

 ECE 445

 SENIOR DESIGN LABORATORY
DESIGN DOCUMENT

Secure Food Delivery Dropbox

Team No. 64
Rohan Samudrala

(rohans11@illinois.edu)
Dhruva Dammanna

(dhruvad2@illinois.edu)
Taniah Napier

(tnapier2@illinois.edu)

 TA: Chi Zhang
Professor: Michael Oelze

May 7, 2025

mailto:rohans11@illinois.edu
mailto:dhruvad2@illinois.edu
mailto:tnapier2@illinois.edu

Abstract
This document focuses on designing a Secure Food Delivery Dropbox that provides a safe and
reliable holding area for food delivery. By integrating a robust authentication and heating
subsystem, the device is easy for drivers to access while providing constant information to the
user about their order status from a secure location.
The following document provides and explains the logic, details, and diagrams involved in
designing, implementing, and verifying the Secure Food Delivery Dropbox. In addition, this
document contains information about the parts used, a cost analysis, a weekly schedule of
completion, and an examination of the safety & ethics for our project.

2

Table of Contents

1. Introduction.. 4

1.1 Purpose.. 4
1.2 Functionality..4
1.3 Block Diagram...5

2. Design.. 6
2.1 Design Details..6

2.1.1 Power subsystem..6
2.1.2 Control subsystem..8
2.1.3 Authentication subsystem.. 10
2.1.4 Box Mechanics subsystem... 11
2.1.5 Heating subsystem... 12
2.1.6 User interface subsystem... 14
2.1.7 Physical Box Design.. 15

3. Cost and Schedule.. 15
3.1 Cost Analysis...15

3.1.1 Labor estimate:...15
3.1.2 Parts estimate:.. 15
3.1.2 Total cost estimate:...15

3.2 Schedule...16
4. Conclusion...17

4.1 Accomplishments, Future Work, and Changes..17
4.2 Ethical Considerations...17

References... 18
Appendix A: Requirements and Verification Table.. 20
Appendix B: Cost of Parts Table...25
Appendix C: Detailed schedule... 26
Appendix D: Supporting Images.. 28

3

1. Introduction

1.1 Purpose
About 70% of college students order food from third-party delivery platforms such as Uber Eats and
Doordash[1]. The problem with using these delivery services is that upon arrival, the food order is left
outside and is susceptible to theft, getting cold, or getting damaged, but the students might be able to
retrieve their food immediately due to being busy with classes or working or might have possibly ordered
ahead to have food ready when they get home. In 2024, there were approximately 311.1 million users of
the online food and grocery delivery market in the United States alone, and this number is projected to
continuously rise.[2]

To address this issue, we designed a secure food delivery dropbox that will keep the food safe, and if
necessary, warm. The box will remain locked until the driver opens the box by using a one time use
keycode which is provided by the user. The user has access to an app that will show whether the food is
inside the box. The user can also turn on heating inside the box to keep their food warm and monitor the
temperature inside the box through the app. Once the user is ready to retrieve their food, they must enter a
master keycode, that they can set via the website, and scan a registered RFID tag to open the box.

1.2 Functionality
For our design we had 3 high level requirements that our product should meet in order to be considered a
complete success.

1. Authentication: Authentication should initiate unlocking the box with correct inputs and keep the
box locked with incorrect inputs. Specifically, authentication using the temporary code on the
keypad should unlock the lock for 30 seconds 100% of the time, and authentication using the
RFID sensor should require the master keycode to be entered within 30 seconds and unlock the
lock 100% of the time when both are correct.

2. Box Mechanism: The load cell in the box should detect the presence of an object of at least 40
grams and should indicate on the website that there is either no food or there is food in the box
within 20 seconds of the object being placed or removed 100% of the time.

3. Code generation: A master keypad code should only be generated when the user decides to
change the code on the website, and only the latest master code generated should work. The
master code should work within 30 seconds of making a new master code. Temporary keypad
codes should be generated when the previous temporary code was used, and the old temporary
code should not work. The temporary code should be sent to the user within 30 seconds of
generation.

The first requirement is important to the overall project because it highlights the process of opening the
box and making sure food can be placed inside and retrieved safely and securely. The second requirement
ensures that the box relays the presents of food inside the box to the user, further establishing the security
aspect of the box. The third requirement is important to ensure that the driver or other people can not
reuse a one time use keycode to open the box and take the food inside the box unauthorized.

4

1.3 Block Diagram

Figure 1: Block Diagram for Secure Delivery Dropbox

To describe the Block Diagram shown in Figure 1, the power subsystem will provide 12V to the heater
and the solenoid lock and then 3.3V to everything else. The control subsystem will communicate with the
user interface subsystem via HTTP and perform all of the logic of the project. The heating subsystem will
read the temperature and toggle on and off the heater. The box mechanics subsystem will lock/unlock the
box as well as read if there is food on the scale. The authentication subsystem has a one time use
temporary code for the delivery driver to use as well as a 2 factor authentication system with an RFID tag
and a master keycode for the user to use. More details about the subsystems and how they work will be
provided in the design section.

5

2. Design

2.1 Design Details
Our design process involved splitting the box into multiple subsystems as described in the block diagram.
By splitting up the PCB into simpler sections, it was much easier to digest each subsystem and then put it
all together at the end. We will now go into more detail on each subsystem as well as the design of the
box.

2.1.1 Power subsystem

The power subsystem provides the needed power to every component in the PCB. The power subsystem
has 3 parts to it: an AC to 12V DC wall converter, an LM2596-4.7V[3] DC to DC Buck Converter, and 2
AMS1117-3.3V[4] Linear Regulators, one for the ESP32 and one for everything else using 3.3V. The
solenoid lock and heater require 12V, and everything else on the PCB requires 3.3V. The AC to 12V DC
wall converter provides power to the solenoid lock and heater, and the AMS1117-3.3V Linear Regulator
provides power to everything else. The reason why the LM2596-4.7V DC to DC Buck Converter is used
is the step down from 12V to 4.7V for the AMS1117-3.3V. A linear regulator burns off excess voltage as
heat, so going from 12V down to 3.3V will create much more heat than going from 4.7V down to 3.3V.
The reason why 4.7V was chosen is that the AMS1117-3.3V has a dropout voltage of 1.1V, meaning that
to get a voltage of 3.3V consistently, a voltage of 3.3V + 1.1V = 4.4V or greater must be input. 4.7V fits
this need and allows the AMS1117-3.3V to deliver 3.3V consistently. The max current drawn from
everything using 3.3V is about ~337mA, and for everything it is about ~1.83A. The current draw and
voltage for each component are as follows:

ESP-32-S3-WROOM-1 N4R2: 300mA, 3.3V
DSB1280: 3mA, 3.3V
RC522 RFID Reader: 30mA, 3.3V
3X4 Keypad: 1mA, 3.3V
HX711: 3mA, 3.3V
Solenoid Lock: 500mA, 12V
Heater: 1A, 12V

The equation

 (1) 𝑃
ℎ𝑒𝑎𝑡

= (𝑉
𝑖𝑛

− 𝑉
𝑜𝑢𝑡

) * 𝐼
𝑙𝑜𝑎𝑑

can be used to calculate how much power is being converted to heat by the AMS1117-3.3V Linear
Regulator when 12V is inputted versus when 4.7V is inputted. Below are equations comparing the heat
generated for each scenario

 = ~ 2.93 W 𝑃
ℎ𝑒𝑎𝑡

= (12𝑉 − 3. 3𝑉) * 337𝑚𝐴

 = ~ 0.47 W 𝑃
ℎ𝑒𝑎𝑡

= (4. 7𝑉 − 3. 3𝑉) * 337𝑚𝐴

Dropping from 12V down to 3.3V generates ~2.36W of extra power being converted to heat when
compared to dropping from 4.7V down to 3.3V.

6

Another option would have been to drop the voltage from 12V down to 3.3V directly using the DC to DC
Buck Converter. DC to DC Buck converters do not generate nearly as much heat as a linear regulator. The
only problem with this is that DC to DC Buck Converters create a lot of switching noise. In our case, the
LM2596 has a switching noise of ~150 kHz. The switching noise would interfere with the ESP32’s WiFi
communication. Using a linear regulator will filter out the noise from the DC to DC Buck Converter,
allowing the WiFi to work on the ESP32.

Another design choice made here was to have one AMS1117-3.3V Linear Regulator for the ESP32 and
one for everything using 3.3V. The AMS1117-3.3V is capable of drawing at most 800mA, but it is
recommended to have a separate regulator for the ESP32 because sharing it among other components
using 3.3V can cause the noise from those to interfere with the WiFi of the ESP32.

The AMS1117-3.3V and LM2596 were implemented on the PCB using breakout boards, this is because
we did not know if we could get the circuits that we developed to work as intended. With this design
choice, we were able to switch between breakout boards we bought and tested that worked and breakout
boards that we designed ourselves. The breakout boards that we developed were not outputting the correct
voltages; the AMS1117-3.3V was outputting 2.7V consistently, and the LM2596 was outputting 5.7V
consistently. Because of this, we decided to use breakout boards that we bought, as they worked as
intended. Voltage is never 100% stable, so to account for this, we added a tolerance analysis for the 12V
of ± 0.3V and for the 3.3V of ± 0.1V. Using the multimeter, we were able to verify that our power
subsystem satisfied these constraints.

 Figure 2: AMS1117-3.3V Breakout Board Schematic

7

 Figure 3: LM2596 Breakout Board Schematic

2.1.2 Control subsystem
The control subsystem contains the ESP-32-S3-WROOM-1-N4R2[5] and the UART circuit to program
the ESP-32-S3-WROOM-1-N4R2. It takes in 3.3V and has its own linear voltage regulator. The control
subsystem is responsible for all program logic, which includes sensor data processing, keypad and RFID
input handling, hosting the web server, toggling the heater, locking/unlocking the solenoid lock, and
keycode generation. We chose the ESP32 because of its built-in WiFi, which enabled remote access
through our website, as well as the large number of GPIO pins to support all of our components. The
ESP-32-S3-WROOM-1-N4R2 also has a 240 MHz dual-core processor and 4 MB of flash memory,
providing our project with the processing power it needs.

Our original design was to program the ESP32 by routing a micro-USB's D+ and D− traces directly to
GPIO 19 and 20, bypassing the need for a USB-UART chip. The issue with this was that the length of D+
and D- traces needed to be within 1 mm of each other to work properly, which was very difficult to
achieve in our PCB with all the other traces we had. Also, another problem with using a micro-USB's D+
and D− traces was that they needed to have extra ESD protection; without it, static discharge from human
touch could potentially fry the ESP32.

After realizing that using a micro-USB to program the ESP32 was not ideal, we decided to use an external
USB-UART bridge. The USB-UART bridge allowed us to easily program the ESP32 by just exposing the
TX, RX, 3V3, GND, IO0, and EN pins and plugging in our USB-UART bridge. The USB-UART bridge
that we used was the ESP PROG[6]. It is a USB-UART bridge that is built for the ESP 32, so all we had
to do was just plug in the pins of the ESP PROG to the corresponding ESP 32 pins. The ESP PROG uses

8

the FTDI UART communication protocol, so we had to install the drivers on our computer to be able to
program the ESP32 using the ESP PROG.

Once we set the way to program the ESP32 we then set up the coding environment in Arduino IDE. We
used the Arduino programming language to program the ESP32 as well as the Serial Monitor in Arduino
IDE to debug our code.

The ESP32 is capable of using different communication protocols, which we used to communicate with
our components. Below are the communication protocols used for everything connected to a GPIO pin of
the ESP32:

On/Off: Heater, Solenoid Lock
SPI: RC522 RFID Reader
Matrix Scanning: 3X4 Keypad
Digital Input: HX711
One Wire: DSB1280

With everything connected and the ESP 32 being able to be programmed, we then wrote the logic of the
program, which can be seen in Appendix D, Figure 11 as a flow chart. To get data from the sensors, we
used different polling rates that we found would best fit the project: the load cell was polled every 5
seconds, the temperature sensor every 15 seconds, the RFID reader every 100 ms, and the keypad every
10 ms. This approach allowed the box to function as intended without overloading the ESP32 with
excessive polling. Our control subsystem was able to run our entire program and was able to be
programmed, showing that it worked as intended.

Figure 4. Control subsystem schematic

9

2.1.3 Authentication subsystem
The authentication subsystem is responsible for verifying if the user or delivery driver can unlock the box.
The authentication subsystem contains a 3×4 keypad[7] and an RC522 RFID[8] reader. It ensures that the
box is secure and does not allow unauthorized access. The driver will receive a one-time use temporary
keycode to unlock the box. The temporary keycode can only be used once to ensure that the driver can not
open the box multiple times. Then the user can open the box using their master keycode they set on the
website, and the RFID tag given with the box. Both the master keycode and the RFID tag are needed to
open the box, as 2-factor authentication was implemented to increase the security of the box. The RFID
tag and master keycode can be entered in any order, but they must be entered within 30 seconds of each
other.

The first part of the Authentication subsystem is the COM-1622 3x4 keypad[7]. The keypad consists of a
matrix of wires and switches, with 7 connection pins, one for each row and column. When a key is
pressed, it pushes a switch connecting the row and column. For example pushing number 1 connects the
row 1 and column 1 traces, allowing current from the ESP32 to flow through. This matrix scanning
communication method sends data to the ESP32, which can then parse that signal as a key press.
Our keypad setup stayed the same throughout the whole process. We tested that it worked using an ESP32
dev board on a breadboard, so we were confident it would work on the PCB as it did.

Figure 5. Authentication subsystem schematic

The second part of the Authentication subsystem is the RC522 RFID[8] scanner, which takes 3.3V. Each
RFID tag has a unique ID that we could authorize in our code. When the RFID tag with an authorized ID
approaches the scanner, the scanner uses radio signals to detect the tag and send the data in the serial data
line (SDA). The scanner communicates with the microcontroller with the master out slave in (MOSI) and
master in slave out (MISO) lines as seen in Figure 5. The scanner also has a serial clock input (SCK) from
the ESP32. This communication format is known as Serial Peripheral Interface (SPI). With this setup, the
ESP32 can recognize all authorized RFID tags and decline any unauthorized tags.

10

Initially, this subsystem was going to use a fingerprint sensor instead of the RFID reader. This was later
changed to use an RFID sensor, as fingerprint sensors can sometimes reject a correct fingerprint and take
many more false positives and negatives, which was an issue in our testing.

2.1.4 Box Mechanics subsystem

The Box Mechanics subsystem consists of the Lock-style Solenoid and the 0-5kg load cell. The lock-style
solenoid [9] is powered by the 12V wall outlet. The electromagnets inside the lock, which move the
mechanism, take a lot of current (around 500mA), so the wall outlet is used directly for power. When
current is applied to the lock, the inductor inside the lock turns on a magnetic field, pulling back the
deadbolt. We control the lock using a GPIO from the ESP32 and a BJT. When the lock needs to be
activated, the control system sets the solenoid lock GPIO to high. This activates a 3.3V data line that
heads into the base of a TIP 120[10] BJT through a resistor, closing the circuit from the power source to
the lock. This was part of our original design, which we were able to test on a breadboard and then
convert to the PCB. One change we made was adding a flyback diode in parallel to the lock so that no
reverse kickback voltage could flow when the lock was suddenly deactivated, which could lead to
sparking or burnout of the part.

Figure 6. Box Mechanics subsystem schematic

The other portion of the box mechanics was the 0-5kg load cell [11]. The load cell is placed at the bottom
of the box underneath a plate so that when food is placed on the plate, the load cell can detect food. The
load cell works by a strain gauge placed on top of the thin metal bar. When a load is placed on the plate,
the metal bar undergoes some strain, slightly stretching it and changing the resistance of the circuit placed
above it. This change in resistance corresponds to a change in current from the 3.3V input, which can be
translated to a weight measurement. We fed the output of the load cell into an HX711 analog-to-digital
amplifier [12] circuit to amplify the signal. The HX711 will then output a Data Out and an SCK signal to
the GPIO pins of the ESP32 for processing. Once we had the circuit set up, we tested the output with
known weights and modified a calibration factor in the code to get a more accurate weight in grams. We

11

found this value to be around -400 from our setup and testing. The outputs from our testing, once
calibrated, can be seen in Figure 7.

We made many changes to the load cell from our original design. Originally, we planned to use a 0-500g
load cell for its greater specificity, which fit our expected food range. However, we switched to a 0-5kg
load cell for its bigger physical size in the box and wider range of detectable weights. Since our design
implementation only mattered if the weight was above a certain threshold, the greater resolution in weight
outputs mattered less, and a larger range was preferred. Another change we made was in the amplifier. We
originally used a system involving an INA125PA chip to amplify the signal, but we then changed it to an
HX711. The change was made since we found more info on the setup of the HX711 chip, as it was the
recommended chip for our model of load cell.

Figure 7. Load Cell reading with food present and absent

2.1.5 Heating subsystem
The heating subsystem consists of the DS18B20 temperature sensor and the polyimide heater. The
DS18B20 temperature sensor[13]takes a 3.3V input and outputs the temperature back to the ESP32
through a one wire protocol. The temperature sensor outputs an accurate temperature reading within 2℃
of the thermometer at all times, often much closer when the temperature stabilizes. The temperature
sensor gave the ESP32 the data needed to send the user the box temperature and allowed it to turn on and
off the heater at a given temperature, unlike just using a thermometer.

12

Figure 8. Heating subsystem schematic

The other part of the heating subsystem is the heater itself. The polyimide heater[14] receives 12V, 1A
directly from the wall outlet for the maximum power input for the greatest maximum heating option. The
heater is controlled by a TIP120 BJT [10] where user input toggles an ESP32 GPIO which feeds into the
base of the BJT, either allowing the 12V to pass to the heater or not. To ensure that the heater never got
too hot we installed a failsafe protocol in the code. If the heater ever got over our benchmark of 32℃
(90F), the heater would automatically shut off by removing base current from the ESP32. The user's
control over the heater would be temporarily disabled until the temperature at least reached 31℃ again.
This ensures that the heater can never get too hot to burn things placed inside or cook any food placed
inside. Our testing to determine the functionality of this failsafe can be seen in Figure 9.

One change we made to the heating subsystem from our original design was the change from a nichrome
coil. Originally, we planned to create a coil using nichrome wire as a heater for the box. However, safety
concerns led us to buy our own premade polyimide heaters with their insulation. The setup still worked
with a BJT, but having an exposed warm coil people could brush their hands against wasn’t a safe
solution.

Figure 9. Temperature readings testing heater failsafe

13

2.1.6 User interface subsystem

The user interface subsystem is what the user sees when they use the website. It is designed to provide the
user with a seamless experience when using the secure food delivery box.

Originally, the user interface was going to be a computer application that the user could use to interact
with the box. The issue we found with this was that many people who use food delivery services like
Uber Eats and DoorDash use it on their phones. So, in order to make the project more user-friendly, we
decided to create a website instead so that users can use it on their phone, and if they want to, they can
still use their computer. The user interface gives the user all the control they need over the box and
updates them on the status of the box.

 Figure 10.1. User Interface on Boot Figure 10.2 User Interface with unlock, food, heater

14

2.1.7 Physical Box Design
To create the actual box, we went to the ECEB Machine Shop for help. Initially, we planned to use a crate
with a lid that opens up and down. After a discussion with the machine shop, we decided to use a locker
for the box and then put a box on top of the locker for the PCB and all the sensors to connect to. Using a
locker is much more reasonable for this project, as it makes everything compact and not bulky when
compared to using a crate. The locker had some built-in holes which we used to stick the heater and
temperature sensor through. The load cell was placed on the bottom of the locker with a thin aluminum
plate on top of it so that weight could be placed on the load cell. The load cell wires were wired through
the inside of the box in the corner and then went through a hole to the outside of the box to connect to the
PCB. The same setup was done for the solenoid lock, except the lock was mounted on the latch side so
that it could properly lock and unlock the box. The 3X4 keypad was mounted on top of the box, and the
RFID sensor was hanging outside with wires outside the door. The RFID was meant to be mounted with
the keypad on top of the box, but we ran into an issue where the Electromagnetic Interference from the
PCB was interfering with the RFID reader’s ability to read RFID tags. To fix this, we had to move the
RFID sensor so that it was not near the PCB. Images of our box can be found in Appendix D.

3. Cost and Schedule

3.1 Cost Analysis

3.1.1 Labor estimate:
According to [15], the average yearly salary of a graduate electrical engineer from UIUC is $87,769.
From an average work week of 40 hours/week, this works out to almost $50 per hour. We expect to work
an average of 15 hours per week for 10 weeks or a total of 150 hours per person on this project.

Labor cost per person = $50/hour * 2.5 * 150 hours = $18,750 (2)
Total Labor cost = $18,750 * 3 people = $56,250

3.1.2 Parts estimate:
All capacitors, resistors, BJTs, and screw terminals used in the project were acquired from the ECE shop
for free. In addition, the box itself was made by the ECE machine shop for free as well. The cost of
individual parts needed for the project can be seen in Appendix B for a total of $117.53.

Total Parts cost = $117.53

15

3.1.2 Total cost estimate:
The total cost of our project, including both the cost of project components and labor, amounts to:

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = (3) 𝐶
𝑝𝑎𝑟𝑡𝑠

+ 𝐶
𝑙𝑎𝑏𝑜𝑟

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = $117.53 + $56,250 = $56,367.53

The project cost $56,367.53 in total.

3.2 Schedule
Overall, we split the work between us relatively evenly. A detailed breakdown of the week by week
schedule is present in Appendix C.

16

4. Conclusion

4.1 Accomplishments, Future Work, and Changes
The final product of our design was fully functional and passed all of our requirements and verification
tests. Our box was able to be opened with a temporary code, then a new temporary code was randomly
generated immediately after. Once food was placed on the scale inside the box the website updated to
correctly show the presence of food inside the box. The user was also able to turn on and off a heating
element inside the box through the website and see the temperature reading from a temperature sensor
inside the box on the website. Finally, the user was able to set and change a master keycode via the
website and use the master keycode and the registered RFID tag to open the box. Some aspects of the
final project we would have changed and might add in the future are adding insulation so that our box
retains heat better and faster, adding a digital display to showcase the keycodes being inputted and visual
confirmation of our RFID scan was accepted. Alternatively, we could design a version of our box with a
cooling system rather than a heating system.

4.2 Ethical Considerations

Use of Open Source Projects:

The work that we did used a lot of open source libraries which were HX711 Libraries[16], MFRC522
Libraries[17], Adafruit Keypad Libraries[18], and Dallas Temperature Libraries[19]. These helped us
interface with the peripheral devices that we used in the project. in accordance with the ACM code of
ethics 1.5[20]. It is important to recognize those who have helped us make this project by giving them
credit.

Safety:

]We used voltage regulators in this project to ensure everything gets the correct voltage thus making sure
nothing gets fried on the board and the PCB and box do not overheat . We also used lab safety equipment
when appropriate to uphold maximum safety standards such as multimeters, temperature sensors, and
exhaust fans. The heating subsystem must not overheat to dangerous levels, so we implemented
safeguards in our code to ensure the heater turns off at 32°C (90°F). Also, rigorous safety testing of all
subsystems was done to ensure they worked as intended. This ensures that IEEE I.1 [21] is followed and
that no one is harmed because of any errors.

17

References:

[1]Gignac, Rachel. “DoorDash Launches Student Membership Plan.” CSP Daily News, 12 Apr. 2022,
www.cspdailynews.com/snacks-candy/doordash-launches-student-membership-plan. Accessed 2 May
2025.

[2]Statista, “U.S.: Users in the Online Food Delivery Market,” Statista, 2024.
https://www.statista.com/forecasts/891084/online-food-delivery-users-by-segment-in-united-states

[3]“LM2596 SIMPLE SWITCHER ® Power Converter 150-kHz 3-A Step-Down Voltage Regulator.”
Available: https://www.ti.com/lit/ds/symlink/lm2596.pdf

 [4]“et 1A LDO Voltage Regulator DESCRIPTION.” Available:
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/5011/AMS1117.pdf

 [5]“ESP32-S3-WROOM-1 ESP32-S3-WROOM-1U Datasheet 2.4 GHz Wi-Fi (802.11 b/g/n) and
Bluetooth ® 5 (LE) module Built around ESP32-S3 series of SoCs, Xtensa ® dual-core 32-bit LX7
microprocessor Flash up to 16 MB, PSRAM up to 8 MB 36 GPIOs, rich set of peripherals On-board PCB
antenna.” Available:
https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-1_wroom-1u_datasheet_en.
pdf

 [6]“Introduction to the ESP-Prog Board - - — ESP-IoT-Solution latest documentation,” Espressif.com,
2016. https://docs.espressif.com/projects/esp-iot-solution/en/latest/hw-reference/ESP-Prog_guide.html

[7]“Matrix Keypad Created by Kattni Rembor.” Available:
https://cdn-learn.adafruit.com/downloads/pdf/matrix-keypad.pdf

 [8]“MFRC522 RFID Module.” Available:
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/5531/4411_CN0090%20other%20relat
ed%20document%20%281%29.pdf

[9]“Solenoid Lock Diagram Specifications Electrical Specifications.” Accessed: Feb. 13, 2025. [Online].
Available: https://www.farnell.com/datasheets/2865757.pdf

[10]“Technical Documentation - Design | onsemi,” Onsemi.com, 2022.
https://www.onsemi.com/pdf/datasheet/tip120-d.pdf

[11]“Weight Sensor (Load Cell) 0-500g SKU 314990000.” Accessed: Feb. 13, 2025. [Online]. Available:
https://media.digikey.com/pdf/Data%20Sheets/Seeed%20Technology/314990000_Web.pdf

18

https://www.statista.com/forecasts/891084/online-food-delivery-users-by-segment-in-united-states
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/5011/AMS1117.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-1_wroom-1u_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-1_wroom-1u_datasheet_en.pdf
https://cdn-learn.adafruit.com/downloads/pdf/matrix-keypad.pdf
https://www.farnell.com/datasheets/2865757.pdf
https://media.digikey.com/pdf/Data%20Sheets/Seeed%20Technology/314990000_Web.pdf

[12]Avia Semiconductor, “AVIA SEMICONDUCTOR 24-Bit Analog-to-Digital Converter (ADC) for
Weigh Scales DESCRIPTION,” 2009. Available:
https://cdn.sparkfun.com/datasheets/Sensors/ForceFlex/hx711_english.pdf

 [13]“General Description Benefits and Features • Unique 1-Wire ® Interface Requires Only One Port Pin
for Communication • Reduce Component Count with Integrated Temperature Sensor and EEPROM •
Measures Temperatures from -55°C to +125°C (-67°F to +257°F) • ±0.5°C Accuracy from -10°C to
+85°C • Programmable Resolution from 9 Bits to 12 Bits • No External Components Required • Parasitic
Power Mode Requires Only 2 Pins for Operation (DQ and GND) • Simplifies Distributed
Temperature-Sensing Applications with Multidrop Capability • Each Device Has a Unique 64-Bit Serial
Code Stored in On-Board ROM • Flexible User-Definable Nonvolatile (NV) Alarm Settings with Alarm
Search Command Identifies Devices with Temperatures Outside Programmed Limits Ordering
Information appears at end of data sheet,” 2019. Available:
https://www.analog.com/media/en/technical-documentation/data-sheets/ds18b20.pdf

[14]“POLYIMIDE FILM INSULATED FLEXIBLE HEATERS.” Accessed: May 07, 2025. [Online].
Available: https://assets.omega.com/spec/KHRA-KHLVA-KHA-SERIES.pdf

[15]Grainger, “Salary Averages,” Illinois.edu, 2021.
http://ece.illinois.edu/admissions/why-ece/salary-averages (accessed Mar. 05, 2025).

 [16]R. Tillaart, “HX711,” GitHub, Apr. 17, 2023. https://github.com/RobTillaart/HX711

[17]MakerSpaceLeiden, “GitHub - MakerSpaceLeiden/rfid: Arduino RFID Library for MFRC522,”
GitHub, 2020. https://github.com/makerspaceleiden/rfid (accessed May 07, 2025).

[18]“Adafruit Keypad Library,” GitHub, Jan. 18, 2023. https://github.com/adafruit/Adafruit_Keypad

 [19]M. Burton, “Arduino Library for Maxim Temperature Integrated Circuits,” GitHub, May 02, 2023.
https://github.com/milesburton/Arduino-Temperature-Control-Library

 [20]Association for Computing Machinery, “ACM code of ethics and professional conduct,” Association
for Computing Machinery, 2018. https://www.acm.org/code-of-ethics

[21]IEEE, “IEEE Code of Ethics,” ieee.org, Jun. 2020.
https://www.ieee.org/about/corporate/governance/p7-8.html

19

https://www.acm.org/code-of-ethics
https://www.ieee.org/about/corporate/governance/p7-8.html

Appendix A: Requirements and Verification Table

Power subsystem
Requirements Verification Results (Y/N)

1. The DC to DC buck
converter must take a
12V input and output a
4.7V output

1a. Use the screw-in terminals
on the 12V AC/DC converter to
attach the V+ and GND to the
PCB.
1b. Measure the voltage using a
multimeter at the V+ and GND
of the AC/DC screw terminal
input and verify that it is 12
Volts.
1c. Measure the voltage across
the output of the DC to DC buck
converter using a multimeter and
verify that it is 4.7 Volts.

1. Y Used a multimeter to see an
output voltage of 4.7V - 4.8V
consistently

2. The AMS 1117-3.3
linear regulator must
take a 4.7V input and
output a 3.3V output
when being powered by
the barrel jack connector

2a. Use the screw-in terminals
on the 12V AC/DC converter to
attach the V+ and GND to the
PCB.
2b. Measure the voltage using a
multimeter at the V+ and GND
of the AC/DC screw terminal
and verify that it is 12 Volts.
2c. Measure the voltage across
the AMS 1117-3.3 Vout pin and
GND pin using a multimeter and
verify that it is 3.3 Volts.

2. Y Used a multimeter to see an
output voltage of 3.29226V
above the minimum tolerance
limit of 3.2 V and below the
maximum tolerance limit of
3.4V to run necessary hardware

Control subsystem

Requirements Verification Results (Y/N)

1. ESP-32 is
programmable through
UART bridge

1a. Connect the CP2102 UART
bridge to a computer
1b. Connect the TX of the
UART to RX pin of the PCB
and the RX of the UART to TX
of the PCB.

1. Y Correctly got a program to
compile and upload onto the
ESP on the PCB. Also got the
serial terminal to output print
statements

20

1c. Plug in 3.3V, GND, RST,
and BOOT of the UART bridge
to the corresponding pins on the
PCB
1b. Hold the boot button and
upload a blink sketch given in
Arduino using the right COM
port and using the ESP 32 S3
Dev Module Board

2. ESP32 correctly
recognizes all input
signals from subsystems

2a. Connect each used input pin
to a high voltage of 3.3V
2b. Check that ESP verifies
input on COM6 output terminal

2. Y Serial terminal recognizes
every box input for keypad,
correct code sequences, RFID,
and heater on/off

Authentication subsystem

Requirements Verification Results (Y/N)

1. Keypad recognizes a
correct code

1a. Set a master code onto the
ESP connected to keypad using
the website
1b. Enter the password and
check that the box does not
unlock

1. Y Serial output on keypad
shows correct output and
activates lock

2. Keypad declines all
incorrect codes

2a. Set a master code onto the
ESP connected to the keypad.
2b. Enter a password that is not
the current master code or temp

2. Y Keypad does not open if
wrong code is pressed before
enter (#)

21

code and check that the box does
not open

3. RFID scanner
recognizes correct RFID
tag

3a. Box only opens when both
master keycode and the correct
RFID tag are scanned

3. Y RFID scanner recognizes a
hard coded authorized tag

4. RFID declines all
unauthorized RFID tags

4a. Box does not open when an
incorrect RFID tag is scanned
even with the correct master
keycode.
4b. Verify this operation through
COM6 serial monitor on
Arduino

4. Y RFID scanner doesn't
recognize an unauthorized tag

5. Dual-factor
authentication involving
master keycode and
RFID works

5a. Scan the correct RFID tag
5b. Enter the master code within
30 seconds of scanning the
RFID tag
5c. Verify that the lock unlocks

5. Y Dual factor authentication
won't unlock the box unless both
the master keycode and correct
RFID tag are entered

Box Mechanics subsystem

Requirements Verification Results (Y/N)

1. Solenoid lock activates
and deactivates when
the lock and unlock
button is pressed within
15 seconds

1a. Run the program and press
the unlock button and verify that
is unlock
1b. Press the lock button and
verify that the lock locks.

1. Y Lock activates and
deactivates when button is
pressed 100% of the time within
5 seconds

2. Weight sensor should
update the website that
there is food in the box
within 20 seconds

2a. Place a weight above 40
grams on the bottom of the box.
2b. Check that the food present
reading on the website says
“yes”
2c. Remove weight from the box
2b. Check that the food present
reading on the website now says
“no”

2. Y Weight sensor recognizes a
weight placed on the box and
can see the difference between a
weight above or below the
threshold of 40g
(See Figure 7)

22

Heating subsystem

Requirements Verification Results (Y/N)

1. The heater will turn off
within 30 seconds after
the temperature inside
the box is 32 degrees
Celsius (90F) or more
and will not be allowed
to be turned on until the
temperature is 31
degrees Celsius

1a. Turn the heater on using the
enable heater button on the
website
1b. Wait for the temperature
sensor reading on the website to
be 32 degrees Celsius or more.
1c. Once it is 32 degrees Celsius
or more, check that the heater
enable button is off and verify
by viewing the heater directly
1d. Try to turn the heater on
when the temperature is over 31
degrees Celsius and verify that it
does not turn on until it is below
31 degrees Celsius

1. Y The heater turns off above
32°C within 15 seconds and

wont turn on until 31°C as
defined
(See Figure 9)

2. The temperature sensor
displays the correct
temperature

2a. Place the temp sensor in a
high temperature environment
with a thermometer.
2b. Verify that the temperature
displayed by the sensor on the
website matches the
thermometer.
2c. Repeat for a cold
environment

2. Y Temperature sensor
displays a temperature within
2°C of the thermometer at all
times

3. The temperature
displayed on the website
is updated every 30
seconds

2a. Turn on the heater to change
the temperature
2b. Wait for the temperature on
the website to update
2c. As soon as it has updated
start a timer for 30 seconds
2d. Once the 30 seconds are
finished, look to see if the
temperature has updated inside
the box

3. Y Temperature sensor reading
refreshes with each run of the
loop, around 15s

23

User Interface system

Requirements Verification Results (Y/N)

1. Heater turns on within
30 seconds of pressing
the heater enable button
on the website

1a. Press the heater enable
button on the website
1b. Wait up to 30 seconds for the
heater to turn on
1c. Check the temp sensor on
website to see if the temperature
inside the box is increasing
1d. Verify correct usage through
repeated observation

1. Y Heater turned on almost
immediately after the button was
pressed

2. User receives
notification of food
arrival when weight
sensor is activated
within 20 seconds

2a. Send input on weight sensor
by putting food in box
2b. Website shows food present

2. Y Weight sensor updates in
less than 10 seconds after food is
placed

3. User receives new
randomly generated
temp keycodes within
30 seconds

3a. Use temporary keycode to
unlock box
3b Website should show a new
temporary keycode
3c. Previous temporary keycode
does not unlock the box
anymore

3. Y The temporary code on the
website updates almost
immediately after it is used. The
previous keycode doesn't work
anymore afterwards

4. User can create a new
master key code

3a. Enter a new 4 digit master
keycode in the master key code
box on the website and press
enter
3b. Wait 1 minute 20 seconds
3c. Enter the new master
keycode in the keypad and enter
your fingerprint to unlock the
box

4. Y The input box on the user
interface allows the user to
choose their own master
keycode which works
consistently

24

Appendix B: Cost of Parts Table

25

Part Manufacturer Quantity Cost/Unit

ESP32-S3-WROOM-1-N4R2 Espressif Systems 2 $3.10

10 pcs AMS1117-3.3 Adafruit 1 $6.49

ALITOVE DC 12V 5A Power Supply
Adapter Converter Transformer AC
100-240V Input

ALITOVE 1 $11.99

Tegg 1PC 3x4 Keypad MCU Board
Matrix Array Switch Tactile Keypad 12
Button Phone-Style Matrix Keypad for
Arduino Raspberry Pi

Tegg 1 $9.99

Waterproof 1-Wire DS18B20 Digital
temperature sensor

Adafruit 1 $9.95

Lock-style Solenoid - 12VDC Adafruit 1 $14.95

0-5kg load cell Sparkfun 1 $17.81

15pcs 10mmx93mm Film Heater Plate
Adhesive Pad, PI Heating Elements Film
12V 12W Strip Heater Adhesive

XIITIA 1 $12.99

LM2596 Buck Breakout Board Mouser 1 4.99

AMS1117-3.3V Breakout Board HiLetgo 2 1.99

ESP PROG Espressif 1 14

Appendix C: Detailed schedule

WEEK TASKS PERSON

3/3 Design Document Everyone

Continue buying parts Rohan

Start breadboard assembly Rohan

3/10 Continue breadboard assembly Everyone

Assemble PCB and test Taniah

Work on and tests power subsystems Work

Breadboard demo - Wednesday Everyone

Redesign PCB Dhruva

Second PCB order - Thursday Dhruva

Talk with machine shop and give parts received - Friday Rohan

3/17
(spring break)

3/24 Assemble new PCB and test Taniah

Modify the schematic if needed Everyone

Work on and test authentication subsystem Rohan

Work on and test control subsystems Dhruva

Work on user interface Taniah

Redesign PCB Dhruva

3/31 Third PCB order - Monday Dhruva

Work on and test box mechanics subsystem Rohan

Assemble new PCB and test Taniah

Individual progress reports due - Wednesday Everyone

4/7 Fourth PCB order - Monday Dhruva

Work on and test Heating subsystem Dhruva

Assemble new PCB and test Rohan

26

4/14 Team Contract assignment - Friday Everyone

Finalize all components of the box Everyone

Prepare for mock demo Everyone

4/21

Mock Demo with TA - Tuesday Everyone

Prepare for final demo Everyone

4/28 Final Demo Everyone

Mock Presentation Everyone

Prepare for final presentation Everyone

Work on final paper Everyone

5/5 Final Presentation Everyone

Final Paper due - Wednesday Everyone

27

Appendix D: Supporting Images

Figure 11. Flow Chart of Final Code

28

Figure 12: Inside of Secure Food Dropbox with Temperature Sensor, Heater, Load Cell, and Lock in View

Figure 13: Outside of Secure Food Delivery Dropbox with RFID in View

29

Figure 14: Top of Secure Food Delivery Dropbox with Keypad in View

30

Figure 15: Entire Schematic

31

Figure 16: Entire PCB Design

32

Figure 17: Physical PCB with Components Including AMS1117-3.3V Breakout Boards

33

Figure 18: LM2596 Breakout Board

34

	Abstract
	
	1. Introduction
	1.1 Purpose
	1.2 Functionality
	1.3 Block Diagram

	
	
	
	2. Design
	2.1 Design Details
	2.1.1 Power subsystem
	2.1.2 Control subsystem
	2.1.3 Authentication subsystem
	2.1.4 Box Mechanics subsystem

	
	2.1.5 Heating subsystem
	2.1.6 User interface subsystem
	2.1.7 Physical Box Design

	3. Cost and Schedule
	3.1 Cost Analysis
	3.1.1 Labor estimate:
	3.1.2 Parts estimate:
	3.1.2 Total cost estimate:

	3.2 Schedule

	
	4. Conclusion
	4.1 Accomplishments, Future Work, and Changes
	4.2 Ethical Considerations

	
	Appendix A: Requirements and Verification Table
	
	Appendix B: Cost of Parts Table
	
	
	Appendix C: Detailed schedule
	
	Appendix D: Supporting Images
	
	
	
	
	

