
ECE 445

SENIOR DESIGN LABORATORY

FINAL REPORT

GainSense:
Exercise Repetition & TUT Counter

Team #31

Prithvi Patel
(prithvi7)

Arhan Goyal

(arhang2)

Vikrant Banerjee
(vikrant3)

TA: Sanjana Pingali

Professor: Yang Zhao
Spring 2025

May 4th, 2025

1. Introduction

1.1 Problem. Most people struggle to maintain high-quality workouts, especially without a gym
trainer. Trainers are expensive and most trainers only correct basic form, count reps1, and ensure
reps are done slowly to reach the desired time-under-tension2 (TUT). This problem gets
exacerbated when progressively overloading or when muscles are tired at the end of the workout.
Counting reps and reaching the desired TUT are the main metrics most gym-goers understand
and struggle to hit.

1.2 Solution. Our wristwatch-style device counts the number of reps the user performs and
measures TUT. It contains a vibration motor which buzzes once desired TUT is reached,
prompting the user to bring the arm down to complete the rep.

1.3 Motivation. The modern fitness landscape is increasingly shifting toward personalized and
self-guided workouts. However, one major challenge persists for users exercising without
professional supervision: the inability to accurately track workout quality, particularly in terms
of repetition count and time-under-tension (TUT). These metrics are critical for building strength
and ensuring proper form but are often estimated imprecisely, especially in the absence of visual
feedback or a trainer. While smartwatches and fitness trackers have made strides in heart-rate
monitoring and activity tracking, most either offer limited rep counting functionality (~65%
accuracy) or fail entirely to measure TUT.

Our entire team loves going to the gym and regularly faces this struggle. We decided to use our
Senior Design project to solve this very real problem we face on a daily basis.

1.4 High-Level Requirements. The performance requirements for this project were as follows:

1. Adjustable TUT duration between 1 to 10 seconds in 1-second increments.
2. Minimum 90% accuracy in exercise rep detection.
3. Time-under-tension measurement error margin less than ±1 second per rep.

2. Design

2.1 Block Diagram

1 Rep: Short for “repetition”, a single execution of an exercise
2 Time-Under-Tension: Total amount of time a muscle is held under load or strain during a set of reps

Fig. Block Diagram

2.2 Subsystem Design

2.2.1 Power Subsystem:

Overview
The purpose of this subsystem is to provide a stable power supply to all components of the
device. It consists of a 9V battery pack which serves as the primary energy source, which feeds
into two voltage regulators: the AMS-1117-5V for a 5V line and the AMS-1117-3.3V for a 3.3V
line. The 5V line powers the microcontroller, display, and vibration motor, while the 3.3V line
powers the IMU (MPU6050).

Design Considerations
When designing the Power Subsystem, we weighed the pros and cons between switch mode DC-
DC converters and classic linear regulators across various battery voltage values. Our original
design used a 12V battery stepped down to 5V using a buck converter to avoid excess heat
dissipation as buck converters efficiently step-down voltage rather than dissipating energy as
heat. A buck converter was necessary due to the significant drop between 12V and 5V. This
combination resulted in a heavier design because of the bulky weight of the 12V battery and
more complex design due to the extra peripherals necessary for the buck converter circuit.
Ultimately, we switched the buck converter to a linear regulator in combination with dropping
the input voltage from a 12V battery to a much lighter 9V battery, which helped simplify the
final circuit and drop the weight of the final product.

Requirements and Verification

Requirement Validation Process

The subsystem must output 5.0V

±0.2V (for the display and motor) and

3.3V ±0.2V (for the microcontroller

and MPU6050)

The battery was connected to the 5V linear regulator

and the 5V linear regulation passed voltage into the

3.3V regulator. We used an oscilloscope to measure

the output of each regulator and found the 5V

regulator output 4.99V and the 3.3V regulator output

3.29V.

The battery must support ≥2 hours of

continuous operation under peak load

(300mA @ 5V, 100mA @ 3.3V).

The device was left running for 2 hours, interacting

with it every 10 minutes to ensure it is still working

as intended. The device properly worked for 2 hours

Includes overcurrent protection on both

output rails. Interfaces: Input: 12V

LiPo battery. Outputs: 5V (to

Mitigated overcurrent issues by ensuring the Linear

Regulator used (LM1117) has overcurrent protection

embedded within it

microcontroller, MPU6050) and 5V (to

display, motor).

2.2.2 Sensing Subsystem

Overview
The purpose of the Sensing Subsystem is to track the users arm movement and monitor their
TUT during an exercise. This subsystem consists of an MPU6050 accelerometer and gyroscope,
which are used to detect changes in motion and orientation to accurately sense the beginning and
end of a repetition using I2C communication protocol. Additionally, a potentiometer will be used
to allow the user to adjust the TUT criteria according to their own fitness goals. We will need to
use an analog to digital converter (ADC) for the ATmega328 to be able to process analog data
from the dial. This subsystem is necessary to gather motion data and send it to the board's
microcontroller, which will process the information to accurately count repetitions and track
TUT.

Implementation

1. The MPU6050 is configured during setup to use an 8G accelerometer range and 21Hz
low-pass filtering for noise reduction. Communication is established via I2C.

1. // In setup():
2. mpu.setAccelerometerRange(MPU6050_RANGE_8_G);
3. mpu.setFilterBandwidth(MPU6050_BAND_21_HZ);
4. if (!mpu.begin()) {
5. Serial.println("Failed to find MPU6050 chip");
6. while (1) { delay(10); }
7. }
8.

2. Z-axis acceleration is sampled every loop iteration to detect vertical motion. A dead zone
filter ignores minor movements below MIN_MOVEMENT.	

This equation was used in which raw acceleration az (Z-axis) data is filtered to ignore
small movements below a threshold Δamin:	

where arest = 11.5 m/s2 (resting Z-axis acceleration) and Δamin = 3 m/s2.

1. // In loop():
2. sensors_event_t a, g, temp;
3. mpu.getEvent(&a, &g, &temp);
4. float accelZ = a.acceleration.z;
5. if (abs(accelZ - 11.5) < MIN_MOVEMENT) return;

3. The potentiometer on pin A1 adjusts the Time-Under-Tension (TUT) threshold from 1–
10 seconds. Changes trigger immediate updates to timing thresholds and display
feedback.

1. // In loop():
2. int raw = analogRead(POT_PIN);
3. unsigned long secs_setting = map(raw, 0, 1023, SEC_MIN, SEC_MAX);
4. if (BUZZ_THRESHOLD != millis_setting) {
5. BUZZ_THRESHOLD = millis_setting;
6. MIN_REP_TIME = millis_setting;
7. display.print(secs_setting, DEC);
8. }

Requirements and Verification

Requirement Verification

The MPU6050 must

sample acceleration/gyro

data at ≥ 10Hz

Connect the MPU6050 to the microcontroller and upload

firmware that streams raw sensor data via a serial port. Print time

stamps when sampling the data. Confirm that we are getting ≥ 10

samples per second.

The potentiometer must

adjust TUT in 1–10s

increments using a dial.

To test the dial, we turned the potentiometer and printed the dial,

ensuring the value displayed from 1-10. The display correctly

showed values 1-10 100% of the time.

Reset button calibrates

gyro sensor to zero and

sets the rep count to zero.

Place the device on a stable surface to ensure there is no motion

and then click on the reset button. Pre-calibration data must show

near-zero values (±0.05g for accelerometer, ±0.5°/s for gyro).

Post-calibration motion data must reflect actual movement (e.g.,

>0.5g change during lifting).

2.2.3 Feedback Subsystem

Overview
The purpose of this subsystem is to provide real-time feedback to the user through both software
and hardware mechanisms. The timer is a software feedback component that is preset by the user
via a potentiometer/dial that will indicate a set amount of seconds that the user would like to be
under tension during their repetition. Once the preset time is reached, the board’s microcontroller
will trigger the vibration motor, which will provide a haptic feedback to the user to signal that
they can now complete their range of motion. The motor will be controlled using Pulse-Width
Modulation (PWM). Furthermore, the 8-segment display will display the current count of
repetitions completed, incrementing each time the user completes a repetition. This display will
be controlled using the I2C communication protocol can be reset to the value 0 by using the
“reset” button.

Implementation
The display update routine follows various different parts.

1. On startup, the device writes to the which exercise mode you are in betwerrn forward-
backward movement displayed as “FBMd” or vertical movement displayed as “UPMd”.

1. if (showMode && (now-modeStart<1000)) {
2. display.writeDigitAscii(0, modeFB ? 'F' : 'U');
3. display.writeDigitAscii(1, modeFB ? 'B' : 'P');
4. display.writeDigitAscii(3, 'M'); display.writeDigitAscii(4, 'd');
5. }

6.

2. When the time under tension threshold has been met, as a secondary indicator we write

the word “dOnE” in ascii on the display
1. else if (showDone && (now-doneStart<1000)) {
2. display.writeDigitAscii(0,'d'); display.writeDigitAscii(1,'O');
3. display.writeDigitAscii(3,'n'); display.writeDigitAscii(4,'E');
4. }
5.

3. If the user changes their Time Under Tension threshold using the dial, the value they

choose will be written on the display
1. else if (showSec && (now-secStart<1000)) {
2. display.print(secSet,DEC);
3. }
4.

4. When the user completes a repetition, the count of their repetition is updated if they meet

the TUT threshold they set for themselves, if not then their repetition count is not
incremented. The time is continuously being updated as well.

 1. else {
 2. showDone = showSec = showMode = false;
 3. uint8_t tut = 0;
 4. uint16_t repsShown = 0;
 5. if (!modeFB) {
 6. tut = lifting ? (now-repStart)/1000 : 0;
 7. repsShown = repCount;
 8. } else {
 9. tut = outward ? (now-repStartFB)/1000 : 0;
10. repsShown = repCountFB;
11. }
12. display.writeDigitNum(0,(tut/10)%10);
13. display.writeDigitNum(1, tut%10);
14. display.drawColon(true);
15. display.writeDigitNum(3,(repsShown/10)%10);
16. display.writeDigitNum(4, repsShown%10);
17. }
18.

Requirements and Verification

Requirement Verification

The 8-segment display

must update within 1s of

a detected rep.

Using the Arduino serial monitor, we took time stamps, marking

the time of detected repetition and the time the repetition counter

was incremented. This resulted in a 0.6s difference between

detecting and displaying

The vibration motor must

vibrate strong enough

such that it is felt by the

user

Each team member tested various vibration intensities and ranked

them based on the criteria of how well the vibration is felt, and

how little it impairs their movement. Using this we decided on a

duty value of 150

The display must support

2-digit output for the

timer and 2-digit output

for repetitions

To test the timer, we left the device in a “mid repetition” state

making sure the timer continues to increment past 10 seconds, it

did. To test the repetition counter, we completed 11 repetitions and

carefully made sure it tracked each one and updated the counter up

to 11, it did.

2.2.4 Microcontroller Subsystem

Overview
The purpose of the Microcontroller (AtMEGA328-P) Subsystem is to be the central processing
unit of the device, handling software and hardware data it receives and delivers between each
subsystem. It receives motion data from the MPU6050 and analyzes it to detect and count
repetitions. Furthermore, it reads the input from the potentiometer to determine the user’s
expected TUT. Once processed, the microcontroller communicates with the Feedback System to

provide both visual and haptic cures. Finally, the microcontroller also ensures power is
distributed properly between each of the subsystems.

Implementation

1. The microcontroller configures I²C for sensor/display communication, PWM for motor
control, and GPIO for user inputs.

1. void setup() {
2. Wire.begin(); // I²C for MPU6050 and display
3. pinMode(MOTOR_PIN, OUTPUT); // PWM motor control
4. pinMode(POT_PIN, INPUT); // Potentiometer input
5. mpu.begin(); // Initialize IMU
6. display.begin(0x70); // I²C display
7. }
8.

2. The loop() function runs at 10Hz (100ms intervals):
• Read potentiometer → adjust TUT threshold
• Poll MPU6050 → process acceleration data
• Update rep state machine
• Refresh display

 1. void loop() {
 2. // 1. Read potentiometer
 3. unsigned long secs_setting = map(analogRead(POT_PIN), 0, 1023, 1, 10);
 4.
 5. // 2. Get MPU6050 data
 6. sensors_event_t a, g, temp;
 7. mpu.getEvent(&a, &g, &temp);
 8.
 9. // 3. Rep detection logic
10. if (accelZ < LIFT_THRESHOLD && !lifting) { /* Start rep */ }
11.
12. // 4. Update display
13. display.writeDigitNum(0, (liveTUT / 10) % 10);
14. display.writeDisplay();
15. }
16.

3. Hardware timers and millis() provide non-blocking timing for:
• TUT duration tracking
• Motor PWM control
• Display refresh intervals

1. analogWrite(MOTOR_PIN, 150); // 59% duty cycle (490Hz default)
2. delay(500); // Fixed 500ms buzz duration
3. analogWrite(MOTOR_PIN, 0);
4.

Requirements and Verification

Native I2C ports must interface with

MPU6050

Oscilloscope checks SCL/SDA lines during data

transmission for stable clock and ACK signals.

The PWM pin must output proper

frequency and duty cycle to feel the

vibration motor.

Oscilloscope measures PWM frequency/duty

cycle during motor activation.

2.3 Final Product

Fig. Final Product

A picture of our final product is attached above. It features a handy USB-C charging port on the
side for quick charging. The silver dial at the bottom can be used the adjust the target TUT. The
RESET button can be used to recalibrate the device for a new exercise and reset current TUT and

rep count to zero. POWER button can be used to turn on/off the device. MODE button can be
used to switch between upward-downward and forward-backward exercises.

Design Nuances

Potentiometer. The potentiometer is used to set the target TUT. The potentiometer’s range of
motion has been mapped to 1–10s with 1 second intervals. As the user adjusts the TUT, the live
updated TUT value is shown on the display.

TUT Update Error. We wanted the TUT to be measured within 1s of actual value. However,
“delay” in Arduino code would stop execution and after all components were interfaced with our
microcontroller, the delays added up to increase error beyond 1 second. To fix the
Time‑Under‑Tension (TUT) inaccuracy caused by the delay() calls, we removed those delays
and now compute TUT using timestamps taken at the start and end of each interval.

Accelerometer + Gyroscope Calibration. We wanted to support several exercises. However,
the orientation of the device changes from exercise to exercise. To account for this, we added a
device re-calibration mechanism. The user brings their hands/device up to the start point of the
exercise and presses the “RESET” button. This resets the rep count, live rep timer, and
recalibrates the device. Recalibration is done by taking 200 accelerometer readings @ 200Hz (~1
second) when the device is stationary at the start point of exercise. The average of these readings
forms the gravity vector. All subsequent readings are projected on to this vector to figure out
which direction the watch/arm is moving in.

Vibration Motor. Our vibration motor features a rotating head, which vibrates the entire motor.
However, the head stops moving when planted against a surface. We also did not want the entire
unit on the wrist to vibrate very strongly, thereby endangering the user. We designed a special
oversized box for the motor at the bottom of the wrist box unit. This way the motor stays
propped up inside the box and vibrates freely. It makes a weak noise which only the user can
hear and vibrates just enough to let the user know they can complete the rep in case they cannot
view the “dOnE” prompt on the watch display. The vibration motor buzzes in the following
scenarios:

• Reached target TUT
• Calibration completed and “rEdY” appears on screen (on switching on device or after

pressing RESET)

Fig. Vibration Motor

3. Cost & Schedule

3.1 Cost Analysis
Cost 1: Labor Cost

𝐿𝑎𝑏𝑜𝑟	𝐶𝑜𝑠𝑡 = 𝐼𝑑𝑒𝑎𝑙	𝐻𝑜𝑢𝑟𝑙𝑦	𝑆𝑎𝑙𝑎𝑟𝑦		 ∗ 		𝐴𝑐𝑡𝑢𝑎𝑙	𝐻𝑜𝑢𝑟𝑠	𝑆𝑝𝑒𝑛𝑡	 ∗ 		2.5	

𝐴𝑣𝑒𝑟𝑎𝑔𝑒	𝐼𝑑𝑒𝑎𝑙	𝐻𝑜𝑢𝑟𝑙𝑦	𝑆𝑎𝑙𝑎𝑟𝑦	𝑓𝑜𝑟	3	𝑀𝑒𝑚𝑏𝑒𝑟𝑠 = 60
𝑈𝑆𝐷
ℎ 	

𝐴𝑐𝑡𝑢𝑎𝑙	𝐻𝑜𝑢𝑟𝑠	𝑆𝑝𝑒𝑛𝑡	𝑏𝑦	3	𝑀𝑒𝑚𝑏𝑒𝑟𝑠 = 500ℎ	

𝐿𝑎𝑏𝑜𝑟	𝐶𝑜𝑠𝑡 = 60
𝑈𝑆𝐷
ℎ 	∗ 	500ℎ	 = 𝟑𝟎, 𝟎𝟎𝟎	𝑼𝑺𝑫

	
Cost 2: Machine Shop Cost

𝑀𝑎𝑐ℎ𝑖𝑛𝑒	𝑆ℎ𝑜𝑝	𝐶𝑜𝑠𝑡

= 𝐻𝑜𝑢𝑟𝑙𝑦	𝑆𝑎𝑙𝑎𝑟𝑦	𝑓𝑜𝑟	𝐺𝑟𝑒𝑔 ∗ 𝐻𝑜𝑢𝑟𝑠	𝑆𝑝𝑒𝑛𝑡 + 𝐶𝑜𝑠𝑡	𝑜𝑓	𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙𝑠	𝑓𝑜𝑟	𝐵𝑜𝑥	

𝑀𝑎𝑐ℎ𝑖𝑛𝑒	𝑆ℎ𝑜𝑝	𝐶𝑜𝑠𝑡 = 	150
𝑈𝑆𝐷
ℎ 	∗ 3ℎ = 𝟒𝟓𝟎	𝑼𝑺𝑫

Cost 3: Cost of Parts

ATmega328P $1.71

Potentiometer $1.42

Push buttons x3 $3.75

Vibration motor $4.10

MPU6050 board $1.60

Adafruit display $3.95

Encloser $6.99

Total $23.52

Total Cost

$30473.52 to get the first product done.

3.2 Schedule

March 10th - March
17th

• Build and demo the breadboard prototype.
• Finish ordering all the parts that were not used for the breadboard demo.
• Make sure the breadboard prototype works with the buck converter and

linear regulator.

March 18th - March
24th

• Design the CAD model for the machine shop.
• Solder the PCB to check for working/not working components.
• Make edits to the PCB as needed for the order.

March 25th - March
31st

• Program ATTmega328 with the MPU attached to the PCB.
• Make the display work with a microcontroller.
• Work on condensing the PCB design so it could fit in a smaller case.

April 1st - April 7th • Install the product into the case.
• Test for the sensor requirements being fulfilled.
• Test for the power requirements being fulfilled.

April 8th - April
14th

• Work on the final demo presentation.

4. Conclusion

4.1 Accomplishments
There were plenty of accomplishments throughout this project. To start, each of our high level
requirements were met. We can adjust TUT duration between 1 to 10 seconds in 1-second
increments, when performing exercises, we have a 98% accuracy of repetition detection for
exercises with vertical movements, and the error margin of time under tension measurement is
les that 1 second per repetition. Furthermore, we added multiple other features to enhance our
product for the user. Our battery is a rechargeable battery with its charging port exposed which

allows the user to charge the battery rather than replace it. We added a mode button to toggle
interchange between vertical and horizontal movements, allowing us to track more exercises.
And finally, we enhanced the reset button to not only reset the rep counter but also recalibrate the
device so the user can perform a new exercise upon reset.

4.2 Uncertainties
The main uncertainty with our product is its ability to detect exercises that move in a forward
and backwards motion. We managed to detect vertical motion with a near 100% accuracy by
creating a reference point to the direction of gravity, which will always read a constant value.
Using this information we could create a stable reference point for tracking upward movement
and downward movement. Because gravity only acts vertically, we cant use the same trick to
detect horizontal movement. Instead we attempted to force read along the y-axis since the MPU
is in a set position within the device, by taking note the base_y_accel. We then calculate
curr_y_accel – base_y_accel in an attempt to detect forwards and backwards movement. This
method had 2 glaring issues. First, it is not nearly as dynamic since it forces you to always have
the device strapped in a way that the y-axis is horizontal, and second, it generally did not detect
our reps as we intended.

4.3 Future Work
There are a few things that need to be fine tuned in future work. First, we would like to use a
more robust accelerometer/gyroscope. The MPU6050 has already reached its end of life, and
newer, more accurate devices have replaced it such as the MPU6500. This change would help to
create more accurate readings and help finetune the detections of reps by being less prone to
noise. After finetuning our exercise logic with the new accelerometer, we would like to compress
the PCB design to make it more watch like. Finally, we would like to integrate it into a
compression sleeve which would keep it more stabilized and allow it to be work on both the leg
and arm.

4.4 Ethical Considerations
Our team adhered to the IEEE Code of Ethics and ACM Code of Ethics and Professional
Conduct throughout the project lifecycle to ensure an ethical and rigorous workflow. Central to
this commitment was implementing a structured revision process, where every component of the
project underwent thorough testing and peer review, with at least one team member
independently verifying all work. Weekly meetings with our TA provided additional oversight,
fostering accountability and aligning with ACM Code 2.1’s emphasis on high-quality processes
and outcomes. To further refine our product, we actively solicited and integrated feedback
addressing technical shortcomings and correcting errors. This approach directly honored IEEE
Code 1.5, which prioritizes honest criticism, error correction, and transparent attribution of
contributions.

Safety was paramount in both design and execution. We collaborated closely with the
Machine Shop to ensure the physical build met safety standards for user interaction. Electrically,
subsystems on the PCB were optimized to prevent overheating, and particular attention was
given to the safe integration of the lithium-polymer (Li-Po) battery. Recognizing risks such as

thermal runaway, swelling, and combustion, we enforced strict protocols: charging was
exclusively performed with certified Li-Po chargers to avoid voltage mismatches, and the
enclosure was designed to be impact-resistant, sweat-proof (achieving IPX4 compliance), and
adequately ventilated. Users were instructed to avoid puncturing, bending, or exposing the
battery to moisture, and disposal guidelines emphasized full discharge and recycling through
authorized facilities. These measures collectively minimized hazards while maintaining device
reliability, ensuring compliance with industry safety benchmarks for Li-Po applications.

5. References

All references for the project are as follows. We would also like to thank our TA Sanjana Pingali
for her constant support through the process.

1. MPM3550E. 36V, 5A, High-Efficiency, Fast Transient, Non-Isolated, DC/DC Power
Module with Integrated Inductor | MPS. (n.d.).
https://www.monolithicpower.com/en/mpm3550e.html

2. MPU6050 (gyroscope + accelerometer + temperature) interface with .. MPU6050
(Gyroscope + Accelerometer + Temperature) interface with .. (n.d.-a).
https://www.electronicwings.com/avr-atmega/mpu6050-gyroscope-accelerometer-
temperature-interface-with-atmega16

3. ATMEGA328P.(n.d.-a).https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-
7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf

4. hk_jh. (2023, July 9). Controlling mini vibration motors with MOSFET instead of
BJT.Arduino Forum.https://forum.arduino.cc/t/controling-mini-vibration-motors-with-
mosfet-instead-of-bjt/1146260

5. IEEE - IEEE Code of Ethics.(n.d.).https://www.ieee.org/about/corporate/governance/p7-
8.html

6. LM1117-5.0 Datasheet. Texas Instruments. (n.d.).
https://www.ti.com/lit/ds/symlink/lm1117.pdf

7. LM1117-3.3 Datasheet. Texas Instruments. (n.d.).
https://www.ti.com/lit/ds/symlink/lm1117.pdf

8. MPU6500 (6-Axis Gyroscope + Accelerometer) Datasheet. TDK InvenSense. (n.d.).
https://invensense.tdk.com/wp-content/uploads/2015/02/MPU-6500-Datasheet1.pdf

9. Arduino Uno Rev3 | Arduino Documentation. (n.d.).
https://docs.arduino.cc/hardware/uno-rev3

10. ESP32-WROOM-32 Datasheet. Espressif Systems. (n.d.).
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-
32_datasheet_en.pdf

11. Buck Converter Inductor Selection Guide. Coilcraft. (n.d.). https://www.coilcraft.com/en-
us/edu/inductor-selection-for-buck-converter/

12. General Inductor Finder & Selector Tool. Digi-Key Electronics. (n.d.).
https://www.digikey.com/en/resources/conversion-calculators/conversion-calculator-
inductor-finder

13. Adafruit 0.56" 4-Digit 7-Segment Display w/I2C Backpack. Adafruit. (n.d.).
https://www.adafruit.com/product/878

14. Small Vibration Motor - ROB-08449. SparkFun Electronics. (n.d.).
https://www.sparkfun.com/products/8449

15. Arduino Wire Library (I2C). Arduino Documentation. (n.d.).
https://www.arduino.cc/en/reference/wire

16. Adafruit MPU6050 Arduino Library. GitHub. (n.d.).
https://github.com/adafruit/Adafruit_MPU6050

