.2 PWM I/O Subsystem

We completed both tests, which are outlined in Tables 2 and 3 of Appendix A, with a pass

rate of 95% over 5 sweeps being measured.

14

 Figure 5: Deviation plots for each intended value over 5 sweeps.

 The output deviations averaged 0.27 above the intended value, while the input deviations

averaged about 0.14 below the intended value. The maximum deviation was 10.8μs, so all

samples were within bounds, and the test was a success.

3.3 IMU Subsystem

 Unfortunately, we cannot test the IMU subsystem on the robot because of the inability to

program the PCB in the end. However, we still did some tests and verified the hardware

implementation of the IMU. We completed the test, which is outlined in Table 4 of Appendix A.

Test condition Expected (m/s^2) Outputs (m/s^2) Pass/Fail

Face-up (Z-axis) X = 0, Y = 0, Z = 9.8 X = -0.167, Y = -0,199, Z = 9.689 Pass

Sideways (X-axis) X = 9.8, Y = 0, Z = 0 X = 9.591, Y = 2.229, Z = 2.844 Pass

Sideways (Y-axis) X = 0, Y = 9.8, Z = 0 X = 0.539, Y =9.862, Z = 1.340 Pass

Table 2: IMU test results

15

 Because we hold the IMU with our hand for sideways tests, the measurement of sideways

has minor deviations. Nonetheless, the results remain consistent with the expected values along

the corresponding axes.

3.4 Remote Camera and April Tag Subsystem

 In order to verify the accuracy of the subsystem over time, we completed the tests from

Appendix A, Table 5. We placed the robot in known locations and compared the calculated

position of the robot to the ground truth distance. As shown in Figure 6, the system manages to

approximate locations down to the worst case of 5.9 inches, with a very small bias towards the

positive x direction. The measured distance is acceptable for our standards and completes the

test.

Figure 6: Approximate deviation from ground truth.

16

3.5 Autonomy Subsystem

To verify the pure-pursuit algorithm, we completed the tests from Appendix A, Table 6.

A successful test would be a 95%+ hit rate over at least 100 simulations. I placed the simulated

robot directly in the center of the arena and randomized the location of the spawned target.

Figure 7 shows the location of starting target points for each test.

Figure 7: Diagram of the starting target locations

Out of every test, the algorithm never missed and got to the target in under 5 seconds.

The measured average “time-to-target” was approximately 2.3 seconds. The reason for the

mildly sparse groupings for the target along the y=x line is due to the randomization algorithm,

which avoids placing the target directly on top of, or near, the robot. However, the entire arena is

symmetrical in all 4 ways. This test was a success.

For the time for each autonomous pass, we were forced to adjust to the “update once

every other frame” protocol as considered in the tolerance analysis of the design document.

Shown below is the measurement for the tests:

17

Figure 8: Autonomous Step Duration histogram.

The measured step duration concentrates on approximately 35ms, which is within our

adjusted 2-frame window. We have one outlier of 130ms within our sample, primarily due to

occasionally doing a full quad-decimate reading of the entire video frame to recapture AprilTag

detection. However, this is still acceptable for our standards and completes the test.

18

4 Cost and Schedule

4.1 Cost Analysis

4.1.1 Labor

The average starting salary of Computer Engineering students is $109,176[10]. Assume

a full-time job with 40 hours per week and 52 weeks per year. $109,176/(40 * 52) = $52/hour.

For each team member, 5 hours per week will be spent on the project. Thus, 5 * 10 = 50 hours

will be spent by each team member. Then, a reasonable salary for each team member is: 52 * 2.5

* 50 = $6,500

4.1.2 Parts

We had several orders for parts. All information on parts costs is included in Table 1 of

Appendix D. The total cost for parts is $144.58.

4.1.3 Total Cost

 $6, 500 + $144. 58 = $6644. 58

4.2 Schedule

The entirety of the schedule is listed out in Table 1 of Appendix E. The schedule is what

we intended from week 1 until the end of the semester. There were a few changes to the actual

schedule due to the parts arriving late and having trouble with the PCB orders. However, we still

managed to stick mostly to the plan and have a successful project for the final demo.

19

5 Conclusion

5.1 Summary of Results and Future Work

We successfully completed the objective and the high-level requirements. The robot was

able to move around autonomously based on the RC car’s movement, meaning that the

pure-pursuit algorithm was accurate, along with the camera being able to detect the AprilTags on

the robots. The PCB was also programmed as we intended. However, the PCB was not working

for the final demo as the RX pin of the MCU had some issues. We thought it was an issue with

the RX pin due to other pins functioning properly, as we were able to get the necessary outputs

on the serial monitor, but simply could not upload it. One other uncertainty we had was that the

IMU output was not accurate because we had to hold the IMU with our hand when we tried to

get the data, when held sideways. This had the data off by a bit since the IMU was shaking and

was not in the ideal position. We also struggled with the connection from the computer to the

on-robot board as we switched three times from Bluetooth to WiFi and finally to ESP-NOW.

Lastly, the Micro-USB port was connected to the wrong pins on the ESP as the D+ and D- pins

were inversely connected. Therefore, we had to use a USB-to-UART bridge to solve this issue.

In the future, we will create a bigger PCB than what we currently have to avoid any soldering

issues. We could also have a camera with higher resolution, since an expensive camera would be

able to detect AprilTags much better. Unfortunately, our project had a budget limit, forcing us to

purchase a cheap webcam instead. With a higher quality camera, we could have the battlebot

move around in a larger environment rather than the 6’ x 6’ environment we have as of now.

20

5.2 Ethical Considerations

Our project must adhere to all IEEE and ACM ethical guidelines to maintain safety

standards. Several potential ethical considerations warrant attention. Regarding ACM code 1.2,

we should avoid harm and ensure safety. The autonomous mobile robots can bring in hazards

like failure in the hardware, or showing erratic behavior. To address safety and ethical concerns,

we will implement a robust emergency shutdown mechanism that responds instantly through

Bluetooth connectivity to prevent loss-of-control scenarios. As a backup measure, we will

incorporate multiple redundant safety systems, both physical and wireless [11]. For testing and

validation purposes, we will be performing controlled testing in simulated environments.

Following ACM code 1.6, our vision system must maintain privacy standards by

avoiding the storage of unnecessary data [12]. Since our robot uses a camera to view the

movements of the robot, we must only contain necessary information and avoid collecting

private personal information that might invade someone’s privacy. To meet the FCC regulations,

the Bluetooth connection must not have any interference with other robots [13].

Our robot is powered by lithium-powered batteries and must follow the OSHA

guidelines. With these types of batteries, there might be potential fire risks. Following the OSHA

1910.1200, we must have proper hazard communication. We will have proper labelling and

follow the procedures for hazardous materials such as the lithium batteries [14]. We will also be

charging the batteries at their rated amperage and ensuring that when not in use, the batteries are

charged to a safer voltage for an extended period of time.

21

6 References

[1] “Robobrawl - Rules 2025.” Accessed: Mar. 06, 2025. [Online]. Available:

https://robobrawl.illinois.edu/robobrawl/rules

[2] “Beginners Guide to LiPo Batteries,” FPV Freedom Coalition. Accessed: Mar. 06, 2025.

[Online]. Available: https://fpvfc.org/beginners-guide-to-lipo-batteries

[3]“Analog to Digital Converter (ADC) - ESP32-S3 - — ESP-IDF Programming Guide v4.4

documentation.” Accessed: Mar. 06, 2025. [Online]. Available:

https://docs.espressif.com/projects/esp-idf/en/v4.4/esp32s3/404.html

[4]“Motor Control Pulse Width Modulator (MCPWM) - ESP32-S3 - — ESP-IDF Programming

Guide v5.4 documentation.” Accessed: Mar. 06, 2025. [Online]. Available:

https://docs.espressif.com/projects/esp-idf/en/v5.4/esp32s3/api-reference/peripherals/mcpwm.ht

ml

[5]“AprilTag Introduction — FIRST Tech Challenge Docs 0.3 documentation.” Accessed: Mar.

06, 2025. [Online]. Available:

https://ftc-docs.firstinspires.org/en/latest/apriltag/vision_portal/apriltag_intro/apriltag-intro.html

[6] swatbotics/apriltag. (Feb. 18, 2025). C. swatbotics. Accessed: Mar. 06, 2025. [Online].

Available: https://github.com/swatbotics/apriltag

[7] “OpenCV: Camera Calibration.” Accessed: Mar. 06, 2025. [Online]. Available:

https://docs.opencv.org/3.3.1/dc/dbb/tutorial_py_calibration.html

[8]“Basic Pure Pursuit | Purdue SIGBots Wiki.” Accessed: Mar. 06, 2025. [Online]. Available:

https://wiki.purduesigbots.com/software/control-algorithms/basic-pure-pursuit

22

[9]“15 | Combine a gyroscope and accelerometer to measure angles - precisely- YouTube.”

Accessed: Mar. 06, 2025. [Online]. Available:

https://www.youtube.com/watch?v=5HuN9iL-zxU&t=472s&ab_channel=CarbonAeronautics

[10]G. E. O. of M. and Communications, “Salary Averages.” Accessed: Mar. 06, 2025. [Online].

Available: https://ece.illinois.edu/admissions/why-ece/salary-averages

[11]“IEEE Code of Ethics.” Accessed: Mar. 06, 2025. [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html

[12]“The Code affirms an obligation of computing professionals to use their skills for the benefit

of society.” Accessed: Mar. 06, 2025. [Online]. Available: https://www.acm.org/code-of-ethics

[13]“Title 47 of the CFR -- Telecommunication.” Accessed: Mar. 06, 2025. [Online]. Available:

https://www.ecfr.gov/current/title-47

[14]OSHA, “Law and Regulations | Occupational Safety and Health Administration,” Accessed:

Mar. 06, 2025. [Online]. Available:https://www.osha.gov/laws-regs

23

Appendix A. Requirement and Verification Table

Table 1: Voltage Reader Subsystem Requirements and Verification Table

Requirements Verification Verification Status
(Y or N)

The voltage reader on
both ADCs must be
accurate to within +/-
0.2V.

The reader will be tested with a power
supply on a sweep from 1.4 - 2.2V (standard
operation voltages) in steps of 0.1V, and
results will be compared.

Y

The voltage reader on
both ADCs must protect
against a >3.3V input.

The reader will be tested with a power
supply at a voltage of 5V, and the output
must be within a safe value (> 3.3V).

Y

Table 2: PWM Input Subsystem Requirements and Verification Table

Requirements Verification Verification Status
(Y or N)

The PWM input read must be
accurate to within +/- 50µs.

The ESP32-S3 will read in a sample
signal sweep from 1000µs to 2000µs in
steps of 100µs from a signal generator,
and results will be compared.

Y

Table 3: PWM Output Subsystem Requirements and Verification Table

Requirements Verification Verification Status
(Y or N)

The PWM output read must
be accurate to within +/-
50µs.

The ESP32-S3 will output a sweep from
1000µs to 2000µs in steps of 100µs, and
results will be analyzed using an
oscilloscope for accuracy.

Y

Table 4: IMU Subsystem Requirements and Verification Table

Requirements Verification Verification Status

24

(Y or N)

The orientation measured will
be accurate to +/- 10° the true
angle of the robot.

The robot will be calibrated in a known
orientation, then will spin around for 30
seconds at an approximate rate of 1 full
rotation every 3 seconds. After that time,
the orientation output will be compared
to the true orientation of the robot.

N

Table 5: Remote Camera Subsystem Requirements and Verification Table

Requirements Verification Verification Status
(Y or N)

The camera is capable of
reading the 16’x16’ play field
from a fixed position.

The camera will be mounted in a
specific location, and the robot will
drive to all four corners of the arena.
The robot’s AprilTag should be visible
at all corners.

Y

The camera can calculate the
pose of both robots with an
accuracy of within +/- 12
inches.

The robot and the opponent will be
placed at specifically known locations
within the arena, and the poses of the
robots will be compared.

Y

Table 6: Autonomy Subsystem Requirements and Verification Table

Requirements Verification Verification Status
(Y or N)

The simulated robot can drive
directly at the opponent, and
if the opponent is still, it can
reach it within 5 seconds.

We will run the simulation, and place
the robot at a set of given locations,
with the opponent at another. Upon
starting the simulation, the robot should
always be able to navigate to the
opponent.

Y

The robot completes a single
autonomous pass within the
16ms timing window for each
frame.

The autonomous system will run a
timer at the start of the protocol, and
the time it takes for each pass will be
measured.

Y

25

Appendix B. Data Tables and Example Figures

Figure 1: ESP32-S3 ADC Characteristics [3]

Channel # Use

1 Left Drive Input

2 Right Drive Input

3 Weapon Input

4 Mode Select:
-100 = Manual Override
0 = OFF
100 = Autonomous Mode

5 Safety Switch:
0 = OFF
100 = ON

Table 1: Channel Usage

26

Figure 2: PWM Example for the ESC

Signal Time (µs) Number of cycles

PWM period cycle 16666.666 400000

-100 signal pulse width 1000 24000

0 signal pulse width 1500 36000

100 signal pulse width 2000 48000

Table 2: Cycle to time conversion table

27

Figure 3: Line-intersection explanation. [8]

Figure 4: Pygame simulation example

28

Figure 5: Example AprilTags, as well as the camera calibration tool

29

Appendix C. Flowchart and Block Diagram

Figure 1: Initialization protocol

30

Figure 2: Autonomous protocol

31

Appendix D. Costs

Part Manufacturer Retail Cost ($) Bulk Purchase
Cost ($)

Actual Cost ($)

22UF CAP
(0603)

Samsung
Electro-Mechani
cs

$0.08000 $0.04700 $0.40

0.1UF CAP
(0603)

Samsung
Electro-Mechani
cs

$0.08000 $0.00600 $0.09

3.3PF CAP
(0603)

Vishay Vitramon $0.49000 $0.30000 $3.00

1UF CAP
(0603)

Samsung
Electro-Mechani
cs

$0.08000 $0.01400 $0.14

10000PF
CAP(0603)

Samsung
Electro-Mechani
cs

$0.08000 $0.00900 $0.09

10PF CAP
(0603)

Johanson
Technology Inc.

$0.44000 $0.26300 $2.63

10 UF CAP
(0603)

Samsung
Electro-Mechani
cs

$0.08000 $0.02400 $0.24

LED Rohm
Semiconductor

$0.19000 $0.19000 $0.95

CONN 3POS Sullins
Connector
Solutions

$0.33000 $0.28200 $4.23

CONN MICRO
B

Molex $0.92000 $0.92000 $2.76

CONN 7POS JST Sales
America Inc.

$0.21000 $0.21000 $1.05

32

CONN 5POS Sullins
Connector
Solutions

$0.42000 $0.42000 $2.10

SS8050-G Comchip
Technology

$0.24000 $0.14800 $1.48

5M RES (1206) Susumu $0.32000 $0.28900 $2.89

10K RES(0805) Stackpole
Electronics Inc

$0.10000 $0.02500 $0.75

100K
RES(0603)

Panasonic
Electronic
Components

$0.10000 $0.03500 $0.35

100kRES (0805) YAGEO $0.10000 $0.01400 $0.14

500K RES
(0805)

Stackpole
Electronics Inc

$0.12000 $0.13000 $0.65

3M RES (0603) Panasonic
Electronic
Components

$0.10000 $0.03300 $0.33

1K RES (0603) Panasonic
Electronic
Components

$0.10000 $0.03500 $0.35

SWITCH Omron
Electronics
Inc-EMC Div

$0.57000 $0.57000 $2.85

AMS117 UMW $0.68000 $0.68000 $3.40

LIS331 STMicroelectron
ics

$3.05000 $3.05000 $6.10

10k RES Vishay $0.527 $0.527 $10.54

10K RES Vishay $0.344 $0.344 $3.44

1k RES Panasonic $0.187 $0.187 $3.74

10UF CAP TAIYO YUDEN $0.256 $0.256 $2.56

Zener Diode Taiwan
Semiconductor

$0.296 $0.296 $2.96

33

ESD protection
Diode

Littelfuse $0.63

$0.63

$3.15

ESP32-S3-WRO
OM-1-N16R2

Espressif $3.62 $3.62 $7.24

RC CAR Amazon $54.99 $54.99 $54.99

Camera NexiGo $18.99 $18.99 $18.99

Total $144.58

34

Appendix E. Schedule

Week Task Person

Week 1
(1/20)

Discuss and brainstorm about the
project

Everyone

Week 2
(1/27)

Design a block diagram and get the
project approved

Jason

Week 3
(2/03)

Write proposal Everyone

Week 4
(2/10)

Write a proposal and prepare for the
proposal review

Everyone

Week 5
(2/17)

Design the schematic and PCB Michael, Qing

Week 6
(2/24)

Modify the schematic and PCB Everyone

Week 7
(3/3)

Finish the Design document Everyone

Work on the breadboard Jason (order, assemble)
Michael(assemble), Qing (assemble)

First Round PCB Order 3/3 Everyone

Week 8
(3/10)

Start PCB assembly

Michael, Qing

PCB Revision Qing

Prototype microcontroller Jason

Second Round PCB Order 3/13 Everyone

Breadboard Demonstration Everyone

Week 9
(3/17)

Spring Break Everyone

Week 10 Program and Test (pure-pursuit, Everyone

35

(3/24) autonomous system)

Finalize microcontroller prototype Michael

Program and Test (voltage reader) Michael

Program and Test (PWM and IMU) Qing

Program and Test (Remote camera and
April tag)

Jason and Qing

PCB Revision Michael

Week 11
(3/31)

Robobrawl 4/4 - 4/5 Everyone

Modify any changes for the mock demo Everyone

Third Round PCB Order 3/31 Everyone

Week 12
(4/7)

Modify any changes for the mock demo Everyone

PCB Revision Jason

Fourth Round PCB Order 4/7 Everyone

Week 13
(4/14)

Prepare for the mock demo Everyone

Week 14
(4/21)

Mock demo and final adjustment Everyone

Week 15
(4/28)

Final demo Everyone

Week 16
(5/5)

Final presentation Everyone

Final Paper 5/7 Everyone

Figure 23: Project Progression Schedule

	Autonomous Featherweight (30lb) Battlebot
	1 Introduction
	1.1 Problem
	1.2 Solution
	1.3 Functionality
	1.4 Subsystem Overview

	2 Design
	2.1 Design Procedure
	2.2 Alternatives for Design
	2.3 Design Details
	2.3.1 Voltage Reader Subsystem

	
	2.3.2 PWM I/O Subsystem (Input)
	2.3.3 PWM I/O Subsystem (Output)
	2.3.4 IMU Subsystem
	2.3.5 Remote Camera and April Tag Subsystem
	2.3.6 Autonomy Subsystem

	3 Verification
	3.1 Voltage Reader Subsystem
	3.2 PWM I/O Subsystem
	3.3 IMU Subsystem
	3.4 Remote Camera and April Tag Subsystem
	3.5 Autonomy Subsystem

	
	4 Cost and Schedule
	4.1 Cost Analysis
	4.1.1 Labor
	4.1.2 Parts
	4.1.3 Total Cost

	4.2 Schedule

	
	5 Conclusion
	5.1 Summary of Results and Future Work
	5.2 Ethical Considerations

	6 References
	
	Appendix A. Requirement and Verification Table
	
	Appendix B. Data Tables and Example Figures
	Appendix C. Flowchart and Block Diagram
	
	Appendix D. Costs
	
	Appendix E. Schedule

