

ECE 445 Spring 2025
Senior Design Laboratory

Final Report

Automatic Card Deck Sorter

Team 37
Kyle Mahler - kmahler3

Rocky Daehler - walterd2
Alfred Hofmann - alfredh2

May 7, 2025

ii

Abstract

The following report details our Automatic Card Sorter project. The goal of this project is to be
able to automatically sort a deck of cards into two piles for games such as Euchre or Small Hand
Poker which don’t need every card. This report discusses the design of this project, as well as the
successes and issues we encountered with our final product. Additionally, it goes into the
requirements and their verification for all subsystems, the costs associated with making this
project in a professional setting, and discussion of what could be changed in the future or when
restarting the project.

iii

Contents
1 Introduction...1

1.1 Problem... 1
1.2 Solution..1
1.3 Functionality...1
1.4 Subsystem Overview... 2

1.4.1 Block Diagram...2
1.4.2 Card Recognition Subsystem... 2
1.4.3 User Interface Subsystem...3
1.4.4 Sorting Subsystem..3
1.4.5 Control Subsystem..3
1.4.6 Power Subsystem...3

2 Design..4
2.1 Design Procedure.. 4

2.1.1 Card Recognition System... 5
2.1.2 User Interface... 5
2.1.3 Sorting System..6
2.1.4 Control System... 6
2.1.5 Power System...7

2.2 Design Details..7
3 Verification.. 9
4 Costs..10
5 Conclusion.. 12

5.1 Summary of Results and Future Work...12
5.2 Ethics and Safety...12

6 References.. 13
Appendix A HardwareFigure 5: The PCB layout of our final PCB design..........................14
Appendix B Requirement and Verification Tables..16

1

1 Introduction

1.1 Problem
For centuries, card games have been a staple of entertainment. With just the same standard 52
card deck, hundreds of different card games have been produced over this time. However, in
some of these games, there may be distinct and precise rules about setting up and managing the
deck. For example, Euchre only uses the 9s, 10s, Jacks, Queens, Kings, and Aces, meaning
players must manually sift through the deck before playing. Organizing the deck before playing
games of this nature can be extremely tedious and time consuming. Players want to spend their
time playing the game, not on the preparation of the game.

Beyond game-specific needs, many households, casinos, and clubs face the issue of reorganizing
mixed or shuffled decks. Again, rearranging the cards back into a sorted order can take a long
time and is by no means an exciting task. In a competitive setting, it may be essential to maintain
a sorted deck before play to ensure fairness. At places with the need for a large number of decks
to be sorted, the need for this process to be automated scales up drastically.

1.2 Solution
To address the inefficiencies of manual card sorting, we propose an Automatic 52-Card Deck
Sorter. This device will quickly and accurately organize a mixed deck into an order specified by
the user. This solution eliminates the need for players to manually separate cards for games like
Euchre, where only a subset of the deck is used. The sorter will incorporate a card recognition
system to identify each card and a mechanical sorting mechanism to place them in the correct
order efficiently. Additionally, a PCB based control system will manage the identification and
sorting process, which will ensure accuracy and reliability. By automating this task, the device
saves time, reduces human error, and enhances convenience for casual players and competitive
tournament organizers alike. Whether preparing for a game, ensuring a properly ordered deck, or
simply avoiding the hassle of manual sorting, this system provides a reliable and efficient way to
manage playing cards, making it a valuable tool for both home and competitive settings.

1.3 Functionality
The high-level requirements of our project are as follows:

●​ The camera can recognize the cards by suit and rank. It can recognize and sort 1 card in 4
seconds, which translates to 3 minutes for a 52 card deck

●​ Cards are successfully sorted into two piles, a ‘Used’ pile and an ‘Unused’ pile. The
system goes until all cards are sorted into one of those two piles, and will automatically
stop once there are no more cards to be sorted.

●​ The system can detect and display a warning sign or an error message when something
goes wrong. It will do this when the same card is detected twice in a row (indicating a
jam), a card is unrecognized by the camera, or the deck is incomplete.

2

1.4 Subsystem Overview

1.4.1 Block Diagram

Figure 1: Our block diagram, showing our five subsystems and their connections.

Figure 1 shows the block diagram for our project. There are 5 different subsystems connected
through two main communication protocols, Universal Asynchronous Receiver Transmitter
(UART) and Serial Peripheral Interface (SPI).

1.4.2 Card Recognition Subsystem

The Card Recognition subsystem, upon receiving a signal from the control system that a new
card has appeared, takes a picture of the upper right corner of the card. It will then send that
image to the Raspberry Pi to be analyzed. This process gets repeated until the camera sends an
image of there being no more cards.

3

1.4.3 User Interface Subsystem

The User Interface is a small screen with an assortment of buttons; Up, Down, Select, and Start.
When the system is powered on, the screen shows a menu with a list of different games which
have been preloaded for the system to sort into. Using the buttons, the user can navigate to their
game of choice and hit the select button. Some examples of these games are Euchre, Short Deck
Poker, or Crazy Eights. Then, when the Start button is pressed, the system begins sorting the
cards. While sorting, the screen displays any pertinent information or errors - such as if a card
jam is detected, if any cards are unrecognizable, etc.

1.4.4 Sorting Subsystem

The sorting system is responsible for moving the cards in a way to ensure they are appropriately
sorted. This is done by placing the deck of cards on the top of two rubber tires, powered by two
motors that slide each card to one pile or another through a slot roughly the size of one card. A
metal cap is placed on top of the deck to add weight to the deck. This ensures that as the deck
thins out weight and friction with the rubber tires is not an issue.

1.4.5 Control Subsystem

The control system is responsible for directing traffic within the device. It works closely with the
user interface and the Raspberry Pi to receive information about the card type and game in order
to make a decision about which stack the card should be sorted into. The control system also
works closely with the sorting system, essentially telling it where each processed card should be
moved to. Finally, the control system communicates with the UI early on in this whole process to
store which cards we care about and which we do not.

1.4.6 Power Subsystem

The power system delivers power to all of the other subsystems. It uses a wall outlet power
adapter to get 12 V for the motor drivers, a buck converter to bring that down to 5 V for the
Raspberry Pi and LED strip, and a linear regulator to finally bring that down to 3.3 V for the
microcontroller. This ensures that each component gets the voltage that it needs to operate
without negatively affecting the performance of the other components/subsystems.

4

2 Design

2.1 Design Procedure
We were able to get help from the Machine Shop to come up with a design for our project. This
final design involved three chambers in a line- cards are loaded into the top of the central
chamber and then sorted into the chambers on either side.

Figure 2: The Project on the day of our final demonstration.

Figure 2 shows the final product on the day of our demonstration. Figure 3 shows a multiview
projection for the device as designed by Skee Aldrich, who built this project in the machine shop.
Note that the final design has the touchscreen attached via a cable, so it can be accessed from any
side of the device. Additionally, there is a weighted metal plate that gets placed on top of the
cards which is not present in Figure 3.

5

Figure 3: A multiview projection of Skee Aldrich’s design for the project.

2.1.1 Card Recognition System

The Card Recognition system utilizes a Raspberry Pi module with a corresponding Raspberry Pi
camera module. It also includes an LED strip to provide lighting in the central compartment of
the device to illuminate the card suit and rank. The camera sits at the bottom of the middle
compartment, pointing upward to target the upper right corner of the bottom most card to capture
the suit and rank. This is done through a Python program on the Raspberry Pi based off of a
similar project done by EdjeElectronics [1]. First, a rectangular box for the region of interest (the
card’s rank and suit) is established. This is then preprocessed by greying, blurring, and
thresholding the image. The region of interest is split into an upper and lower half for the rank
and suit respectively, and the largest contour is found in each half. This contour is then cropped
and compared to pre-existing templates of all the suits and ranks, and finds the correct match. If
not enough pixels are matched to any of the templates, then the card is deemed “Unknown”.
Once the card is identified, the program listens for a UART request from the microcontroller and
sends a bitmask corresponding to the appropriate card. This process goes on indefinitely until
power is lost.

2.1.2 User Interface

The user interface uses a touchscreen to communicate information to the user and to allow the
user to control the system. Specifically, we use a Hosyond 4.0 inch SPI Module, which is a Thin
Film Transistor (TFT) touchscreen with an ST7796 SPI chip. It has a 480 by 320 pixel resolution
and a 4 wire SPI interface [2], which is connected to the ESP32 microcontroller on our device.

6

On the software side, the User Interface uses the TFT_eSPI library to facilitate the drawing of
images and text to the screen. Additionally, this library has functions to help with receiving
information about when and where the touch screen gets touched [3]. Initially, we had intended
to use buttons and a non-touchscreen, but opted for the touchscreen due so that we could change
both the amount and position of input options the user has at any given moment. The versatility
of the adaptable interface allows for clearer communication of options and information to the
user, and only requires one additional chip select output from the ESP32, making it more
efficient in terms of Microcontroller pin usage than having multiple buttons.

2.1.3 Sorting System

The sorting subsystem consists of three main components, one being two bipolar stepper motors
(1528-1062-ND from Digikey)[4], and the other hardware component being its drivers. For the
drivers, we landed on using the DRV8825 from Pololu[5]. Finally, the ECE machine shop
provided axles and rubber wheels to connect to the stepper motors, as well as the shell of the
entire device in which the rest of our components would rest. As for software used for the sorting
system, the two DRV8825’s are controlled using the AccelStepper library[6]. For our design, we
used an extremely simple function to sort the cards one way or another by simply rotating each
of the motors by specifying a maximum speed, degrees of rotation, maximum acceleration, and a
direction.

2.1.4 Control System

The Control System uses an ESP32S3-WROOM-1 microcontroller to facilitate the sorting of the
cards. This subsystem is connected to all other subsystems in the project, taking as inputs touch
signals from the touchscreen and card rank and suit messages from the Raspberry Pi. Based on
these inputs, the control system sorts left or right based on the selected game, requests a new
reading from the Raspberry Pi once a card has been sorted, and raises errors for the screen to
display based on the recognized cards. To sort the cards, our project uses a bitwise AND between
a bitmask representation of the cards used for the selected game and a one hot encoded
representation of the card. Figure 4 shows an example of these encodings being compared.

7

Figure 4: A diagram showing how the control system compares a card signal to the games’ bitmask

If the result of the comparison is 0, then the card does not fall in the range accepted by the
selected game, and it’s sorted into the unused pile. Otherwise, the card is sorted into the used
pile.

The largest issue we encountered with the Control System is that we were unable to program the
ESP32 on our Printed Circuit Board (PCB). Using arduino to program the ESP32 on the PCB as
we had done for the ESP32 Devkit resulted in an exit status 2 error every time we tried, with the
exception of one time when we were able to successfully program the board, though we could
not reproduce this. Our best guess is that the timing of when the ESP32 needs to be entered into
boot mode is very specific, based on the fact that we were able to successfully program once and
the timing of pressing the buttons is the only thing that changed. Notably, using RTS and DTR
also did not solve this issue. If we were to order another PCB for this project, including a USB
connection for the ESP32 would likely make programming the microcontroller easier as this is
the method we successfully used for the ESP32 Devkits, and the ESP32-S3 allows for booting
via a USB-OTG connection [7]. Initially we had not included this because we were unsure
whether our ESP32 model would support USB-OTG booting and the course wiki recommends
using the USB-UART connection.

2.1.5 Power System

The power system deals with distributing power at the desired voltages to the various parts of our
project. Specifically, the stepper motors require a 12 V signal, the Raspberry Pi requires a 5 V
signal, and all other components require a 3.3 V signal. The system as a whole gets power from a
wall outlet, which gets converted to 12 V by an external power cable. Then, the power system
utilizes a buck converter breakout board to convert the 12 V signal to a 5 V signal, utilizing a
shared ground. An LM1117 Linear Regulator is then used to convert the signal down to 3.3 V.
Initially, we had planned on using battery power to make the device more portable, but
eventually decided to use a wall outlet instead. While battery power would have made the project
more portable, portability is not related to any of our high level requirements and is not
necessary for most use cases of this project. There were concerns that a battery would deplete

8

quickly enough that replenishing the battery would become annoying, and the physical device
needs to be somewhat large due to other subsystems, so portability ends up being something that
wasn’t feasible with the battery either.

2.2 Design Details
In designing our project, we created a PCB design that we were unfortunately unable to get most
of our project incorporated onto. The final iteration of our PCB (layout and schematic included
in Appendix A) is smaller than the size of a playing card (63.5 mm by 88.9 mm) so as to be able
to fit in the bottom portion of the central chamber, under the stepper motors’ axles. It includes
the circuitry to allow for programming the ESP32 using a UART connection with DTR and RTS,
a linear regulator, and pinouts for the variety of breakout boards and peripherals the project
needs. The stepper motors required fine tuning for their maximum speed, acceleration, and the
amount of steps each motor would rotate when sorting left or right. We eventually set these at
110 for a maximum speed and 1000 for the acceleration. The wheel on the side the card was
going towards would move plus or minus 187 steps, and the wheel on the side the card was
moving away from would move plus or minus 73 steps (with plus or minus indicating the
direction of spin).

9

3 Verification

Testing and verification for each specific subsystem was conducted as each was completed. As
can be seen in the requirements and verification table, timing requirements were very important
to us, and each of these timing requirements were satisfied for every subsystem.

Other requirements for each of the subsystems are more specific for its specific task. For the
camera, we were able to identify the correct card 99% of the time, 4% higher than our initial
goal. The UI successfully displayed game options and error messages when appropriate, as well
as sending and receiving signals efficiently and accurately. Likewise, the control system
efficiently and accurately sent and/or received signals accurately and efficiently to each of the
subsystems that required it. Finally, the power system worked flawlessly, delivering power to
each of the subsystems within our needed range.

The sorting subsystem, however, plagued our design by failing to move just one card more than
85% of the time. Although jams and slipping mistakes were rarely made by the sorting system,
the amount of two card pushes was enough to cause major problems when running the device as
a whole. Below shows the number of errors among thiry different trial runs. High success and
high failure numbers typically were recorded on the same day.

Figure 5: Error Frequency Among 30 Trials

10

4 Costs
Our cost analysis consists of three components. The first is the part list. This includes all items
that we had to order to assemble the device, whether purchased from online vendors or ordered
within the ECE building. Additionally, the machine shop costs are included in the cost analysis.
We reached out directly to ask for a quote. Lastly, we include the total labor cost among all group
members.

4.1.1 Part List

Description Manufacturer Part Number /
Model

Qty. Extended
Price

Link

Nema 11 Stepper
Motor 28mm

Iverntech Nema 11 3 $51.27 Link

TFT Touch Screen
LCD Display Module

Hosyond ST7796S 1 $19.79 Link

Raspberry Pi Camera
Module V2-8
Megapixel

Raspberry Pi RPI-CAM-V2 1 $14.00 Link

DRV8825 Stepper
Motor Driver Carrier

Pololu DRV8825 2 $25.90 Link

LM1117IMPX-3.3/N
OPB Linear Regulator

Texas Instruments LM1117 1 $1.01 Link

LM1117T-3.3/NOPB
Linear Regulator

Texas Instruments LM1117 1 $1.59 Link

DFR0379 Buck
Converter

DFRobot DFR0379 1 $4.90 Link

Jack Plug Adapter
Barrel Connector

California JOS N/A 1 $3.97 Link

USB Type C
Connector Board

Teansic IC354 1 $7.99 Link

12V 6A Power Supply
Adapter

COOLM YU1206 1 $14.59 Link

Raspberry Pi 4 Model
B 8GB

Raspberry Pi Model B 1 $74.99 Link

ESP32 Espressif Systems ESP-WROOM-32 1 $8.99 Link

https://www.amazon.com/gp/product/B07PNV7RBW/ref=ox_sc_act_title_3?smid=A3HCJ70Z0RHBT6&th=1
https://www.amazon.com/gp/product/B0CKRJ81B5/ref=ox_sc_act_title_2?smid=A1PKC2PUMNR8VD&th=1
https://www.amazon.com/gp/product/B01ER2SKFS/ref=ox_sc_act_title_1?smid=A27TYZET1FRATH&psc=1
https://www.pololu.com/product/2133
https://www.digikey.com/en/products/detail/texas-instruments/LM1117IMPX-3.3-NOPB/3440160?gclsrc=aw.ds&&utm_adgroup=&utm_source=google&utm_medium=cpc&utm_campaign=PMax%20Shopping_Product_Medium%20ROAS%20Categories&utm_term=&utm_content=&utm_id=go_cmp-20223376311_adg-_ad-__dev-c_ext-_prd-3440160_sig-CjwKCAiA5pq-BhBuEiwAvkzVZUhXFWuS3TvbLdhQVsOHD-t0KwuJj-Y-EFnvXZitRgtnlyxfOAL0kRoCjb8QAvD_BwE&gad_source=1&gclid=CjwKCAiA5pq-BhBuEiwAvkzVZUhXFWuS3TvbLdhQVsOHD-t0KwuJj-Y-EFnvXZitRgtnlyxfOAL0kRoCjb8QAvD_BwE&gclsrc=aw.ds
https://www.digikey.com/en/products/detail/texas-instruments/LM1117T-3.3-NOPB/363593?gclsrc=aw.ds&&utm_adgroup=Texas%20Instruments&utm_source=google&utm_medium=cpc&utm_campaign=PMax%20Shopping_Supplier_Texas%20Instruments&utm_term=&utm_content=Texas%20Instruments&utm_id=go_cmp-17816159938_adg-_ad-__dev-c_ext-_prd-363593_sig-CjwKCAiA5pq-BhBuEiwAvkzVZZSchW43L3o3zwD0JqUzRM9JwNtGQnSdQonegytqqzWuyrALFW-DlBoCwFcQAvD_BwE&gad_source=1&gclid=CjwKCAiA5pq-BhBuEiwAvkzVZZSchW43L3o3zwD0JqUzRM9JwNtGQnSdQonegytqqzWuyrALFW-DlBoCwFcQAvD_BwE&gclsrc=aw.ds
https://www.digikey.com/en/products/detail/dfrobot/DFR0379/7087190?gclsrc=aw.ds&&utm_adgroup=&utm_source=google&utm_medium=cpc&utm_campaign=PMax%20Shopping_Product_Low%20ROAS%20Categories&utm_term=&utm_content=&utm_id=go_cmp-20243063506_adg-_ad-__dev-c_ext-_prd-7087190_sig-CjwKCAiA5pq-BhBuEiwAvkzVZRxvAdHQiJA91d0jVIKPIku1PxKCog_9r8R_9gB2Hgxu2CEmiCv1jxoC7QgQAvD_BwE&gad_source=1&gclid=CjwKCAiA5pq-BhBuEiwAvkzVZRxvAdHQiJA91d0jVIKPIku1PxKCog_9r8R_9gB2Hgxu2CEmiCv1jxoC7QgQAvD_BwE&gclsrc=aw.ds
https://www.amazon.com/dp/B0CR8TZ41W?ref=ppx_yo2ov_dt_b_fed_asin_title&th=1
https://www.amazon.com/dp/B0B4J5NJ2Y?ref=ppx_yo2ov_dt_b_fed_asin_title&th=1
https://www.amazon.com/dp/B07DMFN2YN?ref=ppx_yo2ov_dt_b_fed_asin_title
https://www.microcenter.com/product/622539/pi4modelB8gb?src=raspberrypi
https://www.amazon.com/ESP-WROOM-32-Development-Dual-Mode-Microcontroller-Integrated/dp/B07WCG1PLV/ref=asc_df_B07WCG1PLV?mcid=7cc24e50dc423e8e9f1039421f865b8a&hvocijid=3585252630830375247-B07WCG1PLV-&hvexpln=73&tag=hyprod-20&linkCode=df0&hvadid=730432682330&hvpos=&hvnetw=g&hvrand=3585252630830375247&hvpone=&hvptwo=&hvqmt=&hvdev=c&hvdvcmdl=&hvlocint=&hvlocphy=9022196&hvtargid=pla-2281435177378&th=1

11

Microcontroller

Total $228.99
Table 1: The part numbers, quantities and costs of all electronic items used in the project

Table 1 shows a list of all the parts used for this project, including quantities and total costs.
Based on the information in this table, the total price of all parts used comes to $228.99.

4.1.2 Machine Shops Costs

The majority of the physical design is constructed by the ECE machine shop. The construction of
the device is estimated to take 2 weeks working 7.5 hour days. The labor wages for the machine
shop are $56.12 per hour. We can find the total Machine Shop Labor cost as follows:

10 days x 7.5 hours per day x $56.12 per hour = $4,209

Total cost for the machine shop labor: $4,209.

4.1.3 Labor Costs

All of the members in our group are computer engineering majors. To compute the total labor
cost for this project, we will find the expected per hour wage of a computer engineering graduate
and multiply it by the expected number of hours we are working on the project.

To find the expected per hour wage, the average starting salary for a computer engineer is
$109,176 [8]. The total number of hours worked per year is 2,080. The expected per hour wage
is calculated as follows:

$109,179 / 2,080 hours = $59.49 / hour
Total labor cost:

$59.49 / hour x 180 total hours x 3 people = $32,124.60

Total Cost of Project: $228.99 + $4,209.00 + $32,124.60 = $36,562.59

12

5 Conclusion

5.1 Summary of Results and Future Work

We were able to develop a system that correctly identifies and sorted cards based on a game
selected by the user. The recognition of cards, determining how they should be sorted, and
physical movement of a card all worked together well for individual cards. Unfortunately, there
was a persistent issue with the second lowest card being moved when the lowest card was
moved. This was likely due to friction between the cards being an inevitable occurrence, and
unfortunately we were unable to adjust any parameters to remove this issue altogether. When we
set our final parameters for the stepper motors, the system worked very well, but due to small
factors such as the dirtiness of the cards or the dirtiness of the wheels, as well as environmental
factors such as the humidity, the amount of friction between cards was inconsistent and we
weren’t able to consistently push only one card.

For future work, there are a couple different things that could be helpful. Using some sort of
pneumatic system to add a small gap between cards would help alleviate friction, though it
would require modification to the chamber that currently holds the input deck and would likely
make the device bulkier. Alternatively, somehow making the motors’ setting automatically adjust
could work to eliminate this issue as well.

5.2 Ethics and Safety

In designing the Automatic Card Deck Sorter, we recognize the responsibility to uphold ethical
standards as outlined in the IEEE Code of Ethics. While our device is intended to improve
efficiency and convenience in card games, it is important to acknowledge potential misuse and
mitigate risk, particularly in gambling or competitive play settings.

A major ethical concern is the possibility of our device being misused to gain an unfair
advantage in gambling or competitive card games. To align with the IEEE Code of Ethics [9], we
must ensure that our design does not facilitate deception or unlawful conduct. Specifically,
Section I.4 emphasizes the importance of maintaining ethical behavior in professional activities
and rejecting any form of corruption, including actions that could enable cheating. To uphold
these principles, our system will be designed with transparency in mind, ensuring that it
functions solely as a fair and unbiased card-sorting tool.

Moreover, Section II.9 of the IEEE Code highlights the responsibility to avoid causing harm to
others, whether through direct actions or by enabling unethical behavior. This project should not
be used in a way that compromises the integrity of games, damages reputations, or results in
financial harm.

Since our card sorter is designed for convenience, it is difficult to use for other purposes. There
are no extreme size restrictions or intentional hidden mechanisms that would be ideal for the
unethical rigging of a card game, so unlawful use of the device is naturally discouraged. By

13

addressing these ethical concerns, we ensure that our technology aligns with professional
integrity and responsible engineering practices.

5.3 Uncertainties

Uncertainties remain for this project as we never fully determined the cause of the sorting
subsystem not working well. Some days it would work extremely well with less than 5 errors,
other days it would provide an error for nearly every other card. What we can be certain of is that
in order for the Automatic card sorter to work perfectly, a different design for the sorting
subsystem was needed. Perhaps this could have been sorting from the top, using an airblast like
the professional shuffling systems do, or another alternative that we are not aware of yet.

14

6 References
[1] ​ EdjeElectronics, “OpenCV-Playing-Card-Detector”, Github, 2025 [Online] Available:

https://www.google.com/url?q=https://github.com/EdjeElectronics/OpenCV-Playing-Car
d-Detector&sa=D&source=docs&ust=1746670032700031&usg=AOvVaw11IHx-euoPhl
CtMRahXSN8 [Accessed May 7, 2025]

[2]​ LCD Wiki “4.0inch SPI Module ST7796” Lcd Wiki, 2019 [Online] Available:
http://www.lcdwiki.com/4.0inch_SPI_Module_ST7796 [Accessed May 7, 2025]

[3]​ Bodmer, “Github - Bodmer/TFT_eSPI.” Github, 2025 [Online] Available:
https://github.com/Bodmer/TFT_eSPI [Accessed May 7, 2025]

[4]​ Adafruit, “1.8o 42MM Torque Hybrid Stepping Motor”, XY42STH34-035A datasheet

[5]​ Texas Instruments, “DRV8825 Stepper Motor Controller IC”, SLVSA73F, Apr. 2010
[Revised Jul. 2014]

[6]​ swissbyte, “AccelStepper”, Github, 2025 [Online] Available:
https://github.com/swissbyte/AccelStepper [Accessed May 7, 2025]

[7]​ Espressif "ESP32-S3 Series Datasheet Version 2.0" July 2021 [Revised Apr. 2025]

[8] ​ “Salary Averages”, ece.illinois.edu.
https://ece.illinois.edu/admissions/why-ece/salary-averages (accessed May 7, 2025)

[9] ​ IEEE. “”IEEE Code of Ethics”.” (2016), [Online]. Available: https://www.ieee.org/
about/corporate/governance/p7-8.html (visited on 05/07/2025).

https://github.com/EdjeElectronics/OpenCV-Playing-Card-Detector
https://github.com/EdjeElectronics/OpenCV-Playing-Card-Detector
https://github.com/EdjeElectronics/OpenCV-Playing-Card-Detector
http://www.lcdwiki.com/4.0inch_SPI_Module_ST7796
https://github.com/Bodmer/TFT_eSPI
https://github.com/swissbyte/AccelStepper
https://ece.illinois.edu/admissions/why-ece/salary-averages
https://www.ieee.org/

15

Appendix A Hardware

Figure 6: The PCB layout of our final PCB design

16

Figure 7: The circuit schematic of our final PCB design

17

Appendix B Requirement and Verification Tables

Camera System

Requirement Verification

The Camera can take a clear picture of the
card corner and send that card to the
Raspberry Pi. The Raspberry Pi will identify
the rank and suit of the current card, including
labeling some cards as unrecognized, with
95% accuracy or higher.

1.​ Setup the camera pointing at a set of
cards with the same
spacing/dimensions as in the final
design.

2.​ Have the camera identify all of the
cards in the deck, including jokers.

3.​ Calculate what percent of the cards
were identified correctly (jokers
should be identified as unrecognized)
and make sure that 95% or more were
calculated correctly.

The Camera subsystem can turn an LED on
within 1 second of sorting starting and turn
the LED off within 1 second of the sorting
ending.

1.​ Connect the camera subsystem up to
the Control System.

2.​ Send a ‘sorting starting’ signal from
the Control System and measure how
long it takes the LED to turn on.
Verify that it takes less than a second.

3.​ Send a ‘sorting ending’ signal from
the Control System and measure how
long it takes the LED to turn off.
Verify that it takes less than a second.

Table 2: The Requirement and Verification table for the Camera System

User Interface

Requirement Verification

The user can use the User Interface to select a
game to sort the cards for. The User Interface
will send a signal indicating which game was
selected within 1 second of the button being
pressed.

1.​ Connect the User Interface to the
Control System.

2.​ Select a game on the User Interface.
3.​ Measure the time between when the

game is selected on the User Interface
and when the signal is received by the
Control System. Verify that this takes
less than 1 second.

4.​ Repeat this for all preloaded games.

When the user presses Start on the User
Interface, a signal communicating what

1.​ Connect the User Interface to the
Control System.

18

game/sorting has been selected will be sent to
the Control System. This signal will be sent
within 1 second of the button being pressed.

2.​ Press ‘Start’ on the User Interface.
3.​ Measure the time between when the

button is pressed and the signal is
received by the Control System. Verify
that this takes less than 1 second.

The User Interface can display an error
message when given a signal from the Control
System. Specifically, the User Interface can
display A Jam error message, An
Unrecognized Card error message, or A
Missing Card error message within 1 second
of receiving a signal from the control system.

1.​ Connect the User Interface to the
Control System.

2.​ Send an error signal to the User
Interface from the Control System.

3.​ Measure the time between when the
signal is sent and the error message
appears on the User Interface. Verify
that this takes less than 1 second.

4.​ Repeat this for all three error types.
Table 3: The Requirement and Verification table for the User Interface

Sorting System

Requirement Verification

The Sorting System can move a card to either
side based on an electronic input. It will move
cards all the way into the selected tray, only
resulting in a jam 15% of the time or less.

1.​ Connect the Sorting System to the
Control System.

2.​ Send randomized sorting signals to the
Sorting System.

3.​ Count how many times the system
jams/fails to move a card all the way
into one of the sorting trays.

4.​ Calculate the number of jams/number
of cards and verify that this is less than
0.15

The Sorting System can move just the bottom
card of a stack of cards without affecting the
rest of the stack. It will move only 1 card 85%
of the time or more.

1.​ Connect the Sorting System to the
Control System.

2.​ Send randomized sorting signals to the
Sorting System.

3.​ Count how many times the system
moves multiple cards at a time.

4.​ Calculate the number of multiple card
moves/number of move signals and
verify that this is less than 0.15

The Sorting System will move a card fully
into one of the trays within 2 seconds of
receiving a signal from the Control System.

1.​ Connect the Sorting System to the
Control System.

2.​ Send a signal to the Sorting System
from the Control System and verify
that the card is fully sorted within 2

19

seconds of the signal being sent.

 Table 4: The Requirement and Verification table for the Sorting System

Control System

Requirement Verification

The Control System will give one of two
signals to the Sorting System (indicating
which direction to move the card) within 1
second of receiving the card’s information
from the Camera System.

1.​ Connect the Control System to both
the Sorting System and the Camera
System.

2.​ Send card information to the Control
System from the Camera System.

3.​ Measure the time between the Camera
System sending the information and
the Sorting System Receiving the
information, and verify that this is less
than 1 second.

The Control System will recognize various
errors and send a signal to the User Interface
when they occur. The Control System
accurately detects Jams (seeing the same card
twice) 90% of the time or more.

1.​ Connect the Control System to the
Camera System.

2.​ Create false jams by showing the
camera the same card multiple times.

3.​ Calculate how many of these false
jams the Control System accurately
detects and verify that it is over 90%.

The Control System will recognize various
errors and send a signal to the User Interface
when they occur. The Control System
accurately detects Missing Cards (detecting
less than 52 cards in the deck) 90% of the
time or more.

1.​ Connect the Control System to the
Camera System.

2.​ Purposefully present the camera
system with less than 52 cards and
have the camera system go through all
of these cards then stop.

3.​ Repeat this process 100 times.
4.​ Calculate how many times the Control

System accurately detects the missing
cards and verify that it is over 90%.

Table 5: The Requirement and Verification table for the Control System

Power System

Requirement Verification

Provide consistent and accurate voltage to the
other components, primarily a 12V ± 0.5V
line to turn the motors, a 5V ± 0.5V, and a
3.3V ± 0.3V line for most other items.

1.​ Connect all subsystems to power,
either to the 5V line or to the 3.3V line
from the batteries or voltage regulator
respectively.

2.​ Use a multimeter to verify that the

20

12V line is within its tolerance range,
the 5V line is within its tolerance
range, and the 3.3V line is within its
own tolerance range

Table 6: The Requirement and Verification table for the Power System

	Abstract
	The following report details our Automatic Card Sorter project. The goal of this project is to be able to automatically sort a deck of cards into two piles for games such as Euchre or Small Hand Poker which don’t need every card. This report discusses the design of this project, as well as the successes and issues we encountered with our final product. Additionally, it goes into the requirements and their verification for all subsystems, the costs associated with making this project in a professional setting, and discussion of what could be changed in the future or when restarting the project.
	Contents
	1 Introduction
	1.1 Problem
	1.2 Solution
	1.3 Functionality
	1.4 Subsystem Overview
	1.4.1 Block Diagram
	1.4.2 Card Recognition Subsystem
	1.4.3 User Interface Subsystem
	1.4.4 Sorting Subsystem
	1.4.5 Control Subsystem
	1.4.6 Power Subsystem

	
	2 Design
	2.1 Design Procedure
	2.1.1 Card Recognition System
	2.1.2 User Interface
	2.1.3 Sorting System
	2.1.4 Control System
	2.1.5 Power System

	2.2 Design Details

	
	3 Verification
	4 Costs
	
	5 Conclusion
	5.1 Summary of Results and Future Work
	5.2 Ethics and Safety

	Appendix A HardwareFigure 6: The PCB layout of our final PCB design
	Appendix B Requirement and Verification Tables
	

