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Abstract 

Our project presents a Fire and Gas Detection System integrated with a real-time LED-based navigation 

mechanism, engineered to identify the safest exit route within a one-story residential house. The system 

incorporates temperature sensors, a microcontroller, a digitally actuated servo-driven vent, and a web 

application for remote data visualization and storage using Firebase. Sensor data is transmitted to 

Firebase, where it dynamically updates LED indicators to guide evacuation paths and commands vent 

closures upon fire detection to inhibit fire propagation. System testing demonstrated high accuracy in 

both exit determination and vent actuation. With optimized power efficiency and reliable performance, 

this system provides an effective solution for enhancing residential fire safety.  
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1. Introduction 

1.1 Problem  

Fires, whether accidental or natural, can cause severe damage to homes and the inhabitants. 

Today, fire and gas systems only trigger alarms and notify emergency services when a hazard is 

detected. While this is good, the emergency response time isn’t immediate, and a lot can 

happen during this time. Another factor that we must consider is that residents can panic or 

become disoriented during these hazardous emergencies leading to confusion during precious 

seconds which could be used for getting outside to safety. So, a need exists for a system that 

could both mitigate the damage done as well as guide individuals to the safest exit to minimize 

confusion.  

1.2 Solution  
Our solution to this problem is a Fire and Gas Detection System with Real-Time LED Navigation. Our 

project aims to detect fires using temperature sensors and a microcontroller. This means that we will 

have one main board in a central area of the house, then, there will be mini boards which will only 

house a temperature sensor across all the other rooms. Using Firebase-based web applications as the 

main communication method with ESP32 via wi-fi, we will guide users to the nearest exit with LED 

indicators on each board all controlled by an algorithm that will give individuals the best exit to take for 

safety in the presence of a fire. All of this is done by users inputting their floorplan manually and 

providing exits, doors, and rooms for the software to understand the general locations of all the sensors 

to correctly light up when the time arrives. In the case of a fire, we will use a motorized vent cover 

which will automatically close when a fire has started, this is to suffocate the oxygen flow for the fire 

and buy time for first responders to arrive and handle the situation. It has been shown that the main 

growth of fire is due to a source, or the mere presence of oxygen accelerating the speed and growth of 

the fire. This project is designed for low power, quick response, and ease of use for all homeowners to 

be able to use.  
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Figure 1: Visual Representation of the System 

1.3 High Level Requirements  
For this project to be considered successful, we have set some high-level criteria that our Fire and Gas 

Detection system needs to meet. These are: 

1. The web-based application will consist of a place where homeowners can lay out their floor plan 

by designating rooms with connections such as doors, and this will lead to other areas in the 

house along with the location of sensors and exits. The algorithm will isolate rooms that are 

affected by the fire and designate an exit that is furthest from the fire, and this will be visible on 

the LEDs with guaranteed accuracy.  

2. Once a threshold of 90°C is detected on the temperature sensors, a fire is present, and a signal is 

sent to the control unit which will trigger the algorithm to run and shine LED’s along with an 

alarm sounding. The gas sensor will sound the alarm when a Carbon Monoxide (CO) level 

greater than 20 ppm is present. 

3. When a fire is detected, the HVAC will turn off, following this, the vents will receive the signal to 

close, limiting the oxygen flow to the fire. Upon clearance of fire, operation of the HVAC and 

vents will function as normal.  

These high-level requirements collectively serve as our goal for our design. Following this, we aim to 

show each subsystem and the design choices and considerations that were involved in the process of 

reaching the goals mentioned above. After analyzing the design of the whole project and the 

subsystems, we will give a summary of the costs and schedule that were involved in the making of the 

project, and finally, we will wrap up the paper by talking about uncertainties and what could be done in 

the future with this project. Overall, we believe this project to be innovative in what it attempts to do 

and believe that the project has a lot of potential use in replacing modern Fire and Gas Detection 

systems.  
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2 Design 

2.1 Subsystem Overview  
As shown in our block diagram below, Figure 2, our project consists of multiple subsystems. These 

subsystems are as follows: Power Supply, Control system, Vent/Motor, Sensing, and application.  

The power supply system consists of three 9V batteries as the source, one is regulated to 7V, the other 

is regulated to 5V, and the last one is regulated to 3.3V which is then regulated to 1.5V. The sensing 

subsystem is the system in charge of collecting environmental data for us, in particular, temperature 

data and gas data. The sensing subsystem also houses our LEDs which only shine in the presence of a 

fire. The vent subsystem consists of an HVAC (fan), a motor, and a vent. The ESP32 will control the 

motor with a PWM signal to indicate whether it should open or close. The application subsystem is 

where users will be able to manually input their floorplan to the system, the application subsystem is 

also in charge of running the algorithm to then give the information on the relevant LEDs which should 

light up to the ESP32. Finally, we have the control subsystem, the ESP32 is the main key in this system as 

it oversees sending all the relevant signals in the case of a fire, as well as constantly receiving data from 

all the sensors. These subsystems combine to form a unit that enables efficient monitoring and a safer 

alternative for homeowners whenever a fire is present.  

 
Figure 2: High-Level Block Diagram of the Project 

2.2 Physical Design  
To test the project, we designed a 3D-floor layout using blender. The reason for this is because the 

application expects you to have a floor plan, so, to test the algorithm in real-world application, we 

replicated a mini floor plan of a basic single-story house. The layout is simple; it consists of a main room 

in the center which will house our main PCB board. The other rooms will house our temperature boards, 

and there is a cutout for each board to place snuggly into the house. There is a total of 2 exits in this 

design to test the algorithm with as shown in Figure 3. 
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Figure 3: The design of the housing used for each PCB board 

We also had the ECE Machine design a motorized vent for us. We ordered a vent and a 25𝑘𝑔 digital 

motor to serve as the arm which will rotate the vent cover to close and open depending on the given 

situation. In Figure 4 below, you can see that the design is simple and would integrate well into homes 

with no issues, the only connection required is the motor connections.  

 
Figure 4: Motorized Vent Cover 

2.3 PCB Layout 
When designing the PCB, the main objective is to provide a compact, modular, and testable board. 

Having a compact board is useful in reducing noise, especially in cases like our design where we have 

sensor data that we want to read accurately. In our layout, we tried to keep subsystems together so that 

we knew the general area of all our subsystems. We created two designs for our PCB boards, one was 

our main PCB board, and this board consisted of every subsystem. The other PCB board is the 

temperature board which only consists of the sensing subsystem. For the main PCB board, we wanted to 

make sure that we could test make this board first and test its functionality. The reason for this is 

because if we know the temperature sensor works for the main board, then it would work for the 

temperature board, the only thing we must add are several connectors to ensure that we have 
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connections with all the temperature boards to the main board. Test points are crucial and are scattered 

all around the boards, you can see these test points in Figure 4 in areas such as our power subsystem on 

the bottom left, with test points such as 5V, 3.3V, etc., and this is important in troubleshooting the 

board as regulators can stop regulating if there is too much of a load present. The schematics and a 3D 

model of our PCB boards can be found in the appendix, Figures B.1 Figures B.2, Figures B.3, Figures B.4 

respectively. 

 
Figure 5: Main PCB Board Layout 

 
Figure 6: Temperature PCB Board Layout 
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2.4 Power Supply Subsystem   

2.4.1 Design Decisions 

The power supply subsystem is responsible for converting a 9V input from a battery to four different 

distinct voltage levels. These levels correspond to 7V, 5V, 3.3V, and 1.5V. This requirement is fulfilled by 

using three 9V, 1500mAh Lithium-Ion battery with two LD1085 Low Dropout (LDO) regulators for our 7V 

and 1.5V rails. This LDO features a low dropout voltage compared to the LM317 which has a much 

higher dropout voltage. The BD50FC0FP was chosen as our 5V voltage regulator, and this is a fixed 

output regulator which is guaranteed to regulate loads under 3A. For the 3.3V rail, we decided to go for 

a buck converter design for more efficiency and allow more current to be drawn.  

2.4.2 Design Details  

For our battery, the maximum current draw is 500mA, so this means the batteries we have chosen can 

sustain our project for 3 hours. Regularly, this amount of current is not common as this only appears 

once the motor opens the vent, so this ensures consistent power delivery to all the components.  

In our design, we have our buck converter in series with our LDO, this will be the 3.3V rail in series with 

the 1.5V. The fixed regulator and the last LDO have their own battery, we decided that the 3.3V has the 

buck converter, so we can afford to place an LDO in series with it to preserve battery usage. Initially, we 

used a LM317 to output 1.5V, but the dropout voltage is usually high, typical values of 1.5V-2.5V, and 

this value only increases when there is more load present in the circuit. So, when we tested with no 

load, it ran fine, but then, we switched to 100mA load, and it failed to regulate a constant 1.5V. Our 

switch to the LD1085 proved to be the best move as it has the same footprint as the LM317 but has a 

maximum dropout voltage of 1.5V at 3A which guarantees that it will always regulate our system. All the 

other regulators and buck converters used in the project can also handle a max load of 3A, so, because 

our current demand is never going to reach that high, we can guarantee functionality.  The maximum 

current found during operation was 500mA.  

To ensure stability, capacitors are placed on both the input and output of all the regulators and buck 

converters used in the project board. These capacitors help smooth voltage fluctuations and maintain 

consistent operation during periods of high current draw (ESP32 during wi-fi operation). They also help 

reduce noise and ripple which is critical for the proper functioning of sensitive components like the 

ESP32. And with this design, we will provide a reliable, and safe power supply for the entire system. 

2.4.3 Design Verification  

Verification of the power supply subsystem was conducted using a multimeter to measure the output 

voltage produced by our regulators and buck converter, and the input of the voltage making sure the 

batteries were at 9V as designed. Then, powering on the board, we observed with no load, the voltage 

outputs across our regulators and converters were all as specified, 7V, 5V, 3.3V, and 1.5V. Finally, we did 

a load test, and the results can be seen below in Table 1 confirming that our power supply subsystem is 

fully functional:  

Table 1: Verification Test of Power Supply 

Current (Load) 7V LDO 5V Fixed Regulator 3.3V Buck 1.5V LDO 
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0mA 7.056V 5.041V 3.309V 1.51V 

100mA 7.034V 5.018V 3.305V 1.503 

200mA 7.020V 5.012V 3.302V 1.494V 

2.5 Control Subsystem  

2.5.1 Design Decisions 

Our project aimed to develop a smart application that allows users to store a digital floor plan and, in 

the event of a fire, execute an algorithm that identifies the safest evacuation route using real-time LED 

indicators. To support this functionality, we required a microcontroller capable of Wi-Fi communication 

to enable bidirectional data exchange with a remote server, as well as onboard control capabilities such 

as PWM signal generation for managing vent actuation. 

After evaluating several options, we selected the ESP32-S3-WROOM module, which had been 

introduced to us during lecture and was readily available at the university. This module proved to be a 

strong match for our system requirements. We chose Wi-Fi over Bluetooth due to its superior range, 

higher bandwidth, and better integration with web services such as Firebase. With realistic data transfer 

rates between 4–10 Mbps, Wi-Fi allowed us to reliably transmit sensor data to the cloud and maintain 

consistent, responsive communication. 

The ESP32 also offers extensive library support, including WiFi.h and Firebase_ESP_Client, which 

significantly simplified development and integration. These resources enabled us to efficiently 

implement the system’s core functionalities with reliability and scalability in mind. 

For the alarm system, we opted for a straightforward yet effective solution: a 5V piezoelectric buzzer. 

This component activates when supplied with 5V and emits an 80 dB sound, ensuring the alarm is clearly 

audible throughout the household in emergency scenarios. While not a sensor, the buzzer functions as a 

key component of the alert subsystem, providing immediate feedback in the event of fire detection. 

2.5.2 Design Details  

To ensure the buzzer alarm remains inactive during normal operation and only activates in emergency 

scenarios, we implemented control via an N-Channel MOSFET (IRLZ34NPBF-ND). In our design, the 

MOSFET’s drain is connected to the ground pin of the buzzer, while the gate is driven by the ESP32’s 

GPIO. When the ESP32 outputs a HIGH signal, the MOSFET enters saturation mode, completing the 

circuit and allowing 5V to flow through the buzzer, thereby activating the alarm. 

For the ESP32 hardware configuration, we followed the reference design provided on our course 

website’s wiki. This design supported two programming interfaces: USB and UART. We opted for UART 

programming using a USB-to-UART bridge, which allowed us to program the ESP32 without 

incorporating a dedicated programming circuit. The flashing process involved manually placing the 

ESP32 in boot mode by first holding down the GPIO0 (boot) button, then pressing the EN (reset) button. 

Once in boot mode, we could release GPIO0 and upload our code via the UART interface. 
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The ESP32 serves as the central controller for multiple subsystems, performing the following critical 

tasks: 

1. Alarm Control: Activates the 5V buzzer when a fire is detected by any temperature sensor. 

2. Temperature Sensor Multiplexer: Interfaces with an 8:1 analog multiplexer to sequentially read 

values from eight temperature sensors which are distributed across the main board and 

peripheral sensor boards. The ESP32 can cycle through all sensors in under 5 milliseconds, a limit 

set by the ESP32’s ADC sampling, not the multiplexer. 

3. Heater Control for Gas Sensor: Drives a PMOS-based switching circuit to periodically power the 

heater element of the gas sensor, enabling accurate gas detection. 

4. Gas Sensor Reading: Reads the analog gas concentration output after heater activation. 

5. Ventilation Control: Sends PWM signals to a digital servo motor to rotate its arm by 180°, 

opening or closing the ventilation duct based on fire presence. 

6. Data Transmission: Sends all collected sensor data to Firebase for storage and real-time 

monitoring. 

7. LED Navigation Feedback: Receives LED control commands from Firebase, including which LEDs 

to illuminate and what color they should display, to indicate safe evacuation routes. 

Each of these tasks was developed and tested incrementally. We followed a modular development 

approach, writing and validating code for one subsystem at a time. Only after successful testing would 

we integrate additional components, ensuring the overall reliability and maintainability of the control 

subsystem. 

2.5.3 Design Verification  

To verify our control subsystem, we must verify the functionality of the ESP32 and the Buzzer Alarm. The 

verification of the buzzer alarm is straightforward, we grabbed a breadboard, connected the positive leg 

to a power source of 5V, and grounded the other side, as soon as this connection is made, the alarm will 

sound. Then, using the apple watch built-in Noise app, or any other form of detecting noise, we 

measured the sound and found it to be 80dB as intended.  

For ESP32, there are more steps to follow. First, you must program the circuit, then, you must connect 

the ESP32 to Wi-Fi to allow it to interact with Firebase. The following image below will show the 

following: First, ESP32 is able to read data from sensors and upload it to Firebase to store it. Next, you 

will also see that there are signals labeled “False” which indicate that a fire has not been detected yet by 

our temperature sensors, so there is no need to close the vents or trigger the alarm. For a picture 

showing functionality of the ESP32 giving signals to LEDs, you can refer to Figure B.7 which shows the 

functionality of our algorithm as well as our LEDs.   

 
Figure 7: Verification of ESP32 
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2.6 Sensor Subsystem  

2.6.1 Design Decisions 

The sensor subsystem is responsible for collecting temperature readings from every room in the user’s 

house as well as carbon monoxide concentrations from the main control board and sending these 

readings to the ESP32 in the control subsystem. The temperature sensor used is the LMT84DCKR, which 

has an operating range of -50 ℃ to 150 ℃ and an inverse relationship between the output voltage and 

detected temperature. This covers the expected range of temperatures for our project from room 

temperature to fire detection at 90 ℃ as well as ensuring protection for our ESP32 as the voltage output 

from the sensor will always be below 3.3 V. Since the temperature sensors are to be placed in every 

room in the user’s house, the 8:1 MUX CD74HC4051PWR was used to cycle the multiple temperature 

readings into the ESP32 to minimize GPIO usage. As for the gas sensor used, the MQ-9B was selected as 

it can detect carbon monoxide concentrations anywhere from 10 to 500 ppm, which was low enough to 

meet our project’s high-level requirements. Finally, the WP154A4SUREQBFZGC RGB LED was included in 

our sensor subsystem as one is placed in every room of the user’s house and would take control signals 

from the ESP32 to visually indicate the designated path for escape to the user in the event of a fire. 

2.6.2 Design Details  

For the LMT84DCKR temperature sensors, they are supplied by the 5 V line from the power subsystem 

and have low pass filters at their output to give smooth temperature readings. According to the 

datasheet, the output temperature T is calculated using Eq. 1 in which VTEMP is the voltage measured at 

the output of the sensor. 

 
𝑇 =  

5.506 − √(−5.506)2 + 4(0.00176)(870.6 − 𝑉𝑇𝐸𝑀𝑃(𝑚𝑉))

2(−0.00176)
+ 30 

 

 
(1) 

This equation gives an output voltage 0.898 V at 25 ℃, which we had to calibrate in the application 

subsystem to ensure an accurate temperature is being read. These temperature readings are then 

sent to the 8:1 MUX, which allows the use of only four pins of the ESP32, three GPIO pins for 

selector signals and one ADC for sensor data, to read the temperature data from up to eight different 

rooms, thus minimizing the need for each temperature sensor to have its own respective input ADC.  

The MQ-9B gas sensor also operates from the 5 V supply line, but it has an additional heater element, as 

seen between pins 2 and 5 of the equivalent circuit in Fig. B.6 of Appendix B, that requires a switching 

voltage source between 5 V for 60 seconds and 1.5 V for 90 seconds in order for the sensor to accurately 

detect carbon monoxide concentrations. From the output of the gas sensor, a parallel sensing resistance 

of 4.7 KΩ is placed so that the concentration sensitivity can detect 20 ppm of CO. The output is finally 

sent through a low pass filter and read by an ADC on the ESP32. For the switching voltage requirements 

of the heater circuit, the initial design utilized the TS5A23157DGSR, a 2:1 MUX, that would switch 

between 5 V and 1.5 V given a selector signal from the ESP 32. The 2:1 MUX was only rated to carry a 

maximum of 50 mA, however, which was a problem as the heater circuit in the MQ-9B can draw up to 

156 mA at 5 V. The solution was to replace the MUX with a PMOS switching circuit using two 

DMP2045U-7 p-type MOSFETs as well as two gate signals from the ESP32. 
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For the RGB LEDs, series resistances of 1KΩ and 22 Ω are placed on the green and red LEDs respectively, 

which ensures both colors shine with comparable intensity off the 3.3 V signal they receive from two 

ESP32 GPIO pins. 

2.6.3 Design Verification  

For verifying the functionality of the MQ-9B, we were not able to get the heating circuit fully operational 

by the time of the project deadline, but the issue was found and corrected afterwards without testing 

being able to be performed. 

To verify the correct operation of the LEDs, when a fire was detected and LED data was sent from the 

ESP32, we visually confirmed that each LED lit up the correct color and that they were all equally bright. 

When verifying the temperature sensor functionality, initial measurements were showing higher 

temperatures than expected for room temperature, which correlates to a lower output voltage than 

expected. The solution is to add an offset into the app subsystem equation for calculating temperature 

to ensure each temperature reading was accurate. Table 2 below shows example readings at room 

temperature once the offsets were placed, and each reading gives a reasonable temperature in the 

range of 24°C to 26°C for room temperature. 

 

Table 2: Verification of Temperature Sensor 
 T1 T2 T3 T4 T5 

Temperature 24.544°C 24.600°C 26.074°C 24.754°C 26.900°C 

 

Additional tests were performed to determine how the temperature sensors responded to increases in 

temperature. These included using heat produced in our fingers to warm the temperature sensors and 

we saw an average reading of 28°C for each sensor as well as using a soldering iron to quickly heat the 

sensor, and we observed a sharp increase in temperature that quickly rose past 30°C and kept 

increasing. 

2.7 Vent Subsystem  

2.7.1 Design Decisions 

To ensure the user would have as much time to escape as possible, the vent subsystem closes all the 

vents in the user’s home as well as turn off the HVAC unit when a fire is detected to both isolate and try 

and suffocate the fire. When the fire is cleared, the vents open back up and the HVAC unit returns to 

normal operation. For the automated vents, a custom enclosure was designed to connect the Hiwonder 

HPS-2518 digital servo motor to the opening and closing mechanism of a vent cover. The HPS-2518 has a 

torque of 25 Kg cm, which is enough to operate the vent closure, and it can operate with a 7 V supply 

along with a PWM control signal that comes from the control subsystem. For the HVAC operation, a 

WP154A4SUREQBFZGC LED is used as a visual indicator instead of connecting an HVAC unit to our 

design to visualize when the unit will turn on and off. 
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2.7.2 Design Details  

To operate the digital servo motor, a PWM signal is sent from the ESP32 at a frequency of 50 Hz where 

the duty cycle of the pulses determines the angle the motor turns through. When connected to the vent 

enclosure, a duty cycle of 5% was found to correlate with the vent being open and a duty cycle of 10% 

was enough to close the vent fully. To minimize the current the motor draws from the 7 V line, the duty 

cycle is stepped by 0.3% over a range of about 2 seconds to meet the design requirements while 

lengthening the lifespan of the 9 V batteries and protecting the power subsystem from over currents. 

For the HVAC indicator, the RGB LED was connected to shine green whenever a fire was detected to 

signal that the HVAC unit would have turned off and turn off when the fire was cleared to indicate the 

HVAC unit would have returned to normal operation. 

2.7.3 Design Verification  

To verify the operation of the HVAC indicator, when a fire was detected, we visually confirmed that the 

LED indicator shines green and that it turns off once the temperature sensor cooled down and no fire 

was detected. 

For the motorized vent, we again visually confirmed that the vent would close and then open when a 

fire was detected and then cleared and confirmed that the opening and closing would each take around 

2 seconds to finish. From Appendix B, Fig. B.7 shows what the vent looks like when a fire is detected and 

it is closed, and Fig. B.8 shows what the vent looks like when a fire is cleared, and it is open. Over the 

operation of the vent opening and closing, a power supply was also used to measure the current draw of 

the motor to ensure it doesn’t exceed limits in the power subsystem. It was found that the current draw 

reached a maximum of 500 mA during opening, which falls within the ratings of the voltage regulator 

used to produce the 7 V line. 

2.8 Application Subsystem  

2.8.1 Design Decisions 

The Application Subsystem plays a vital role in the functionality of our project as LED navigation relies 

entirely on feedback from the application. Key decisions for the application subsystem revolved around 

ensuring a responsive and efficient user experience. The application needed to dynamically update with 

the latest data from the sensors and pathfinding algorithm while providing actionable insights to the 

user. We chose to use React for its component-based architecture and efficiency in building interactive 

UIs. Firebase was chosen as the backend service due to its real-time capabilities, allowing the app to 

update in real-time without requiring constant polling, which ensures the responsiveness of the system. 

As our goal is to provide the optimal escape route to the user as quickly as possible, we needed a way to 

store their floorplan for pathfinding. The simplest solution was to create a web application for the user 

to design their own floor plan including the sensors and LEDs corresponding to the numbered 

temperature boards. We chose a grid layout with drag-and-drop components for rooms, doors, sensors, 

LEDs, stairs, and exits using React-DnD, as it allowed the floorplan to be easily created and modified.  
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To use A-star to find the optimal path, we first needed to create a graph of the floorplan. Using the grid 

spaces, we were able to convert the user’s floor plan into nodes consisting of rooms and exits, with 

edges consisting of doors and stairs. Nodes contain name, position information, size information, 

sensor/LED number, and hazard information. The hazard information contains temperature, gas levels, 

and a hazard score. These are all initialized as 0 and only updated when the sensors are above the 

threshold.  

We chose to use A-star as our path-finding algorithm as it would efficiently provide us with the optimal 

path using weighted nodes. We first updated the hazard information, then ran A-star to find the optimal 

route to every exit. The optimal route after this is returned in terms of nodes, which contain LED 

numbers. The LEDs are assigned by making the optimal path green, hazardous areas red, and suboptimal 

locations as yellow. We chose to make the LEDs all yellow in the event of no possible exit as it would be 

a way to inform the user that they need to find an alternate solution. 

2.8.2 Design Details  

The Application Subsystem is built around several critical components, each of which serves a specific 

role in the system’s overall functionality. These components ensure that the user experience is 

seamless, interactive, and real-time, while enabling pathfinding and evacuation updates based on sensor 

data. 

Floorplan UI: 

 

 
Figure 8: Floorplan Interface 

The Floorplan UI is a visual representation of the building layout, which is displayed as a grid to the 

user. This grid allows the user to interactively place rooms, sensors, LEDs, doors, stairs, and exits, 

creating a customizable floor plan. The grid system provides users with the ability to drag and drop 

various components onto the grid to design their own floorplan. Each grid cell represents a portion 

of the floor, and each component (e.g., room, sensor, LED) is represented by specific markers or 

icons within those cells. Sensors and LEDs are assigned numbers in this UI which correspond to 

numbered temperature boards, allowing us to identify which room a sensor is in. When creating a 
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room, the Room Creation modal shown below appears, allowing the user to size and name the 

room. 

 
Figure 9: How to Develop Rooms 

Graph Builder: 

• The Graph Builder is responsible for converting the floorplan grid into a graph that can be used 

for pathfinding. In the grid, rooms and exits are treated as nodes, while connections between 

rooms, such as doors and stairs, serve as edges. Each room’s data, including its position, size, 

and hazard information (e.g., temperature and gas levels), is stored within the nodes. 

• The graph builder traverses the grid, creating nodes for rooms and exits and adding edges 

between adjacent rooms that are connected by doors or stairs. Once the graph is built, it is 

uploaded to Firebase, where it can be accessed by the path-finding algorithm for further 

calculations. This graph is used by the path-finding algorithm to find the optimal evacuation 

path, considering hazard levels and room connectivity. 

LED Assignment Algorithm: 

• The LED Assignment Algorithm is crucial for providing users with real-time evacuation guidance 

based on hazard levels and path finding results. After the A* algorithm calculates the optimal 

path, the system assigns LED colors based on the following rules: 

 Green LEDs: These represent the safest rooms as they are in the optimal path.  

 Red LEDs: These represent high-risk rooms that are hazardous, based on sensor data.  

 Yellow LEDs: These are used to indicate rooms that are not optimal but are not 

hazardous. 

• The LED colors are updated dynamically based on real-time hazard information from sensors 

and the path-finding algorithm’s output. The system ensures that the LEDs provide clear, 

actionable feedback to users during an emergency. 

Firebase Integration: 



14 
 

• Firebase serves as the backbone of the Application Subsystem, enabling real-time data storage 

and synchronization between the front-end UI and the back end. Firebase stores various pieces 

of critical data, including: 

 Floorplan Data: The grid layout, room configurations, and the associated data (e.g., 
sensor numbers, LED labels, hazard scores) are stored in Firebase. This ensures that any 
changes to the floorplan UI are reflected immediately in the database, allowing for easy 
updates and retrieval of the floorplan configuration. 

 Sensor Data: Firebase continuously updates with the latest readings from temperature 
and gas sensors. These readings are used to dynamically update the hazard status of 
rooms. This data is essential for hazard scoring and the LED assignment algorithm. 

 LED Feedback: Firebase stores and controls the LED configuration for each room, which 
is dynamically updated based on the pathfinding results and the hazard levels. This 
ensures that the user sees the correct evacuation path and hazard levels in real-time. 

2.8.3 Design Verification  

To verify the functionality of the application subsystem we need to test the Firebase integration, UI, and 

pathfinding algorithm. For our Firebase integration we manually verified that data was stored correctly 

by viewing the database. To ensure that the UI allowed the user to create and store floorplans, we 

created and stored various floorplans and inspected Firebase to ensure the graph representation was 

correct. This can be seen below, where the graph storage of a single room and door are shown. Verifying 

the pathfinding algorithm revolved around modifying sensor values in Firebase manually and ensuring 

that LEDs changed to the expected output as shown in the image below.  

 

Figure 10: Verification of the Application Subsystem  
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3 Cost Analysis  
There are some factors that will go into the cost analysis for this project. Firstly, here’s a list of all the 

parts that were required for our project.  

Table 3: Bill of Materials 
Component Part # Quantity Cost Total Price  

MQ-9 Gas Sensor B07KP4F9FF 2 $4.00 $7.99 

MQ-9B Gas Sensor SEN-17050 1 $6.50 $6.50 

9V Li Battery 1200mAh B09Q2Q3XCG 4 $5.098 $20.39 

Vent Cover RMGFR-4X10 1 $8.95 $8.95 

Digital Servo Motor B0DDKN9RS6 1 $13.99 $13.99 

Buzzer 5V  2223-CMI-9605IC-0580T-ND 2 $1.03 $2.06 

N-Channel Mosfet Switch IRLZ34NPBF 5 $1.45 $7.25 

01x03 Socket Connector 61300311821 2 $0.32 $0.64 

01x02 Socket Connector 61300211821 4 $0.36 $1.44 

01x05 Socket Connector 732-61300511821-ND 12 $0.325 $3.90 

01x08 Socket Connector 61300811821 2 $0.38 $0.76 

01x10 Socket Connector 732-2859-ND 4 $0.57 $2.28 

LED RGB WP154A4SUREQBFZGC 10 $1.253 $12.53 

Analog Temperature Sensor LMT84DCKR 10 $0.386 $3.86 

2:1 Dual Mux 296-27120-1-ND 2 $0.50 $1.00 

8:1 Mux CD74HC4051PWR 2 $0.32 $0.64 

Fixed 5V Voltage Regulator BD50FC0FP-E2 2 $1.63 $3.26 

Fixed 3.3V Voltage Regulator AZ1117CD-3.3TRG1 2 $0.64 $1.28 

Mosfet  IRLML0030TRPBF 2 $0.39 $0.78 

6.8𝜇H Inductor NRS4018T6R8MDGJ 2 $0.17 $0.34 

Buck Converter LMR33630 2 $2.94 $5.88 

Linear Adjustable Regulator 497-1482-5-ND 2 $1.43 $2.86 

Capacitor .1𝜇F (0805) C0805C104K5RACTU 20 $0.03 $0.60 

Capacitor 33𝜇F (0805) C0805X5R0J336M125AC 14 $0.474 $6.636 

Capacitor 10𝜇F (0805) C0805X106J8RAC7210 25 $0.653 $16.325 

Capacitor 1𝜇F (0805) CL21B105KAFNNNE 14 $0.021 $0.294 

BJT SS8050-G 4 $0.24 $0.96 

Resistor 10kΩ (0805) CRCW080510K0FKEAC 20 $0.04 $0.80 

Resistor 1.5kΩ (0805) RC0805JR-071K5L 10 $0.01 $0.10 

Resistor 22Ω (0603) ERJ-U01F0805C 13 $0.093 $1.209 

Resistor 43.2Ω (0603) CRCW080543R2FKEA 13 $0.031 $0.403 

Resistor 4.7kΩ (0603) CRCW0805K70FKEA 6 $0.10 $0.60 

Resistor 1kΩ (0805) ERA-6AED102V 20 $0.187 $3.74 

Resistor 182Ω (0603) CRCW0805RFKEAC 8 $0.11 $0.88 

Resistor 100kΩ (0805) RC0805JR-07100KL 8 $0.1 $0.80 

Switch Tactile 1825910-6 6 $0.13 $0.78 

Test Points 5005 35 $0.2624 $9.184 

Microcontroller  ESP32-S3-WROOM 3 $5.49 $16.47 

    $163.5 

As seen above, the total cost for our parts is $163.5. Adding a 10% shipping cost and a 7.25% sales tax 

increase, we get a new total cost of $191.7. 

We now must consider labor costs that go into our project. The average Graduate Electrical Engineer 

salary is $82,575 a year, the average for a Graduate Computer Engineer is $121,515 a year. So, taking 

hourly rates, we see that on average Electrical Engineers get paid $41.29 per hour, and Computer 

Engineers get paid $58.42 per hour. We have two electrical engineers in the group, and one computer 
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engineer. We estimated working 9 hours a week, which is around 9 weeks. As a result, we can estimate 

the total labor cost for our project as follows: 

2($41.29 ∗ 9 ∗ 9) + ($58.42 ∗ 9 ∗ 9) = $11,421 

So, in total, the estimated cost for this project is $11584.5. 

4. Conclusion 
By the day of our final demo, we were successful in achieving what we had set out to accomplish in our 

project, except for the gas sensor which we will talk about in more detail in the next section. We were 

still able to reach all our three high-level requirements, which was an achievement for our group. This 

Achievement shows our perseverance and diligence in working on this project and overcoming new 

challenges and adapting on the fly. During the demo, we showcased our project running and displayed a 

scenario in which the most optimal path is shown, and all this information was also available on the 

Firebase web page for everyone to see. And with this, this demonstration highlighted the functionality 

and reliability of our design if it were to be integrated into a practical application as it has a lot of merit. 

4.1 Uncertainties  
The gas sensor proved to be the component that we will struggle to get to work. The reason for this 

wasn’t a complex one, it was more of a timing issue. We had ordered our third round PCB board, which 

we expected would work with the gas sensor, but we forgot to account for the fact that the 2:1 Mux we 

were using was rated for 50mA, and the gas sensor demands 200mA. So, we then changed the design to 

PMOS logic switching which essentially will switch between the voltage levels needed for the MQ-9B 

heater pins to detect gases, 5V and 1.5V respectively. This change was only present on the fourth round 

PCB boards which came four days before the final demo. Upon testing the gas sensor, we noticed that 

all our voltage levels would be off, indicating that our implementation of the PMOS was causing 

excessive current draw which could affect the whole system if left on for long. The issue of this was 

simply a footprint issue on Ki-Cad, the model we had chosen had the incorrect footprint to what the 

actual PMOS was. So, given enough time, we are confident that we would be able to correct this issue as 

it would just require getting a new board that corrects this issue or find a way to twist the legs of the 

PMOS to fit the right ordering of source, drain, and gate as it corresponds to the chosen footprint.  

4.2 Future Work  
When it comes to the future of our project, we would of course like to get full functionality of our 

project, this means getting our gas sensor to work. Outside of this, future plans would be to replace the 

LEDs with something more practical for real life applications. For example, we can have LED strips on the 

floor (embedded), and with these strips, instead of having colored lights, we can just have a bright light 

on the floor that shines the given path to safety. The reason for the floor is because smoke can reduce 

visibility, so, the area in which you will be able to see more clearly would be the floor.  

In addition to this newly reinvented LED model, we would also like to add more than just a single-story 

layout. As of now, our model will only work for single-story homes, so, in future work, we will make it so 

there can be multilayered houses, i.e., the second floor, and basement house models will work. Then, 
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once this works, we can then make it work for hotels as well where it would most likely be the most 

useful as it would be beneficial to have these guides in hotels.  

4.3 Ethics  
In designing our fire and gas detection system, we adhere closely to the IEEE and ACM Codes of Ethics to 

prioritize the well-being and privacy of our users. Our foremost ethical responsibility is to protect public 

health and safety, in alignment with IEEE Section I.1, which includes disclosing any safety risks 

associated with our project. Furthermore, our system’s use of personal data such as user-input floor 

plans raises ethical considerations under ACM Section 1.6. We address this by ensuring that all personal 

information is securely handled, accessed only by the control unit, and limited strictly to what is 

essential for safe navigation and system operation. 

4.4 Safety 
Safety is integral to every aspect of our project, from power systems to environmental testing. We 

mitigate the risks of using 9V batteries by implementing fault protection to prevent harm to users and 

hardware. During development, we will test sensors in controlled, ventilated environments, especially 

when simulating hazardous conditions like carbon monoxide exposure to uphold lab safety standards. 

Additionally, moving components like the automated vent system will be safely enclosed to prevent 

injury, and precautions will be taken to ensure the HVAC system shuts off correctly during emergencies 

to safeguard both the equipment and the user. 
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Appendix A: Requirement and Verification Table 
 

Table 4: Sensor Subsystem RV Table 
  

Requirement Verification Verification 
status  

(Y or N) 

1. The Temperature 
Sensor will be able to 
measure temperature 
from -50°C to 150°C 
with an accuracy of 
±0.4°C. 

1. Power on the Temperature Sensor (LMT84DCKR) 
with 5V. With a Voltmeter, measure the voltage 
at ambient temperature, and use the transfer 
function table given in the document to read out 
the corresponding temperature. Compare this 
with the room temperature.  

a. Using a heat source, measure the voltage 
and if it decreases, it shows proper 
functionality 

b. Using a cold source, measure the voltage 
and if it increases, it shows proper 
functionality.  

Y 

2. The gas sensor will be 
able to detect Carbon 
Monoxide ranges 
from 10~500 ppm, 
Methane ranges from 
300~10000ppm 

2. Power on the Gas Sensor (MQ-9B) by using a 5V 
DC source across pins 3 and 6. Next, you need a 
separate power supply that can cycle between 5V 
and 1.5V for 60s and 90s respectively across pins 
2 and 5. Measure the output as it will read a 
voltage value, use the table provided in the 
document to convert this value into ppm and see 
if it’s within reasonable ranges in ambient 
environment.  

a. Find a way to produce Carbon Monoxide 
(burning paper), then bring this close to 
the gas sensor and note if the voltage 
increases, if so, the functionality is 
verified.  

N 

3. The LEDs will display 
yellow, green, and 
red colors above 
300mcd which we 
deemed to be bright 
for our 
demonstration. 

3. Power on the LED with 3.3V across pins 1 and 4. 
These pins should also have a current limiting 
resistor, a value of 100Ω should be fine in testing 
the LED. Ground the Cathode, pin 2, and once the 
power is on you should verify if yellow is seen, 
you can use a phone app to measure the 
brightness.  

a. Next, we will disconnect power from pin 
4 and only power on pin 1. You should 
now see red, verify the brightness. 

b. Finally, we will disconnect power from 
pin 1 and give power to pin 4. You should 
now see green, very brightness. 

Y 
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Table 5: Vent Subsystem RV Table 

Requirements Verification  Verification 
status  

(Y or N) 

1. The Motor should 
positionally be able 
to rotate its arms 
from 0-180° 

1. Power on the motor with a 7V input. Using a 
signal generator, adjust the duty cycle to verify 
that the motor arm can rotate from 0-180°. Y 

2. The motor should be 
able to open and 
close the vent  

2. Power on the servo motor with a 7V input and 
apply a PWM signal from the ESP32 with 
positional commands which will rotate the arm to 
0° which is our open position. 

a. Next, to verify that the vent can close, 
send a command from the ESP32 which 
will close the vent which occurs at 180°. 

Y 

3. The motor should at 
maximum draw 
500mA during it’s 
opening and closing 
operation  

3. Power on the servo motor with a 7V input and 
apply a PWM signal from the ESP32 which will 
rotate the motor arm from 0-180°. With the 
power supply, measure the amount of current 
that is drawn when you send the command for the 
motor to close and open.  

a. Next, if the current draw is peaking at 
500mA, then, raise the current limit to 
600mA, ensure that the range is close 
enough to 500mA to protect the batteries 
from discharging fast.  

Y 

 

Table 6: Application Subsystem RV Table 

Requirements Verification  Verification 
status  

(Y or N) 

1. The Application must 
correctly display and 
store the user-defined 
floor plan. 

1. Test drag and drop functionality and create 
example floor plans. 

a. After constructing graph 
representations, use visualization 
tools to print the graph and manually 
ensure it is correct.  

b. Store to Firebase and manually ensure 
the graph is stored correctly.  

Y 

2. The app must determine 
and communicate the 
escape route to the 
control unit within 5 

2. Use logging within the application to 
determine the time taken to calculate the 
optimal route and the time taken to store the 
LED configuration.  

Y 
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seconds of hazard 
detection. 

a. Run the algorithm with dummy sensor 
data and an example floor plan to 
ensure the time taken to calculate the 
route and store the LED configuration 
is less than 5 seconds.  

3. The app must 
consistently receive 
sensor data while 
connected to Wi-Fi in 
real time. 

3. Display sensor data in the application read 
directly from Firebase.  

a. Connect the ESP32 to Firebase to 
store sensor data. 

b. Manually change sensor values by 
increasing temperature and verify 
real-time changes in the application.  

Y 

 

Table 7: Power Subsystem RV Table 

Requirements Verification  Verification 
status  

(Y or N) 

1. The LDO Regulators 
must be able to 
sustain 7V and 1.5V 

0.2V at a load of 
500mA  

1. Power on the PCB board with 9V, in this case, you 
can use the motor to give you 500mA load or find 
another way to get a 500mA. Next, using a 
multimeter, you can probe the output of the 
regulator, and then, send a command to the 
motor to turn on and draw current.  

a. Monitor the voltage across the regulator, 
you should see that 7V and 1.5V is 
maintained so regulation is guaranteed 
for our project.  

Y 

2. The Buck Converter 
should output 3.3V 

0.2V at a load of 
500mA.  

2. Power on the PCB board with 9V, find a load that 
can draw around 500mA. Next, probe the output 
of the buck converter, and observe that the buck 
converter can maintain 3.3V at 500mA load.  

Y 

3. The fixed voltage 
regulator should 

output 5V 0.2V at a 
load of 500mA.  

3. Power on the PCB board with 9V, find a load that 
can draw around 500mA. Next, probe the output 
of the regulator and observe that the regulator 
can maintain 5V at a 500mA load.  

Y 

4. The battery must be 
able to provide 9V 
during the 1200mAh 
operation. 

4. Set up a no-load test to measure the voltage 
across the battery, a fresh battery should be 9V or 
higher.  

a. Connect a 1kΩ load resistance to the 
battery and see if the battery maintains a 
voltage of around 9V with this light load.  

b. If an extra battery is available, use a 
resistor that draws 300mA. The battery 
should then last 4 hours at a 300mA load.  

Y 
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Table 8: Control Subsystem RV Table 

Requirements  Verification  Verification 
status  

(Y or N) 

1. ESP32 should be able to 
send PWM signals for the 
motor  

1. Power on ESP32 with 3.3V and program a 
PWM capable GPIO pin on the ESP32 which 
will send a square wave at a given duty cycle 
in a period. 

a. Connect an LED with some current 
limiting resistor to the output of the 
PWM pin.  

b. You should now note that the LED 
will go bright, and after a while will 
dim, and continue this cycle 
indicating successful PWM signal.  

Y 

2. ESP32 should be able to 
connect to the Wi-Fi to 
ensure connection to 
Firebase 

1. Power on ESP32, use the Wifi.h library and 
follow the rules on how to connect to the Wi-
Fi. Once you run the code, you should now 
see in the console that the ESP32 has 
connected to the Wi-Fi.  

a. You now must ensure that ESP32 will 
send the information to Firebase, this 
can be done by following the Firebase 
library available in Arduino IDE. Upon 
doing this, you will note that on the 
Firebase page, ESP32 is now 
connected.  

Y 

3. ESP32 will read 
temperature sensor data 
from an 8:1 multiplexer in 
milliseconds. 

a. When a sensor 
reaches the 
threshold 
temperature 
(90°) indicating a 
fire, an alarm will 
sound. 

b. The alarm should 
be turned off 
when the fire is 
cleared. 

3. Power on the ESP32 as well as the 
temperature sensors and the alarm. Without 
any hazard, verify that the ESP32 is cycling 
through the channels and reading accurate 
data from the sensors (room temperature) in 
milliseconds.  

a. Upon verification of the previous 
step, take a heat source, or lower the 
threshold of when the alarm triggers, 
but you now want to heat one of the 
temperature sensors up. 

b. Notice that only one temperature 
sensor starts increasing in 
temperature, if you do get it to 90°C, 
you should read .543V using a 
multimeter on the temperature 
sensor output.  

c. Upon reaching this level, the ESP32 
should trigger the alarm. Once the 
temperature sensor falls below the 

Y 
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threshold, the alarm should shut 
down.  

4. ESP32 correctly stores 
sensor values to Firebase 

4. Power on the ESP32, set up the sensors with 
the ESP32 connected to Wi-Fi. Then program 
the ESP32 to store sensor data in Firebase.  

a. Manually change sensor values by 
increasing temperature and verify 
real-time changes in the database.  

Y 

5. ESP32 correctly reads LED 
configuration from 
Firebase and signals the 
right LEDs to turn on  

5. Power on the ESP32 and connect to the Wi-Fi 
and set up the LEDs. Program the ESP32 to 
store sensor data in Firebase.  

a. Store an example LED configuration 
that you manually make in Firebase 
and check to ensure that the LEDs 
that turn on match the configuration.  

Y 

6. The buzzer should be able 
to play a sound of 80dB at 
5V.  

6. Using your board or a power supply, connect 
the buzzer to a 5V source. A sound should 
immediately sound, and the range should be 
around 80dB.  

a. Use a phone app or a decibel meter 
to measure how close the sound 
being played is to 80dB. 

b. If the sound is within ±4dB of 80dB, 
then the alarm is functioning 
properly, if not, use a voltmeter to 
measure the voltage across the 
buzzer alarm ensuring that is indeed 
5V.  

Y 

7. ESP32 can read values 
from the gas sensor and 
trigger an alarm once the 
threshold is passed (CO > 
20ppm) as well as turning 
off the alarm once the 
concentration returns to 
normal levels.  

7. Power on the ESP32 as well as the gas sensor 
with their respective voltages that are 
required. Upon ensuring that the ESP32 is 
reading values from the gas sensor by looking 
at the console and reading that the values are 
of normal concentration (clean air). 

a. Grab a carbon monoxide source, 
burning paper works, and bring it 
close to the gas sensor. Once the 
threshold is met, the alarm should 
start ringing. 

b. Once the hazard clears, the alarm 
should stop playing the sound and 
you will be able to visually confirm on 
the console that the gas 
concentration is indeed decreasing. 

 

N 
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Appendix B: Figures  

 
Figure B.1: Fire and Gas PCB Schematic 
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Figure B.2: 3D View of Main PCB Board 

 
Figure B.3: Temperature Sensor PCB Schematic 
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Figure B.4: 3D View of Temperature PCB Board 
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Figure B.5: Temperature Sensor Readout Values 
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Figure B.6: Gas Sensor Circuit 
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Figure B.7: Project Functionality in the Case of Fire 



30 
 

 
Figure B.8: Project Functionality in the Case of no Hazard 



31 
 

Appendix C: Schedule  

 

Table 9: Schedule of Project 

Week Task Person 

 

 

March 2nd - March 9th 

Finish 1st round PCB orders Alex 

Finish Design Document  

Everyone 
Start Breadboard Testing 

Teamwork Evaluation 1 

 

March 9th - March 16th 

2nd round PCB orders (3/13/25)   

Everyone  
Breadboard Demo (3/11/25) 

Start Developing Application Jainam 

March 16th - March 23rd Spring Break  

Everyone 
Start the Individual Progress Report 

March 23rd - March 30th Start Soldering/Debugging Abel & Alex 

Start Testing Application Jainam 

 

March 30th - April 6th 

Third Round PCBway orders (3/31/25)  

Everyone 
Individual Progress Report (4/2/25) 

Start to integrate both Software and Hardware 
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April 6th - April 13th  

Final Round PCBway Orders (4/7/25)   

 

 

Everyone 

3D print enclosure for the PCB boards 

Have the Model of the floorplan ready 

Continue Testing the System under different circumstances 

 

April 13th - April 20th 

Start working on Final Paper  Abel 

Continue Testing with full modelled system   

Everyone 
Prepare for Mock Demo  

 

April 20th - April 27th 

Mock Demo (4/22/25)  

Everyone 
Finalize Testing for the Final Demo  

Start work on Final Presentation  

 

April 27th - May 4th 

Week of the Final Demo  

Everyone 

 Finalize Presentation  

 

May 4th - 11th 

Week of the Presentation   

Everyone 
Finish the Final Paper (5/7/25) 

Lab Notebook Due (5/8/25) 

 


