

Integrated Brushless Motor

Exploration Platform
By

Alex Roberts

Jason Vasko

Final Report for ECE 445, Senior Design, Spring 2025

TA: Michael Gamota

Professor: Yang Zhao

07 May 2025

Project No. 17

Abstract

This paper presents a single-board integrated brushless DC (BLDC) motor driver platform. This platform

enables the user to start and stop a motor, set the desired motor speed, and choose between

trapezoidal and sinusoidal control algorithms through an application running on a computer that is

connected to the board via USB. The platform also displays motor phase voltage and current and system

health information in real time. While the platform has significant limitations in its ability to control

speed in real time, it does successfully drive a motor and allow the user to control it from the application

with both trapezoidal and sinusoidal control algorithms.

ii

Contents

1. Introduction.. 1
1.1 Problem.. 1
1.2 Solution.. 1

2 Design.. 3
2.1 Introduction..3
2.2 Design Overview...3
2.3 Subsystem Designs... 4
2.4 Software Design..12

3. Verification..14
4. Costs..16

4.1 Parts..16
4.2 Labor...18

5. Conclusion...19
5.1 Accomplishments... 19
5.2 Uncertainties.. 19
5.3 Ethical Considerations.. 19
5.4 Future work.. 19

References.. 20
Appendix A Requirement and Verification Table.. 21

iii

1. Introduction
This paper explores the motivation, design, results, and issues related to an integrated brushless motor

exploration platform. The PCB developed serves to be an educational tool in the the field of brushless

direct-current motors by reducing the extreme technical knowledge requirements to meet the

foundational result of getting a motor to spin, while providing a launchpad for exploration into motor

control theory.

The majority of the paper will focus on the hardware and software design process, how circuits were

derived from system requirements, and how the system is controlled. Following design will be system

verification procedures, cost analysis, and finally the main conclusions through the design process. These

conclusions will include the results currently achieved by the project, the shortcomings of the project in

the form of challenges faced and uncertainties remaining in the design, ethical considerations, and

finally future work to be done on the project.

1.1 Problem
As technology continues to develop, the electrification of mechanical loads continues to increase, such

as the use of electric motors in robots and vehicles, where hydraulics and engines once were used. With

the increased prevalence of electric motors in the coming years, there will be a growing field of study in

motor controls. Currently, exploring topics in motor control requires at least a moderate knowledge of

electronic hardware systems on top of the control theory being tested. Even when using commercial

off-the-shelf motor drivers, system circuitry such as microcontrollers, power regulators, and power

supplies still need to be properly chosen and connected together, which can be daunting.

There are individuals in math and controls heavy backgrounds, such as aerospace engineers, who are

likely lacking much of the electrical engineering background needed to get a motor spinning, but they

have the advanced knowledge of control systems to implement and test different algorithms for efficient

motor control. There does not exist a simple solution for an all-in-one motor control platform designed

for an educational use, as almost all commercial subsystems are optimized for application in products.

This application focus removes all but the necessary circuitry for any subsystem to allow system

designers to fit these modules in a wider array of products. This versatility however, places a problematic

burden on a novice user to understand exactly how to connect every part of each subsystem, preventing

people from exploring motor controls until they understand much of the electrical background behind

them.

1.2 Solution
To address this problem, we created a single PCB which combines as much circuitry as possible for the

operation and advanced control of common electric motors. Specifically, we have focused on brushless

DC motors in our solution, as they are incredibly common and are a prime target for control theory

students with subjects such as field oriented control. The hardware platform specifically combines the

motor driver circuitry, microcontroller used for control, supplemental programming circuitry, and sensors

required for the operation of the motor. The board is designed to use any common benchtop power

1

supply with a wide input voltage range to optimize versatility. The choice of a benchtop power supply

was intended to limit the number of physical connections required by the user, with only a USB for

communication between the controller and a computer, a benchtop power supply to power the board,

and the motor phases themselves. As USBs are quite commonplace, ideally the user of our project will

only need to connect two unfamiliar components, being the benchtop power supply and motor phases.

The motor controller then communicates with an application on the computer, allowing users to modify

and switch between the control algorithms used to spin the motor, as well as monitor real-time motor

performance and PCB system health.

With a highly streamlined hardware platform, we aim to get more people interested in the field of

electronic motor control. The motor driver circuitry is also built out of discrete components where

possible to encourage the natural development of hardware knowledge as the user explores motors. By

breaking circuits out into individual components, we allow the user to see and understand each

hardware block in the system, and eventually potentially even experiment with changing hardware

components as they become more advanced, such as changing FET technology or gate driver

components. Ultimately, our hardware platform is meant to lower the barriers of entry to studying

brushless motors by allowing users to work backwards from a spinning motor and topics in motor control

to fundamentals of hardware to allow them to begin designing motor systems independently.

2

2 Design

2.1 Introduction
The design of this project is broken into four high-level blocks which we will refer to as “subsystems.” The

categorization of system elements into the smaller subsystems was driven by logical groupings of smaller

electrical components based on the purpose they fulfill in the system as a whole. This chapter will

explore the overall system design, first at a high level to capture the purpose of each subsystem and how

they connect to one another, then diving into each subsystem to explore how each subsystem specifically

fulfills its respective goal. Finally, this project contains a significant amount of software running on the

microcontroller to control the hardware correctly. The design of this software will be covered in the last

section of this chapter.

2.2 Design Overview

Figure 1: System Block Diagram

The high-level block diagram of the system is presented in Fig. 1. The design approach generally followed

throughout the project was to start with high-level requirements, then create lower-level and more

specific requirements, until a block was well defined enough to translate into a circuit and component

decisions. The top-level requirements for the project as a whole are as follows:

1.​ Motor operation and control - The user should be able to start, stop, and control the speed of a

brushless DC motor at any operating voltage between 12V and 24V using a GUI program, and

achieve at least 1000 rotations per minute at top speed.

3

2.​ Configurability - The user should be able to switch between at least two distinct motor control

algorithms (such as sinusoidal and trapezoidal control) and tweak algorithm parameters such as

PID coefficients, PWM frequency, control frequency, and more.

3.​ Motor performance and system health monitoring - The user should be able to view motor phase

voltages, phase currents, motor speed, shaft position, and voltage rail power consumption on

the PCB in real time (>1Hz rate, <500ms latency) with historical graphs.

As the primary purpose of the platform is educational, we aim to emulate many of the features of motor

drivers used in applications, but favor configurability and increasing the total number of possible

operating conditions over system performance. These foundational philosophies are present in each of

these requirements as we operate over a variable input voltage range and across multiple motor control

algorithms. Naturally, allowing more operating points and modes requires development time to be split

between each, and the maximum performance achieved by any individual operation profile will be

reduced as a result.

The system is divided into four subsystems, each of which is labelled in Fig. 1. The core of the design is

the motor drive subsystem, which contains the circuit directly responsible for connecting to the motor

electrically, and powering the motor. This subsystem requires specific voltages and synchronized control

signals which are provided by additional subsystems. The control subsystem is responsible for generating

the control signals and running the motor control algorithm on the microcontroller. Both the motor drive

and control subsystems are powered off specific voltages which are generated from the variable input

voltage within the power subsystem. Finally, the motor drive and power subsystems have critical

voltages and currents measured to report motor and system health statistics to the microcontroller,

giving critical information that can be used for safety measures or more advanced motor control

algorithms.

2.3 Subsystem Designs

2.3.1 Motor Drive Subsystem
The motor drive subsystem is the core of the hardware design and is the first step in the logical design

process, as it is directly responsible for driving the motors, and all other subsystems will be designed to

properly support the motor drive subsystem. Many of the design decisions for this subsystem are based

in brushless DC motor theory, as the requirements of this circuit are based in how a brushless DC motor

is actually driven. At motor theory is outside the scope of this design report, key takeaways will be

presented alongside sources for further reading if required. Our high-level requirements also inform

several subsystem requirements. The need to support the sinusoidal control algorithm enforces a 100kHz

switching requirement to generate the proper waveforms, and the 12-24V operation is inherited from

high-level requirements. The circuit topology chosen in early stages of design will also require

cross-conduction prevention and dead-time, as discussed later. As a whole, this subsystem has the

following requirements:

1.​ The PCB should function properly over an input voltage range of 12V to 24V.

4

2.​ The motor subsystem should be able to generate both trapezoidal and sinusoidal phase

waveforms.

3.​ The motor drive subsystem should have hardware restrictions on shoot through, and should

have at least 2ns of time between FET transitions.

4.​ Each half-bridge should be capable of 100kHz PWM frequency.

One element of BLDC motors which dictate the design of this circuit is the nature of these motors to

have three wires, referred to as the “phases” of the motor. Each phase operates identically, has the same

requirements, and has no individual differentiation, that is, the phases are interchangeable. Each phase

will need to be connected to a high voltage, to ground, and electrically disconnected from the circuit at

different points in operation. Ultimately phase independence and configuration requirements pushes the

circuit design towards a half-bridge configuration. The requirements of each phase can be determined

from many resources such as [1][2][3] and half-bridges appear as the most common topology in BLDC

motor drives.

In general a half-bridge consists of two MOSFETs connected in series where the drain of one is tied to the

source of the second, and this common connection is the output. The source of the second MOSFET is

tied to ground, and the drain of the first is tied to a high voltage. In this configuration, if both MOSFETs

are non-conducting, the output remains floating, while if either MOSFET is on at a given time, the output

can be pulled to the positive supply voltage or ground. This circuit is shown in Fig. 2 and represents the

main topology used in driving the motors in our application. Other methods of driving motors exist, such

as multi-level converters, but these are typically far more complicated and less ubiquitous than simple

3-phase inverters based on half-bridges. Due to the educational nature of our project, scope of this class,

and still impressive performance of this topology, the half-bridge base was chosen for this subsystem.

Figure 2: Simple Half-Bridge Circuit

All subsequent elements in the design as a whole serve to directly service these half-bridges, or support

other components which will directly interface with these half-bridges. Figure 3 shows the subsystem

schematic, with additional components, and the decisions behind each will be explored next.

5

Figure 3: Motor Drive Subsystem Schematic

As seen in the simple half-bridge circuit in Fig. 2, there are two series-connected MOSFETs in Q1 and Q2

in the final subsystem circuit, as shown in Fig. 3. If both MOSFETs were ever on at the same time, the

VBUS source would be shorted to ground and something in the circuit would break. To avoid this,

dead-time is implemented in this system. Software dead-time is used, but the PCB was designed to

include the option for hardware dead-time using D1, D2, R15-R18, C33, and C44. If implemented, the

functionality examined on the high-side MOSFET is as follows: when the gate is pulled high, D1 blocks

current flow through R15, so R16 and C33 form an RC network at the gate of Q1. When the gate is pulled

low, D1 can conduct, so if R15 is much lower in resistance than R16, or even 0 Ω, the time constant to

charge the gate is significantly lower than the constant to discharge the gate, causing a brief period of

time where both MOSFETs are off when switching between states where only one MOSFET is on.

Ultimately dead-time is implemented in software currently. U5 is the gate-driver IC which is required

since a high-side MOSFET is present in the design. If Q1 is meant to pull the output node to VBUS, then

the source voltage is VBUS, the highest voltage in our design. A high-side gate-driver uses a flying

capacitor which charges when the low-side MOSFET is conducting, then changes the reference to the

output node, allowing the gate of Q1 to be higher than the source (which is at VBUS) even though no

voltage source larger than VBUS exists in the design.

Specific components were selected to optimize several parameters. The most important is design

performance, as components must meet design requirements with margin. Following that in order is

design complexity, sourcing difficulty, and finally price. If components simplify the system design

significantly, or are easy for us to acquire quickly, we will choose that component even if it costs more

than another option. The major components in this subsystem are the MOSFETs and the gate driver. The

MOSFETs were chosen to be the Infineon IRF1310 since key requirements like maximum drain-to-source

voltage, drain current, threshold-voltage, rise-time, and fall-time all met specifications, and the MOSFET

was available in the Electronic Services Center, which is fast to supply and free for students. The gate

driver was chosen to be the Diodes Incorporated DGD05473. Despite having a hard-to-solder package,

being expensive, and in relatively low-supply, this gate-driver met all of the system requirements in a

6

single package, operates on a single voltage for logic and supply, and integrates cross-conduction

prevention with specific enable signals, which simplified design complexity substantially.

The circuit shown in Fig. 3 is the drive for a single phase, so the entire subsystem relies upon three

identical copies of this circuit. The circuit cannot drive the motor alone however, as the input signals

HI_PWM and LO_PWM require precise timing in each phase, as well as between the three phases.

Additionally, the gate-driver requires 10 V as an input, which we will need to derive from the input

voltage range of 12-24 V. This leads into the remaining subsystems, which require far less background in

explanation, as they are only supplemental to the motor drive subsystem.

2.3.2 Control Subsystem
The control subsystem aims to solve the control requirements of the motor drive subsystem. The control

requirements can be broken down into three sections, controlling the timing of and between the

high-side and low-side signals for each phase, controlling the timing between phase signals, and closing a

feedback loop on the state of each phase to implement advanced control algorithms. The first two

sections relate to advanced timing, while the third related to communication with current and voltage

sensors. Since the high-level requirements for motor control algorithms also imply some need for digital

logic or computation, a microcontroller was selected as the core of the control system, as advanced

timer peripherals in microcontrollers can easily meet the timing requirements, and communication

busses such as I2C with sensor ICs, or microcontroller ADCs can meet the sensing requirements.

The control subsystem fulfills the requirements previously listed, but also has requirements of its own to

ensure smooth system operation. These requirements were chosen with a focus on user experience.

Programming the microcontroller is important for changing control algorithms down the line, so multiple

programming interfaces in USB and SWD were desired. Additionally, as software was being written to

control the PCB with a laptop, constraints on the interface between the laptop and PCB were added. In

total, the requirements for this subsystem are as follows:

1.​ The microcontroller should be programmable and debuggable over serial wire debug (SWD).

2.​ The microcontroller should be programmable over USB C.

3.​ The microcontroller should report data in real time, at an update rate of greater than 1Hz and a

latency of 500ms to the GUI application on the computer.

4.​ Any failed connection between the computer and PCB should stop the motor from spinning

within 2 seconds.

Aside from the microcontroller, which is central to the control subsystem’s role as a whole, several other

components were derived from the requirements of this subsystem. A programming header was

required for SWD, and a USB C port was explicitly listed in requirement 2. An external oscillator is

ultimately required to meet clocking standards for USB given our microcontroller choice and is added.

Finally, several debug pin headers were included to allow for the reconfiguration of several

microcontroller signals at a later date to ease software integration, such as boot modes and additional

microcontroller pin outputs for debugging purposes. All of these additional components and the final

schematic is presented in Figure 4.

7

Figure 4: Control Subsystem Schematic

For specific component selections, the STM32F401RBT6 microcontroller was chosen first due to its

availability in the Electronic Services Center. This microcontroller has an advanced timer peripheral,

which allows for the generation of 6 PWM signals via complementary outputs on 3 channels. This lends

itself extremely well to 3-phase inverters and is sufficient for our system. The USB C port was chosen for

ease of soldering, as most USB C ports are rather similar in construction. The programming and GPIO

headers were chosen to be 100 mil pin headers due to their ubiquitous nature and extreme ease in

sourcing and compatibility with commercially available programmers and development tools. Finally, the

oscillator chosen was 16 MHz in a standard package, there were many available options here, but none

had a major impact on design whatsoever, there are likely hundreds of options that would have been

acceptable. The microcontroller has two I2C busses which connect to sensor ICs in the sensor subsystem

for phase and regulator measurements of voltage and current. The other connections to other systems

are high-side MOSFET gate, low-side MOSFET gate, and gate-driver enable signals for each of the three

phases.

This subsystem doesn’t have many alternate design possibilities, as it’s effectively required to include a

microcontroller in a system of this nature. Interfacing with a computer and modifying control algorithms

dynamically simply requires some form of digital computation. More advanced systems such as multiple

microcontrollers with a division of responsibilities, a more powerful processor such as a CPU, or an FPGA

8

would have all been sufficient options as well, but all of these drastically increase system complexity in

exchange for an improvement in computation power that is simply not required for this application. The

sensor subsystem could have been incorporated using microcontroller ADCs, but several concerns led to

separating the systems which will be explored in section 2.3.4.

2.3.3 Power Subsystem
The motor drive subsystem and control subsystem have covered most high-level and derived

requirements so far, but each requires additional fixed voltages within the system. The microcontroller in

the control subsystem needs 3.3 V for proper operation, and the motor drive subsystem requires 10 V for

the logic and supply voltage of the gate drivers. As the overall system is designed to integrate as much

functionality as possible, only one power connection to the PCB is desired, and this power connection

has already been determined as a 12-24 V variable input, which allows the user to vary the motor bus

voltage. Subsequently, the power subsystem was conceived to supply these necessary fixed voltages on

the PCB from the wide input range, allowing the user to only connect one power supply and led the PCB

handle the rest. As already discussed, the role of this system is to generate voltages, and only two are

required. The requirements of this subsystem are then as follows:

1.​ All voltages required on the PCB except the motor bus voltage shall be generated on the PCB.

2.​ All voltages generated on the PCB should have an accuracy of +/-5% around their set-point.

3.​ The PCB should function properly over an input voltage range of 12V to 24V.

From these requirements, a power converter topology can be chosen. Since both voltages the subsystem

must generate (3.3 V and 10 V) are below the minimum input voltage of 12 V, no upwards voltage

conversion is necessary. The simple and extremely common buck regulator serves as an excellent power

conversion topology, as it’s highly efficient, only down conversion is required, and it’s an extremely

common circuit, allowing for online tools to be used in aiding the design process. Alternative topologies

could have been used, such as a buck-boost converter, but these are typically less efficient since they

also support upward voltage conversion, and are entirely indirect power converters, relying on the

inductance in the circuit more heavily. Many other converter topologies exist, such as switched capacitor

converters too, but ultimately they all sacrificed complexity, efficiency, or cost, and the simple buck

regulator was a sweet spot for all of these variables, which is why it was chosen.

Figure 5: 3.3 V Output Buck Regulator Schematic

9

Figure 5 shows the schematic for the VBUS to 3.3 V buck regulator in the power subsystem. A nearly

identical power converter is used for the 10 V conversion process, only several passive component values

are different. U1 is the heart of the buck regulator, and contains the controller and integrated switches,

only requiring filter elements and feedback resistors to be added outside the integrated circuit. This buck

regulator was chosen as it had a very wide input range voltage, allowing for 12 to 24 V input, has a

relatively high current capacity of 4 A continuous draw, and could be configured to complete the 3.3 V

and 10 V conversions, reducing BoM complexity and price when buying in bulk. Additionally, the part

was chosen since it is a Texas Instrument component, which allows the WEBENCH Power Designer online

tool to be used [5]. The tool provides passive component values based on operating conditions and was

used to choose component values for the 3.3 V and 10 V regulators in this design. Simulations provided

by the WEBENCH tool were used to verify the component value choices manually.

The power subsystem as a whole consists of the two buck regulators and input connectors to allow VBUS

to be supplied from a benchtop power supply. Additional bulk capacitance of 200 μF is included next to

the connectors to smooth any fluctuations after the long power cables running between the power

supply and PCB. Between the motor drive, control, and power subsystems, almost all design

requirements are fulfilled, only leaving the sensing requirement to allow for closed-loop control of the

phase voltages and currents, and system health monitoring of the power subsystem.

2.3.4 Sensor Subsystem
The sensor subsystem is the last subsystem and meets the remaining requirements on sensing the

voltage, current, and power of each phase and voltage regulator on the PCB. Requirements on accuracy

were created to bound the acceptable operation of the system, but more accurate sensors are always

better. The subsystem requirements are:

1.​ All three phases should have voltage and current measured within 150mV and 100mA.

2.​ Any voltage rail generated on the PCB should have the voltage, current, and power reported.

Measurements are for system health so an accuracy of 5% is acceptable.

3.​ Motor speed should be collected either by an encoder or through measurement of back EMF

with +/-10% accuracy.

This subsystem has many different options in implementation, and selecting the components was one of

the more uncertain aspects of the design process. The voltage and current sensing are chosen to be

implemented using discrete sensor ICs rather than using ADC channels on the microcontroller.

Additionally, the motor speed was chosen to be collected through back-EMF instead of an encoder. Both

of these are major design decisions and took much consideration to make.

The choice to use sensor ICs ultimately came down to two things: complexity and reliability. Each current

measurement taken on the PCB is truly a voltage measurement across a very low resistance inline

resistor. To keep power losses due to this measurement small, the shunt resistance needs to be

incredibly small, causing the voltage generated across the resistor to be small as well. If the

microcontroller ADC has low bit resolution, the precision of the current sensing is likely poor unless an

amplifier is used to amplify the measurement. Additionally, if the microcontroller is not physically very

10

close to the current sensing resistor, then the ADC channel traces must run across the PCB instead. These

long parallel traces carrying a very small voltage are extremely susceptible to coupling interference from

other switching signals in the PCB, including the 24 V phases switching on and off very quickly. This

causes sensor readings to be less reliable. To solve these issues while using ADC measurements, passive

filters before the ADC should be added on each channel, and voltage amplifiers should likely be added

after each current measurement. Across 5 measurement locations, this amounts to 10 passive filters and

5 amplifiers, and 10 ADC channels being used on the microcontroller. The system complexity and

reliability is massively increased if separate sensor ICs are used, which take sensitive analog

measurements on-location to increase accuracy, then transmit the data digitally over I2C to the

microcontroller to increase reliability, as I2C uses 3.3 V signaling, and digital protocols are very

noise-resistant. As discrete sensors improved complexity, accuracy, and reliability, they were chosen over

using the microcontroller ADCs.

The choice to use back-EMF speed sensing over a rotary encoder also came down to complexity at a

system level. To use a rotary encoder, the system would need to mechanically link the rotary encoder

and the motor somehow, as well as feed encoder signals to the PCB, or have the encoder mounted on

the PCB, which would further increase the difficulty in designing the mechanical linkage. While a rotary

encoder would provide more accurate speed measurements than back-EMF sensing, the increased

accuracy of using sensor ICs was thought to make up for this loss somewhat, and the educational nature

of the system deemed the performance of sensorless speed measurements acceptable. Complexity was

truly the biggest factor however, as requiring the user to connect the motor at multiple more points

drastically increased the burden on them to configure the platform properly, and this was a compromise

we chose not to make.

Figure 6: Single Current and Voltage Sensor Schematic

Figure 6 shows the implementation of one of the five sensor ICs that comprise the sensor subsystem as a

whole. This particular instance is on a phase output. The output of the motor drive subsystem connects

11

to the left side of R19, and the phase of the motor connects on the right side of R19. This small inline

resistor is only 5mR, so it acts almost like a wire, but produces a very small voltage across it as current

flows, which is measured across the Vin+ and Vin- pins on the integrated circuit. This allows for current

measurement to take place, while pin 8 measures the VBUS voltage at the phase. Similar

implementations are on the 3.3 V and 10 V regulator outputs, allowing the current and voltage of each

to be reported to the system. Each sensor IC is connected to one of two I2C busses, one dedicated to the

motor phase sensors, and the other to the two regulator sensors. Each sensor also has different A1 and

A0 connections to differentiate the I2C addresses of each sensor, so there are no conflicts. The

microcontroller then reads sensor samples off of each of these ICs, completing the final system

requirement and finishing the design of the PCB.

2.4 Software Design

2.4.1 Communications
We employed a basic keepalive messaging scheme to facilitate communication between the PCB and the

GUI application, where one special message type, the status update request message, is used to

maintain the connection between the PCB and the app. Note that the PCB’s communication interface is

essentially a server and will only send messages of its own in response to a message received from the

GUI app. The keepalive messaging scheme functions as follows: once per configurable interval, the GUI

will send a status update request to the PCB. Upon receiving this message, the PCB responds with

updated values of power consumption for the board and voltage or current data for the motor phases.

Thus, this message response functions as a keepalive message as well as a GUI status update request. All

other message types are only sent from the GUI in response to some user interaction; these include a

special message type to start and stop the motor and a message type to send parameters to the PCB.

2.4.2 Safety
To ensure safe operation, we used debounced system health flags to introduce hysteresis and ensure

that one bad sensor reading will not unnecessarily stop the motor. We chose thresholds for several

different flags; for example, if the 3.3V current surpassed a configurable threshold, this would be

considered a fault and the 3.3V overcurrent flag would be raised. However, in order to protect our

system from bad sensor readings, rather than simply setting the flag we use a counter for each flag. Each

main loop iteration in which a flag is active causes its associated counter to increment, while each

iteration in which it is inactive causes its associated counter to decrement. This allows us to set different

thresholds for raising a flag and lowering it and makes the system more robust to noisy sensors than it

would have been with normal flags.

2.4.3 Sensing
Due to the speed at which the PWM waveforms switch between high and low voltage, a high temporal

resolution is necessary to view these waveforms with any accuracy. Thus, data must be collected quickly

and sent to the GUI. The fastest rate at which data can be collected from the sensors on the PCB is once

per main loop iteration. These data are then packaged along with the times between readings and sent

to the GUI in a single dump each time the PCB receives a status update request. In contrast, only one set

of system health update values are sent per status update, as the temporal resolution of these values

12

does not need to be as high to get useful information from them. Note that there is a tradeoff between

message rate and message size; the lower the message rate, the more data there is to send since the last

message, and the larger the message must be. We chose a 4Hz message rate, as this enabled the entire

message to be sent in one USB buffer without incurring too much overhead by messaging too fast.

2.4.4 PWM Overview
PWM signals are generated on the PCB from the MCU using hardware timers. These timers can be

configured in PWM mode to generate a PWM mode with a configurable duty cycle and period. Hardware

timers can also be used to generate interrupts at consistent intervals, which proves useful when

generating motor control signals.

2.4.5 Trapezoidal Control
One limitation of the hardware timers is that the channels of a single timer cannot be phase shifted

relative to one another. Thus, to generate trapezoidal PWM, we used our primary timer in output

compare forced output mode. In this mode, the timer’s output level can be set from a bit in a register.

We then use a secondary timer running at six times the desired frequency of the PWM waveform which

generates an interrupt, and in this interrupt handler we change the output levels of the PWM waveforms

in the other timer. Thus, we are commuting through six different stages to generate our waveforms. The

only real alternative to this method is master-slave timer chaining with three advanced timers, but this

would have required an updated hardware platform as our MCU only has two advanced timers. The

advanced timers are important due to their ability to generate complementary outputs and software

dead time between these complementary outputs.

2.4.6 Sinusoidal Control
Sinusoidal control functions by modulating the duty cycle of the PWM signal from 0 to 100 and back to 0

along a sinusoid from a precomputed lookup table, so upon applying a low-pass filter such as the

inductance of the motor’s coils, a sinusoidal signal is generated. This means that these PWM signals can

be generated using a timer in PWM mode because the timer channels can be phase shifted through their

position in the duty cycle lookup table. Similarly to trapezoidal control, a secondary timer is used to

commute through the lookup table of duty cycle values and update the duty cycles of the primary

timer’s channels.

13

3. Verification
Verification was completed in a multi-phase process to avoid breaking downstream components if the

entire system was tested all at once. The stages of verification are described in table 1.

Table 1 System Verification Stages
Stage Description
1 Regulator

Shorts
Before supplying any input power, after construction, verify that critical pins on
the voltage regulators in the power subsystem are not shorted. Most
importantly, 3.3 V, 10 V, and VBUS should all not be shorted to ground. Ensures
construction is correct for regulator operation.

2 Isolated
Regulator
Voltages

Remove the shunt resistors between the regulator outputs and downstream
components. Supply input power to the PCB and verify the regulators are
operating correctly, the output voltages are correct, and hold steady under
applied loads. Ensures regulators are ready to support the rest of the system.

3 System Shorts Verify no other critical shorts occur on any ICs on the PCB. Namely, the
microcontroller, gate-drivers, MOSFETs, and sensors should not have any pins
shorted to 3.3 V, 10 V, or VBUS, as these could break the components. Pins
should not be shorted to ground either for proper functionality. Ensures
construction is correct for system operation.

4 System Idle &
Programming

Re-solder the regulator shunts and supply power to the overall system. Check
voltages again, then attempt to program the microcontroller. If problems occur,
more careful analysis of construction or design is required, but if programming
is successful, idle system operation and microcontroller programming is
verified.

5 Theoretical
Drive

Without a motor connected, run motor drive algorithms and confirm that
waveforms are as expected on an oscilloscope. This ensures that the system is
functioning correctly under no-load conditions, and the control algorithm is
working properly.

6 Actual Drive The full system integration. Connect a motor and try to drive the system again.
If the motor spins, almost all lower-level requirements are verified implicitly.

These stages were all completed successfully as described in the table. During the assembly process, the

regulators were first checked for shorts, and later verified in operation with all downstream components

disconnected via removal of the shunt resistors used in the current sense circuits. The voltage rails

consistently read within defined tolerances across load ranges, idling at 10.173 V and 3.319 V for the 10

V and 3.3 V regulators respectively, at 12 V input voltage.

After regulator output was confirmed, the system was checked for shorts, which required resoldering of

the microcontroller. After no more shorts were detected, the shunts were added to the PCB and the

entire system was powered for the first time. Verifying no components failed the “smoke test” of smoke

coming from the PCB or extremely hot regions, the PCB was then programmed. At first the programming

failed due to an assembly issue with the microcontroller being misoriented, but once that rework was

completed, the microcontroller was programmed over SWD properly, and the system was idling as

designed.

14

The next stage was to run trapezoidal and sinusoidal control algorithms and verify the phase output

waveforms on an oscilloscope, which passed easily. The phase waveforms were exactly as expected, and

the motor would theoretically spin when connected. The final test was to connect a motor, and it initially

failed because the commutation was too fast, so the mismatch between the rotor speed and

commutation speed caused the motor to oscillate instead of spinning. When driven at a slower speed

however, the motor began to spin under either control algorithm, and high-level system functionality

was completely verified.

A complete list of low-level requirements and their verifications is included in Appendix A. Several of

these low-level requirements were not met. In total, the motor drive speed goal of 1000 rpm, the goal to

program the microcontroller over USB, and the sensor speed measurement goal were the only

requirements not met. The programming over USB was just more complex than initially anticipated, and

there are software issues in configuring the USB driver running on the microcontroller. With time, we

could meet this requirement without hardware changes. The other two failed requirements are directly

related to one another. Motor speed sensing was not achieved at all in this implementation of the

project, as the sensors were severely limited in communication speed with the microcontroller by the

bandwidth of the I2C bus. The sensors were required to read and report far faster than anticipated

previously, as the electrical frequency of commutation needs to be 7 times faster than the mechanical

speed of the motor due to rotor magnet pole pairs. This prevented speed measurements from being

feasible, and it’s likely that ADC measurements should be used in a future version of the project for

faster reading. Finally, as the speed measurement could not be recorded, motor speed control was

open-loop, which is an unreliable, unstable, and poor method of high-level control. As a result, the

commutation frequency could not be accurately controlled at high motor speeds above 700 rpm without

causing a desync between the rotor and commutation frequencies, causing the motor to cog and begin

oscillating. If motor speed was properly recorded and reported, the rest of the PCB would have no issues

spinning a motor at 1000 rpm and meeting this requirement. The 1000 rpm requirement only failed as a

result of a lower-level requirement also failing, which the 1000 rpm requirement relied upon. As outlined

in this paragraph, these system failures are well understood, and possible solutions are already

proposed.

15

4. Costs
The total cost of materials is $70.10 per device. We estimate the total cost of labor, including

development time and assuming two prototype devices will be constructed, to be $25300. Thus, adding

the cost of materials for two devices, we estimate a total cost of $25440.20 for this project.

4.1 Parts
Below is table 2, which is a bill of materials for the PCB and system. All components have their part

number, item name, specifications, vendor (with link), price, quantity, and total cost listed. In total the

entire cost of the bill of materials table is $65.80. Note that normally the INA230AIDGSR would be used

for the power monitor IC, but due to stocking issues the more accurate INA226AIDGSR was used as a

replacement, though the original component is sufficient to meet all design requirements normally.

Table 2 Bill of Materials

Item Part Number Specifications Vendor $ Per QTY Total $

10uF Cap GRM21BC8YA106ME11L

CAP 0805 10uF 35V

Ceramic Digikey $0.28 6 $1.68

1uF Cap CL21B105KBFNNNE

CAP 0805 1uF 50V

Ceramic Digikey $0.08 4 $0.32

100nF Cap CC0805KRX7R9BB104

CAP 0805 100nF 50V

Ceramic Digikey $0.08 19 $1.52

2.2uF Cap C2012X7R1C225K125AB

CAP 0805 2.2uF 16V

Ceramic Digikey $0.18 3 $0.54

4.7 uF Cap GRM21BR61H475KE51L

CAP 0805 4.7uF 50V

Ceramic Digikey $0.19 5 $0.95

220nF Cap C0805C224K5RACTU

CAP 0805 220nF 50V

Ceramic Digikey $0.10 2 $0.20

100uF Cap GRM32ER61A107ME20L

CAP 1210 100uF 10V

Ceramic Digikey $0.84 6 $5.04

56pF Cap C0603C560J5GACTU

CAP 0603 56pF 50V

Ceramic Digikey $0.10 1 $0.10

22pF Cap C0603C220J5GACTU

CAP 0603 22pF 50V

Ceramic Digikey $0.12 3 $0.36

100uF Cap EEH-AZA1V101B

CAP TH 100uF 35V

Alum Hybrid Digikey $1.42 2 $2.84

5.1k Res RC0805FR-075K1L

RES 5.1K OHM 1%

1/8W 0805 Digikey $0.10 6 $0.60

10k Res RMCF0805FT10K0

RES 10K OHM 1%

1/8W 0805 Digikey $0.10 7 $0.70

5m Res CRF2512-FZ-R005ELF RES 0.005 OHM 1% 2W Digikey $0.49 5 $2.45

16

https://www.digikey.com/en/products/detail/murata-electronics/GRM21BC8YA106ME11L/5027590
https://www.digikey.com/en/products/detail/samsung-electro-mechanics/CL21B105KBFNNNE/3886687
https://www.digikey.com/en/products/detail/yageo/CC0805KRX7R9BB104/302874
https://www.digikey.com/en/products/detail/tdk-corporation/C2012X7R1C225K125AB/569046
https://www.digikey.com/en/products/detail/murata-electronics/GRM21BR61H475KE51L/4905540
https://www.digikey.com/en/products/detail/kemet/C0805C224K5RACTU/754753
https://www.digikey.com/en/products/detail/murata-electronics/GRM32ER61A107ME20L/4905633
https://www.digikey.com/en/products/detail/kemet/C0603C560J5GACTU/411059
https://www.digikey.com/en/products/detail/kemet/C0603C220J5GACTU/411055
https://www.digikey.com/en/products/detail/panasonic-electronic-components/EEH-AZA1V101B/13574573
https://www.digikey.com/en/products/detail/yageo/RC0805FR-075K1L/727988
https://www.digikey.com/en/products/detail/stackpole-electronics-inc/RMCF0805FT10K0/1760676
https://www.digikey.com/en/products/detail/bourns-inc/CRF2512-FZ-R005ELF/6210986

2512

100k Res RC0805FR-07100KL

RES 100K OHM 1%

1/8W 0805 Digikey $0.10 4 $0.40

11k Res CRG0805F11K

RES 11K OHM 1%

1/8W 0805 Digikey $0.10 1 $0.10

43.2k Res ERA-6AEB4322V

RES 43.2K OHM 0.1%

1/8W 0805 Digikey $0.10 1 $0.10

0 Res ERJ-6GEY0R00V RES 0 OHM 1/8W 0805 Digikey $0.10 13 $1.30

22uH Ind SRR1260-220M

IND 22UH 4A

43mOHM SMD Digikey $0.96 2 $1.92

Banana Jack

Plug CT2220

CONN BANANA JACK

THRD Digikey $0.95 5 $4.75

100mil Header 61300811121

PIN HEADER VERT

8POS 2.54MM Digikey $0.36 3 $1.08

Screw

Terminals 1715721

TERM BLK 2P SIDE ENT

5.08MM Digikey $0.97 1 $0.97

USB C USB4085-GF-A

CONN RCPT USB2.0

TYPE C 16+8POS Digikey $0.88 1 $0.88

MOSFETs IRFI1310NPBF

MOSFET N-CH 100V

24A TO220AB FP Digikey $2.12 6 $12.72

16MHz Crystal ECS-2333-160-BN-TR

XTAL OSC XO 16MHZ

HCMOS SMD Digikey $0.84 1 $0.84

4A Adj Buck IC LMR33640ADDAR

IC REG BUCK ADJ 4A

8SOPWR Digikey $1.92 2 $3.84

Half Bridge

Gate Driver DGD05473FN-7

IC GATE DRV

HALF-BRDG

DFN3030-10 Digikey $1.31 3 $3.93

MCU STM32F401RBT6

IC MCU 32BIT 128KB

FLASH 64LQFP Digikey $3.97 1 $3.97

Current and

Voltage Sensor INA226AIDGSR

IC CURRENT MONITOR

0.02% 10VSSOP Digikey $2.34 5 $11.70

In addition to the cost of materials on the PCB, there is also the cost for the PCB itself, though this is

quite cheap. Our PCB gerber files for the first revision were uploaded into the JLCPCB quote tool to

estimate the pricing of our PCB. This quote is shown below in figure 7. Ignoring the promotional deal, it

would cost $4 for QTY 5 of our PCB, with $17.50 in shipping costs. Factoring in shipping, it costs $21.50

for 5 PCBs, or $4.30 per PCB, which can be added to the previous materials cost estimate.

17

https://www.digikey.com/en/products/detail/yageo/RC0805FR-07100KL/727544
https://www.digikey.com/en/products/detail/te-connectivity-passive-product/CRG0805F11K/2380835
https://www.digikey.com/en/products/detail/panasonic-electronic-components/ERA-6AEB4322V/2025810
https://www.digikey.com/en/products/detail/panasonic-electronic-components/ERJ-6GEY0R00V/78163
https://www.digikey.com/en/products/detail/bourns-inc/SRR1260-220M/1969958
https://www.digikey.com/en/products/detail/cal-test-electronics/CT2220/5765404
https://www.digikey.com/en/products/detail/w%C3%BCrth-elektronik/61300811121/4846839
https://www.digikey.com/en/products/detail/phoenix-contact/1715721/260631
https://www.digikey.com/en/products/detail/gct/USB4085-GF-A/9859662
https://www.digikey.com/en/products/detail/infineon-technologies/IRFI1310NPBF/812258
https://www.digikey.com/en/products/detail/ecs-inc/ECS-2333-160-BN-TR/3927320
https://www.digikey.com/en/products/detail/texas-instruments/LMR33640ADDAR/11308782
https://www.digikey.com/en/products/detail/diodes-incorporated/DGD05473FN-7/8126115
https://www.digikey.com/en/products/detail/stmicroelectronics/STM32F401RBT6/4755972
https://www.digikey.com/en/products/detail/texas-instruments/ina226aidgsr/2687236

Figure 7 - JLCPCB Quote

In total then, with $65.80 in component costs and $4.30 in the PCB cost, the total cost for our hardware

platform is $70.10 in materials.

4.2 Labor
First, we will assume a reasonable salary of $40/hr. The labor cost can be divided into development time

and device construction time. For device construction, we conservatively estimate 4 hours of labor for

device soldering, programming, and validation per device. For development, we can further divide the

labor duration into hardware and software development. For hardware development, we estimate 35

hours of work on the initial design and PCB, 50 hours for evaluation and verification of the first

prototype, and 70 hours for support and fixing bugs during integration. This yields a total hardware

development time of 135 hours. For software development, we estimate 20 hours of planning and

research and 70 hours of development time and fixing bugs. Therefore, we estimate a total development

time of 245 hours. Adding a total device construction time of 8 hours for two device prototypes, we

estimate the total labor time of this project to be approximately 253 hours, and a total cost of:

 253[ℎ𝑟] × 40[$/ℎ𝑟] × 2. 5 = 25300[$]

18

5. Conclusion

5.1 Accomplishments
Overall, our platform successfully enables the user to drive a BLDC motor from an application running on

a computer connected to the board via USB. This functionality includes the ability to change the desired

speed of the motor by entering a target frequency that the motor will attempt to spin up to, and to

select between trapezoidal and sinusoidal control algorithms. The application also successfully displays

system health information in real time, including any detected abnormal voltage or current values and

the power consumption of each rail generated on the board, and the phase voltage and current of the

motor phases.

5.2 Uncertainties and Challenges
At present, the design faces several major uncertainties posed by challenges faced in the final weeks of

the course. In the development and evaluation of our most advanced feature, being speed control of a

sinusoidal driven motor, we had several gate-driver failures in which the high-side driver output did not

respond to a change in the input. Several pieces of debugging evidence point towards a failure inside the

gate-driver occurring only after long periods of operation. The design of the gate-drive schematic is at

least mostly correct, as the device functions properly for long periods of time, but not as long as it

should, suggesting that some lifecycle affecting parameter, perhaps maximum allowed voltages, is being

exceeded. More debugging and replication of this failure is needed to determine the root-cause, and is

currently the largest uncertainty in the design. Not much else in the system is uncertain currently, as

other shortcoming have been well defined, and have clear solutions. Fixing these problems should either

present new problems that were not apparent before, continuing the engineering design process of

iteration, or would result in a working PCB.

The primary challenge faced is the sensor reading speed for phase voltages and currents. The slow

reading speed caused motor speed to be unacquirable, which severely limits the complexity of any

control algorithm we implement, prevents the motor from surpassing 1000 rpm, and limits the

information presented to the user, or even a metric from which to compare control algorithms, which is

vitally important in allowing someone to explore differences between algorithms. Solutions for this

problem will be presented in future work, section 5.4.

5.3 Ethical Considerations
In considering the ethics surrounding the development and existence of this project, two main points in

the IEEE code of ethics stand out in their relation to this project. The central focus of the project is to be

an educational platform for the driving and control of brushless DC motors, an already highly utilized and

increasingly important technology. The IEEE code of ethics mentions in point 2 the ethical need to

improve the understanding of people in the capabilities of conventional and emerging technologies [4].

It also highlights the necessity of treating all persons equally and with respect, regardless of background

in point 7 [4]. We believe the existence of our project is closely linked with these two points, as it will

provide a way for a wider array of people to understand brushless DC motors. Additionally, in aiming to

make the platform as accessible as possible, we help to lower the barrier of education which can be

19

frequently apparent in hardware systems, where price of equipment can make learning less accessible.

By making an open learning platform using common and cheap components, students from less wealthy

backgrounds may be able to study a subject they were previously unable to gain hands-on experience

with.

We also followed all aspects of the IEEE code of ethics during the development process of the project,

including supporting one another as teammates as outlined in point 10 [4].

5.4 Future work
The most important future work is to solve the issues faced by the system currently. The most important

of which is investigating the cause of the gate-driver failure seen twice in the system, and implementing

any changes needed to solve this and make the phase outputs reliable.

Secondarily, fixing the sensor reading speed will allow our system to achieve all of its initial

requirements, and reach the complexity of operation we were aiming for. To characterize what needs to

be done, samples need to be taken on the tens or hundreds of kilohertz timescale, to allow for many

samples and the discernment of important waveform features in the commutation waveforms, which are

the kilohertz timescale. In order to achieve this speed, and the synchronization with commutation that is

required for more advanced control algorithms, the system should switch to collecting phase voltage and

current measurements with the microcontroller ADCs. This will increase system complexity, but it is

necessary for more advanced operation.

Beyond these improvements, on the software side, implementing things such as field-oriented-control

would be very interesting. This algorithm optimizes for maximal torque output, and is used in many

applications, and is likely the next logical step for algorithms to implement. On the hardware side,

integrating an AC to DC power supply in the PCB would greatly simplify the ease of use and performance

for the user. While far too complex of a system to integrate in the scope of this class, adding this power

supply would allow the user to plug the PCB directly into the wall, rather than a benchtop power supply.

This would further reduce equipment needs, the complexity of the setup, and provide better results.

Since our motor bus voltage does not need the configurability or precision of a benchtop power supply,

the power output can be majorly increased, likely for less cost than a commercial benchtop power

supply. This would allow motors to be driven at full power, as there were some issues with current limits

being exceeded in benchtop power supplies during our bringup process, which would cause the motor

bus voltage to drop as low as 6 V because the power draw of the motor while spinning exceeded the

power output limit on the power supply.

20

References

[1]​ “Six step commutation,” MATLAB Help Center,

https://www.mathworks.com/help/mcb/ref/sixstepcommutation.html.

[2]​ A. Solovev and A. Petrova, “BLDC Motor Controller: Design Principles & Circuit examples,” Integra

Sources, https://www.integrasources.com/blog/bldc-motor-controller-design-principles/.

[3]​ M. Harris, “How to make advanced BLDC Motor Controllers,” Altium,

https://resources.altium.com/p/build-advanced-brushless-motor-controller.

[4]​ IEEE, “IEEE Policies - Section 7-8 - IEEE Code of Ethics,” [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html.

[5]​ WEBENCH Power Designer. Texas Instruments. Available at:

https://webench.ti.com/power-designer/.

21

https://www.mathworks.com/help/mcb/ref/sixstepcommutation.html
https://www.integrasources.com/blog/bldc-motor-controller-design-principles/
https://resources.altium.com/p/build-advanced-brushless-motor-controller
https://www.ieee.org/about/corporate/governance/p7-8.html
https://webench.ti.com/power-designer/

Appendix A​ Requirement and Verification Table
Table X System Requirements and Verifications

Requirement Verification Verification status
(Y or N)

All voltages required on the
PCB except the motor bus
voltage shall be generated on
the PCB

This is verified through design, as if the architecture
is correct, the only external power connection will
be the motor bus voltage.

Y: Designed as
such

All voltages generated on the
PCB should have an accuracy
of +/-5% around their
set-point.

Usage of an oscilloscope to measure switching
regulator voltage ripple under light and heavy loads
for both the 3.3V and 10V rail at the extremes of
the input voltage range will allow us to verify this
requirement.

Y: Confirmed on
multimeter at 12V
and 24V

The PCB should function
properly over an input
voltage range of 12V to 24V.

As the input voltage only directly interfaces with
the motor drive subsystem and power subsystem, if
a motor can be spun at a speed of at least 1000
rpm and stopped, at both 12V and 24V input
voltage, this requirement will be satisfied as the
extremes of operation were validated.

N: Operates
between 12-24V
but fails to reach
1000rpm

The motor subsystem should
be able to generate both
trapezoidal and sinusoidal
phase waveforms.

An oscilloscope can be used to view the waveform
output on any individual phase, which should show
a roughly rectangular pulse in trapezoidal mode,
and many small PWM pulses of varying duty cycle
in sinusoidal mode, or a reasonably sinusoidal
waveshape when an inductive motor load is
connected.

Y: Both
waveforms
confirmed on
oscilloscope

The motor drive subsystem
should have hardware
restrictions on shoot
through, and should have at
least 2ns of time between
FET transitions.

Use an oscilloscope to verify at least 2ns between
one FET turning off and the other FET turning on for
both possible half-bridge transitions.

Y: Shoot-through
prevented by
gate-driver IC,
dead time ~300ns

Each half-bridge should be
capable of 100kHz PWM
frequency.

Using an oscilloscope, verify that a 100kHz, 50%
duty cycle square wave can be generated on any of
the three phases at a 24V input voltage.

Y: Square wave
implicitly verified
through PWM
mode operation
at 100kHz

All three phases should have
voltage and current
measured within 150mV and
100mA.

Using an oscilloscope, the actual voltage/current
and reported voltage/current for each of the three
phases can be measured and evaluated.

Y: Verified on
voltage rails and
through design
(sensor is more
accurate than
this)

Any voltage rail generated on
the PCB should have the
voltage, current, and power

Again an oscilloscope and electronic load can be
used to measure the actual voltage, current, or
power, and can be compared to the measured value

Y: Reporting is
verified through
design, accuracy is
verified through

22

reported. Measurements are
for system health so an
accuracy of 5% is acceptable.

from the sensor subsystem. multimeter and
sensor readout
cross-reference.

Motor speed should be
collected either by an
encoder or through
measurement of back EMF
with +/-10% accuracy.

A tachometer can be used to get a reference RPM
of the motor under certain conditions, and either
our back EMF calculation, or an external encoder
connected to the motor connected to the
quadrature inputs should report a speed within
10% of the tachometer’s reading.

N: Sensor
read-speed
limitation
prevents speed
measurements.

The microcontroller should
be programmable and
debuggable over serial wire
debug (SWD)

Code to output a square wave on a GPIO can be
programmed to the microcontroller. An oscilloscope
can verify the code was delivered by looking at the
GPIO, and the square wave should stop if a
breakpoint is set and triggered.

Y: Verified in
bringup.

The microcontroller should
be programmable over USB C

Similarly, code to output a known signal on a GPIO
pin can be uploaded over USB and then the GPIO
can be measured to verify this requirement.

N: Unable to fix
USB driver issues
in time for this.

The microcontroller should
report data in real time, at an
update rate of greater than
1Hz and a latency of 500ms
to the GUI application on the
computer

The microcontroller can output a known waveform
on the motor drive subsystem, and an oscilloscope
can measure when a transition happens, and a
timer can be started to measure the delay between
the event occurring in real life and the arrival of the
data on the computer. A 2Hz square wave output is
a good waveform to test these quantitative limits.

Y: ~4Hz and
<250ms reporting
achieved.

Any failed connection
between the computer and
PCB should stop the motor
from spinning within 2
seconds

Configure the platform to be spinning the motor.
Unplug the USB link from the computer side and
time how long it takes for the motor to stop
spinning. If the data link is severed and the motor
stops within two seconds, this requirement is
verified.

Y: Verified by
removing USB and
motor stopping
before 2s elapsed.

23

	
	1. Introduction
	1.1 Problem
	1.2 Solution

	2 Design
	2.1 Introduction
	2.2 Design Overview
	
	2.3 Subsystem Designs
	2.3.1 Motor Drive Subsystem
	2.3.2 Control Subsystem
	2.3.3 Power Subsystem
	2.3.4 Sensor Subsystem

	2.4 Software Design
	2.4.1 Communications
	2.4.2 Safety
	2.4.3 Sensing
	2.4.4 PWM Overview
	2.4.5 Trapezoidal Control
	2.4.6 Sinusoidal Control

	3. Verification
	4. Costs
	4.1 Parts
	4.2 Labor

	5. Conclusion
	5.1 Accomplishments
	5.2 Uncertainties and Challenges
	5.3 Ethical Considerations
	5.4 Future work

	References
	Appendix A​Requirement and Verification Table

