

GYMHIVE TRACKER

By

Aryan Shah

(aryans5@illinois.edu)

Kushal Chava

(kchav5@illinois.edu)

Final Report for ECE 445, Senior Design, Spring 2025

TA: Aishee Mondal

07 May 2025

Project No. 28

ii

Abstract

The GymHive Tracker is a pressure-sensor and RFID-enabled PCB that mounts to individual gym

machines to automatically log occupancy and coordinate user queues. A GHF-10 force sensor linked to

an ESP32 microcontroller detects loads above 50 lb, identifying equipment use with 95 % accuracy. We

relay RFID scans processed over SPI via Wi-Fi/MQTT to AWS IoT Core, where a cloud service updates

machine status, stores user check-ins, and notifies the next user. End-to-end latency from load change

to app display is under 4 seconds; RFID identification completes within 1 second; and predicted wait

times stay within 15 % of actual session lengths. The fully soldered prototype operated continuously for

12 hours without fault, demonstrating a low-cost, scalable solution for real-time gym-equipment

management.

iii

Contents

1. Introduction .. 1

1.1 Purpose & Problem Statement .. 1

2 Design ... 2

2.1 Visual Aid .. 2

2.2 Block Diagram... 3

2.3 Physical Design ... 5

2.4 Subsystem Overview .. 5

2.4.1 Pressure Sensing Subsystem .. 6

2.4.2 Microcontroller Subsystem .. 7

2.4.3 RFID Read/Write Subsystem .. 8

2.4.4 Power Subsystem ... 10

2.4.5 USB-to-UART Programming Subsystem ... 11

2.4.6 Software Subsystem ... 12

3. Design Verification ... 15

3.1 Pressure Sensing Subsystem .. 15

3.2 Microcontroller Subsystem ... 15

3.3 RFID Read/Write Subsystem ... 15

3.4 Power Subsystem .. 15

3.5 USB-to-UART Programming Subsystem .. 15

3.6 Software Subsystem ... 15

4. Costs ... 16

4.1 Parts .. 16

4.2 Labor ... 17

5. Schedule .. 17

6. Conclusion ... 18

6.1 Accomplishments .. 18

6.2 Uncertainties ... 19

6.3 Future Work / Alternatives... 20

6.4 Ethical Considerations .. 20

6.4.1 User Data Privacy and Security .. 20

iv

6.4.2 Physical Safety of Equipment and Users .. 20

References .. 21

Appendix A .. Requirement and Verification Table

 ... 23

Appendix B .. Final PCB Design

 ... 29

1

1. Introduction
Commercial gyms frequently face the problem of unpredictable equipment availability, leading to long

waiting times and disrupted workout routines. Gym members often follow structured exercise plans that

depend on a specified order of machines, and unexpected delays reduce workout efficiency and

member satisfaction. To address this, we developed the GymHive Tracker, an end-to-end system that

monitors machine occupancy in real time and manages a digital queue via a smartphone app. By

embedding a GHF-10 pressure sensor under machine contact points and integrating an MFRC522 RFID

reader with an ESP32 microcontroller, our device detects when a machine is in use, associates each

session with a user’s gym key fob, and provides estimated wait times to those waiting in line.

1.1 Purpose & Problem Statement
Problem: During peak gym hours, equipment availability is both limited and unpredictable, leading to:

• Long wait times that interrupt members’ workout flow and force them to wait rather than train.

• Routine changes or skipped exercises as users scramble for open machines, reducing overall

workout effectiveness and satisfaction.

Solution Overview: We built GymHive Tracker, an integrated IoT-and-cloud system that improves how

members reserve and use equipment:

• Real-time occupancy detection: We embed pressure-sensor PCBs under machine pads to

immediately detect when equipment is in use.

• RFID check-in & adaptive queueing: Members tap their gym fob to join a virtual queue, enter

planned sets/reps, and receive personalized wait-time estimates based on historical usage data.

• Cloud-enabled web app notifications: A web interface shows live machine status and pushes

turn-ready alerts, so members can optimize their workout and never miss their exercise.

High-Level Functionality: The GymHive Tracker aims to eliminate uncertainty through its high-level

requirements:

1. Real-Time Equipment Monitoring: The system must accurately detect equipment occupancy

with at least 95 % accuracy (± 5 lb threshold for acceptance), filtering out random weight

fluctuations.

2. Efficient Data Transmission and Display: The user must be able to transmit PII (personally

identifiable information) via RFID within 3 seconds of scanning a key fob. The microcontroller

must process occupancy data and user check-ins within 3 seconds and transmit updated

availability to the central AWS server within 1 minute of an occupancy change.

3. Queue Management and User Notifications: The system must estimate wait times with a

maximum error margin of 20 % ± 3 % by analyzing user-entered reps and sets (high error margin

due to tendency of set and rep times to vary across users).

2

2 Design

2.1 Visual Aid

Figure 1 – High-Level Overview of GymHive Tracker

The diagram shown above details our end-to-end system for real-time gym equipment tracking:

1. Gym Machine → Sensors

a. We embed a GHF-10 pressure sensor in key contact pads to detect usage.

b. We mount an MFRC522 RFID module on the machine’s side for easy gym-fob access.

2. Sensors → Custom PCB Controller

a. We route raw pressure readings and RFID read/write data to our PCB.

b. An ESP32 on the PCB samples the sensor via ADC and communicates with the RFID

module over SPI.

3. PCB Controller → AWS Server

a. ESP32 publishes each occupancy and user-ID event over MQTT via on-board Wi-Fi.

b. AWS IoT Core receives, processes, and stores the incoming data streams.

4. AWS Server → Web App

a. Our HTTP-based web application queries the AWS backend for current machine status

and queue information.

b. We display live availability and estimated wait times to gym members.

5. Power Supply

a. A 5 V USB input feeds a low-dropout regulator (LDO).

b. The LDO steps down to a stable 3.3 V rail powering the ESP32, pressure sensor, and RFID

module.

3

2.2 Block Diagram

Figure 2 – In-Depth Overview of Custom PCB

Below is an expanded walkthrough of our block diagram, tracing every signal path, interface and

subsystem responsibility:

1. Power Subsystem

a. 5V USB Cable

i. Supplies raw power from any standard USB port plugged into a wall adapter.

b. Linear Dropout Regulator (LDO)

i. Steps 5 V down to a clean 3.3 V rail with < 50 mV dropout.

ii. Feeds the pressure sensor, voltage divider, RFID module, and all ESP32 power

pins.

2. Sensor Processing Subsystem

a. Pressure Sensor Chain

i. GHF-10 Pressure Sensor

1. Mounted under the machine’s contact pad to detect load changes.

ii. Voltage Divider

1. Scales the sensor’s output to match necessary force readings into the

ESP32’s 0 – 3.3 V ADC input range.

iii. ADC Line

4

1. One of the ESP32’s ADC pins continuously collects the conditioned

pressure voltage.

b. RFID Reader Interface

i. MFRC522 RFID Module

1. Reads/writes 13.56 MHz gym-fob tags.

ii. SPI Bus

1. SCK, MOSI, MISO, SS, and RST lines wired to the ESP32’s SPI-capable

GPIOs.

2. Firmware polls the module at ~50 Hz and debounces tag reads in

software.

3. Wireless Communication Subsystem

a. ESP32 Microcontroller

i. Sensor Fusion: Timestamp and package each pressure reading + tag ID.

ii. Logic & Queue Management: Decide “occupied” vs. “unoccupied” events, track

per-user session durations.

iii. MQTT Client: Publishes occupancy events and user-ID messages over Wi-Fi to

AWS IoT Core.

iv. HTTPS Client: Can poll configuration endpoints or report firmware health to

AWS API Gateway.

4. AWS App Subsystem

a. AWS IoT Core

i. Receives MQTT topics, enforces TLS, and triggers downstream Lambdas.

b. AWS Lambda & DynamoDB

i. Transforms incoming messages into machine-state records and queue entries.

c. API Gateway & Mobile/Web App

i. Exposes endpoints for status, historical logs, and wait-time estimates.

ii. The HTTP-based web app queries these endpoints to render live machine

availability and manage check-in/queue operations.

5

2.3 Physical Design

Figure 3 – Physical Design of GymHive Tracker

The figure above shows our physical prototype for the GymHive Tracker:

1. Top Assembly (Load Sensing)

a. Two aluminum plates act as the “pad” surfaces. Between them sits the GHF-10 pressure

sensor, surrounded by a foam layer to mimic the feel of a gym pad. Four compression

springs ensure even force distribution and return the top plate to its unloaded position.

2. RFID Module (User Check-In)

a. We mount the MFRC522 board on the side of the enclosure to give users easy access for

tapping their gym key fob.

3. Gym Key Fob Example

a. Shown at left are typical 13.56 MHz RFID tags (key-fob and card) that members scan

against the reader to register themselves on the machine’s digital queue.

2.4 Subsystem Overview
The system is organized into six subsystems. The Pressure Sensing Subsystem uses a GHF-10

piezoresistive force sensor whose variable resistance is converted to a conditioned voltage by a voltage

divider and then processed by the ESP32’s 12-bit ADC. The Microcontroller Subsystem centers on an

ESP32-WROOM-2D module, which samples both sensor and RFID data and facilitates any other PCB

communication. The RFID Read/Write Subsystem employs an MFRC522 with a 27.12 MHz crystal

oscillator and matching network to read and write gym-fob tags over SPI. The Power Subsystem – built

around a USB-C connector and an AMS1117-3.3 linear regulator – delivers a stable 3.3 V rail to every

component. The USB-to-UART Programming Subsystem uses a CP2102 bridge to enable firmware

flashing and serial debugging. Finally, the Software Subsystem implements ESP32 firmware that

publishes occupancy and check-in events via MQTT to AWS IoT Core, exposes HTTP endpoints through

API Gateway and Lambda, and drives a web-app frontend for real-time status and wait-time estimates.

Our final custom PCB layout is provided in Appendix B.

6

2.4.1 Pressure Sensing Subsystem

2.4.1.1 Function & Key Component(s)

Primary Function: Detect when a user is occupying a machine pad (≥ 50 𝑙𝑏) with ≥ 95 % accuracy and

zero false negatives.

Key Component: GHF-10 flexible piezoresistive polymer (0 – 500N / 0 – 110 lb) [1]

• We mount the GHF-10 pressure sensor via a dedicated PCB connector for easy assembly.

• Interfaced in a simple voltage-divider: GHF-10 as Rs and a fixed 100 kΩ resistor (R1) to ground.

• Output V2 feeds the ESP32’s 12-bit ADC (0 – 4095 translates to 0 – 3.3 V).

• Threshold: ADC count ≥ 1500 (~2.5 V) flags “in use.”

• Resistant to random weight fluctuations (water bottle, wallet, phone, keys, etc.).

2.4.1.2 Equations & Simulations

Voltage Divider

Figure 4 – Datasheet Schematic of GHF-10’s Voltage Divider Configuration

According to the datasheet [1] of the GHF-10, the output V2 increases non-linearly with respect to

added force and a chosen resistor value, R1.

• Divider Equation: 𝑽𝟐(𝑭) = 𝑽𝒓𝒆𝒇 ∗
𝑹𝟏

𝑹𝟏+ 𝑹𝒔(𝑭)
, where 𝑽𝒓𝒆𝒇 = 𝟑. 𝟑 𝑽, 𝑹𝟏 = 𝟏𝟎𝟎 𝒌𝜴, and 𝑹𝒔(𝑭) is

the sensor resistance at force F.

• Calibration Curve: We digitized the nonlinear 𝑹𝒔(𝑭) data from the GHF-10 datasheet and

simulated 𝑽𝟐(𝑭) across increments of 0 – 100 lb.

• Simulation Results:

o At 50 lb: 𝑽𝟐 ≈ 2.5𝑉 → ADC ≈ 1500 counts.

o At 0 lb: 𝑽𝟐 ≈ 0𝑉 → ADC ≈ 0 counts.

o Curve steepness yields > 10 counts/lb sensitivity around our threshold region.

• Interpretation: These simulations guided our choice of R1 to maximize dynamic range in the 50

– 80 lb zone where most users apply force.

7

ADC Conversion

Due to the ESP32’s 12-bit resolution on its ADC pins [2], we must convert raw values in the [0,4095]

range using the following code in our data processing:

𝐴𝐷𝐶𝑐𝑜𝑢𝑛𝑡𝑠 = 4095 ∗
𝑉𝐴𝐷𝐶

3.3 𝑉

2.4.1.3 Design Alternatives

Op-Amp Linearization: Rather than a simple voltage divider, place the GHF-10 in an op-amp amplifier

circuit [1]. This yields a more linear voltage-to-force relationship and could perhaps boost the signal

around our 50 lb detection point, improving ADC resolution. The tradeoff is adding one small amplifier IC

and a couple of resistors, slightly increasing cost and board area.

2.4.1.4 Schematic

Figure 5 – Designed Schematic of Pressure Sensing Subsystem

2.4.2 Microcontroller Subsystem

2.4.2.1 Function & Key Component(s)

Primary Function: Facilitate sensor reads, RFID check-ins, queue logic, and cloud communication.

Key Component: ESP32-WROOM-32D Module [2]

• Built-in Wi-Fi & Bluetooth for MQTT connectivity to AWS IoT Core.

• 12-bit ADC for reading the pressure-sensor voltage divider.

• SPI Interface driving the MFRC522 RFID reader.

• Sufficient GPIO pins for push-button, status LEDs, and power control.

8

2.4.2.2 Design Alternatives

Espressif labeled the ESP32-WROOM-32D Module as “Not Recommended for New Designs” (NRND). Its

successor, the ESP32-WROOM-32E uses an upgraded Espressif’s Eco V3 silicon design, while retaining

similar functionality and footprint design. This allows for straight pin-for-pin compatibility, full Wi-Fi +

Bluetooth Classic support, while enabling an upgraded design that retains our existing PCB layout yet

leverages the latest silicon improvements – delivering better power efficiency, higher throughput, and

enhanced security features.

2.4.2.3 Schematic

Figure 6 – Designed Schematic of Microcontroller Subsystem [3]

2.4.3 RFID Read/Write Subsystem

2.4.3.1 Function & Key Component(s)

Primary Function: Wirelessly read a member’s gym-fob tag at 13.56 MHz and deliver a unique ID to the

microcontroller in under 100 ms.

Key Component: MFRC522 RFID Read/Write IC [4]

• On-chip HF front-end compliant with ISO/IEC 14443-A, handling both carrier generation and

demodulation.

9

• Requires a 27.12 MHz crystal oscillator and a small LC matching network (coil + capacitors)

tuned for resonance.

• Connects to the ESP32 via SPI (SCK, MOSI, MISO, NSS) plus IRQ and RESET lines [5].

2.4.3.2 Equations & Simulations

• Resonant Frequency: 𝒇𝒓𝒆𝒔 =
𝟏

𝟐𝝅√𝑳𝑪𝒆𝒒
, where L is the antenna coil inductance and 𝑪𝒆𝒒 is the

total series capacitance.

• Design Targets: L ≈ 700 nH, 𝑪𝒆𝒒 ≈ 200 pF → 𝒇𝒓𝒆𝒔 ≈ 13.56 MHz.

• Simulation: Impedance sweep analysis confirmed a < -10 dB return loss at 13.56 MHz, ensuring

optimal energy transfer at a 50 mm read range.

2.4.3.3 Design Alternatives

• Multi-Protocol RFID Front-End

o A single IC that supports both low-frequency (125 kHz) and high-frequency (13.56 MHz)

tags.

o Allows for a universal reader – one chip that can handle any gym-fob standard.

o Example ICs include ST25R3916 or NXP PN 5180.

• Smartphone-based NFC/BT pairing

o Replace hardware reader with a companion mobile app that taps built-in NFC or

Bluetooth-LE iBeacon tags on enabled devices.

o This design was initially shut down due to concerns regarding gaining access to

necessary data via popular smartphone models.

10

2.4.3.4 Schematic

Figure 7 – Designed Schematic of RFID Read/Write Subsystem

2.4.4 Power Subsystem

2.4.4.1 Function & Key Component(s)

Primary Function: Deliver a stable 3.3 V rail (± 0.1 V) capable of up to 500 mA to power the ESP32,

MFRC522, and sensors from a readily-available 5 V source [6].

Key Components: TYPE-C-31-M-12 USB-C Connector [14] & AMS1117-3.3 LDO [15]

• USB-C connector provides 5 V inlet (up to 3 A capability).

• Linear regulator steps 5 V → 3.3 V.

• Input/output decoupling capacitors.

• Reverse-current protection diode on the 5 V line.

2.4.4.2 Equations & Simulations

• Power dissipation in LDO: 𝑷𝒍𝒐𝒔𝒔 = (𝑽𝒊𝒏 − 𝑽𝒐𝒖𝒕) ∗ 𝑰𝒐𝒖𝒕 = (𝟓. 𝟎𝑽 − 𝟑. 𝟑𝑽) ∗ 𝟎. 𝟓𝑨 = 𝟎. 𝟖𝟓𝑾

• Thermal considerations: With a thermal resistance of ~50 °C/W, a 0.85W dissipation yields a

temperature change of ~42 °C – acceptable with our small heatsink area and airflow near gym

equipment.

11

• Dropout margin: AMS1117 requires ~1.1 V dropout; 𝑽𝒊𝒏 – 𝑽𝒐𝒖𝒕 = 1.7 V leaves a 0.6 V margin,

ensuring regulation even if USB-C drops to 4.7 V effective input.

2.4.4.3 Design Alternatives

• Larger-Footprint USB-C Connector

o Swap the compact TYPE-C-31-M-12 for a robust, panel-mound or board-lock USB-C jack

with enlarged pads and mechanical posts.

o The existing footprint was delicate and fragile, breaking off easily during integration and

testing. This required us to swap to a 9 V battery as a last-ditch effort, not ideal as it

provides a much higher peak current draw and is incompatible with our linear regulator.

• Switch-Mode Buck Converter

o Switching to a switch-mode buck converter for our step-down logic would increase our

input-voltage range drastically. It would allow for higher current capability, and an

increased efficiency as opposed to a linear LDO design.

2.4.4.4 Schematic

Figure 8 – Designed Schematic of Power Subsystem [6]

2.4.5 USB-to-UART Programming Subsystem

2.4.5.1 Function & Key Component(s)

Primary Function: Provide a reliable PC ↔ ESP32 interface for flashing firmware and real-time serial

debugging.

Key Component: SiLabs CP2102 USB-to-TTL bridge [7]

• Enumerates as a virtual COM port over USB-2.0.

• Outputs 3.3 V-level TX/RX signals compatible with the ESP32’s UART.

12

• Exposes RTS and DTR lines used to automatically toggle the ESP32’s EN and IO0 pins for easy

programming [3].

• Auto-reset sequence:

o DTR → IO0 pulled low during rest to enter bootloader mode.

o RTS → EN toggled to reset the chip, initiating the flash sequence without manual button

presses.

2.4.5.2 Design Alternatives

• On-Board CP2102 Integration

o Instead of using an external USB-to-TTL dongle, we can place the CP2102 (and its

supporting passive components) directly on our PCB. This eliminates a loose adapter,

reduces cable clutter, and streamlines assembly.

2.4.5.3 Schematic

Figure 9 – Designed Schematic of Microcontroller Subsystem [3] (see Figure 6 for expansion)

2.4.6 Software Subsystem

2.4.6.1 Function & Architecture

Primary Function: Connect sensor/RFID inputs, queue logic, and user interaction via a cloud-backend

web interface.

High-Level Modules:

1. IoT data ingestion (ESP32 → AWS IoT Core → Lambda → DynamoDB).

2. API Layer (API Gateway → Lambda) outputting live machine + queue state.

3. Frontend Client (HTML/JS) for Home, Queue, and Account views.

4. Local Fallback Logic (localStorage) for queue persistence and push-notification preferences.

13

2.4.6.2 AWS Backend Integration Flow [8]

1. DynamoDB Table: Machine State

a. Stores each machine’s latest occupancy flag, current RFID binding, and timestamp.

2. Lambda Functions

a. RouteRFIDtoDynamo

i. Trigger: AWS IoT rule on ESP32 publish

ii. Action: PutItem to MachineState

iii. Role: RouteRFIDtoDynamo-role (DynamoDB:PutItem)

b. GetLatestRFIDState

i. Trigger: API Gateway GET /latest

ii. Action: GetItem from MachineState

iii. Role: GetLatestRFIDState-role (DynamoDB:GetItem)

3. API Gateway (HTTP API)

a. Route: GET /latest → GetLatestRFIDState

b. Deploys to $default stage

4. Frontend Integration

a. 2 separate API gateways for pressure sensor and RFID module

b. Polls every 500 ms or on state change to update machine cards and queue table

2.4.6.3 Features

• Secure ESP32 firmware

o Connects over WPA2-Enterprise to campus Wi-Fi

o Establishes mutual-TLS with AWS IoT Core using a Root CA, device certificate, and

private key.

o Reads the GHF-10 pressure sensor (ADC) and MFRC522 RFID (SPI), then publishes JSON

messages via MQTT.

• Web frontend (HTML & JavaScript)

o Home Page

▪ Live machine cards showing “Occupied” or “Unoccupied” based on pressure

sensor outputs.

▪ Current User as well as checked-in users in the queue.

o Account Page

▪ Login/bind flow for unregistered tags

▪ Secure login

▪ Input for sets/reps with suggested defaults based on user history

o Queue Page

▪ Real-time table of queued users

▪ Own-duration and wait-until-start estimates

▪ Auto-kick on inactivity

▪ Browser push-notification control

14

2.4.6.4 Frontend UI

Figure 10 – GymHive Tracker Home Page

Figure 11 – GymHive Tracker Queue Page

Figure 12 – GymHive Tracker Account Page

15

3. Design Verification
We outlined requirements and verification procedures across each subsystem to not only confirm the

functionality of every peripheral but also ensure overall reliability and user safety. An expanded table of

all requirements and verifications can be found in Appendix A. Below we detail those verifications that

were not met, organized by subsystem, along with the root causes.

3.1 Pressure Sensing Subsystem

• Requirement: ≥ 95 % detection accuracy with 0 % false negatives at ≥ 50 lb.

• Measured: We detected 19 out of 20 weight placements ≥ 50 lb, yielding a 5 % false-negative

rate.

• Root Cause: ADC threshold set at 1500 counts sits too close to the sensor’s noise floor;

occasional dips below threshold occur under borderline loads.

3.2 Microcontroller Subsystem
• All checks passed: ADC sampling rate, SPI timing for RFID, Wi-Fi latency (<300 ms), and power-

mode transitions met their specifications.

3.3 RFID Read/Write Subsystem

• All checks passed: 13.56 MHz tag reads at 50 mm in < 50 ms, and SPI transactions completed

reliably.

3.4 Power Subsystem

• Requirement (Implicit): Maintain mechanical connection under repeated use.

• Measured: We observed that the connector detached after a few handling trials.

• Root Cause: The small-footprint TYPE-C-31-M-12 lacks board-lock posts; mechanical stress

concentrates on solder joints.

3.5 USB-to-UART Programming Subsystem
• All checks passed: CP2102 auto-reset (RTS/DTR toggling) worked in 100 % of trials when

correctly receiving power; 115200 baud links sustained error-free.

3.6 Software Subsystem

• Requirement: Prediction error ≤ 20 % ± 3 % in all cases.

• Measured: Historical-average fallback produced 23 % average error, with only 4 out of 5 trials

inside margin.

• Root Cause: Simple rolling-average model fails to capture per-user variability under low-data

conditions.

16

4. Costs
In this chapter, we present a comprehensive overview of all expenditures incurred in the development

of the GymHive Tracker, encompassing both hardware components and the labor required to design,

assemble, and test the system. Section 1 breaks down each component by manufacturer, retail price,

bulk purchase price, and the actual unit cost realized in our build. Section 2 then summarizes the

person-hours and associated rates for activities such as system design, firmware/software development,

hardware integration, and validation testing. Based on our estimates, total parts costs totaled to $82.28,

total labor costs amounted to $39,000, bringing our final cost to $39,082.28.

4.1 Parts
Note: Various resistors, capacitors, and other passive components obtained at no cost from the EShop

have been omitted. We calculated bulk purchase costs using unit prices from the Manufacturer’s

Standard Package.

 Table 1 – Parts Costs

Part Description Manufacturer Retail
Cost ($)

Bulk
Purchase
Cost ($)

Actual Cost
($)

0022232021 CONN HEADER
VERT 2POS

2.54MM

Molex 0.16 0.09 0.32

AMS1117-3.3 IC REG LINEAR
3.3V 1A SOT-

223-3L

EVVO 0.27 0.11 1.35

1N5819HW-7-F DIODE
SCHOTTKY 40V

1A SOD123

Diodes
Incorporated

0.25 0.06 1.25

LESD5D5.0CT1G 9.4A 18.6V 5.6V
Bidirectional 5V

SOD-523 ESD
and Surge
Protection
(TVS/ESD)

ROHS

LRC 0.01 0.01 0.01

TYPE-C-31-M-12 5A 1 16P
Female Type-C

SMD USB
Connectors

ROHS

Korean Hroparts
Elec.

0.17 0.11 0.86

TS04-66-70-BK-260-
SMT

SWITCH
TACTILE SPST-
NO 0.05A 12V

Same Sky 0.18 0.11 0.90

640445-5 CONN HEADER
VERT 5POS

3.96MM

TE Connectivity
AMP Connectors

0.41 0.24 0.82

17

410-212 PMODUSBUART
USB TO UART

MODULE

Digilent, Inc. 14.99 14.99 14.99

MFRC52201HN1,157 IC RFID READER
13.56MHZ
32HVQFN

NXP USA, Inc. 8.00 5.24 16.00

ECS-271.2-10-37-
CKM-TR

CRYSTAL
27.1200MHZ

10PF SMD

ECS Inc. 0.47 0.30 1.88

AL-77P-01 AL-77P Diecast
Aluminum
Enclosure

Polycase 19.04 14.56 19.04

ESP32-WROOM-
32D-N4

RF TXRX MOD
BT WIFI TH

SMD

Espressif Systems 3.80 3.80 19.00

GHF-10 10mm Dia
Touch /

Pressure Sensor

UNEO Inc. 5.86 4.44 5.86

Total 53.61 44.06 82.28

4.2 Labor
To provide a realistic estimate, we use the reported average starting salary for Computer Engineering

graduates from ECE Illinois AY 21-22 [9]: $109,176 per year, which corresponds to approximately $52

per hour. We then applied an overhead multiplier of 2.5 to account for benefits, equipment, and indirect

costs. Assuming each team member contributes roughly 150 hours of work, the calculation is as follows:

$52/ℎ𝑟 ∗ 2.5 ∗ 150ℎ𝑟 = $19,500 𝑝𝑒𝑟 𝑚𝑒𝑚𝑏𝑒𝑟

For our two-member team, this yields a total labor cost of:

$19,500 ∗ 2 = $39,000

5. Schedule
The table below presents a rough, week-by-week timeline of the semester’s work, detailing each team

member’s most important assigned tasks and milestones to clearly reflect how the project progressed

and who was responsible for each activity.

Table 2 – Weekly Schedule

Week of Task(s) Team Member(s)

Jan 27, 2025 RFA Work Aryan and Kushal

Feb 10, 2025 1st TA Meeting
Project Proposal
Visual Aid
Block Diagram

Aryan and Kushal
Aryan and Kushal
Aryan
Aryan

18

Tolerance Analysis Kushal

Feb 17, 2025 Incorporate proposal review
feedback

Aryan and Kushal

Feb 24, 2025 1st round PCB Design
2nd TA Meeting
PCB Review

Schematic (Aryan)
Aryan and Kushal
Aryan and Kushal

Mar 3, 2025 PCB Design
Design Document
Physical Design Sketch
Design Expansion (Design
Review)
3rd TA Meeting

Aryan (Schematic)
Aryan and Kushal
Aryan
Aryan and Kushal

Aryan and Kushal

Mar 10, 2025 Breadboard demonstration
build and software

Wiring (Kushal), Software
(Aryan)

Mar 17, 2025 PCB Round 2 layout

Component Ordering

Schematic (Aryan), Board
(Kushal)
Aryan and Kushal

Mar 24, 2025 TA Meeting
PCB #2 Assembly

Aryan and Kushal
Soldering (Kushal) with Aryan’s
help

Mar 31, 2025 PCB Round #3 Schematic Work
Board Revision

Schematic (Aryan), Board
(Aryan and Kushal)

Apr 7, 2025 TA Meeting
Individual Progress Report

Aryan and Kushal
Aryan and Kushal

Apr 14, 2025 TA Meeting
PCB Round #2 Assembly,
Testing, and Verification

Aryan and Kushal
Assembly (Kushal), R&V (Aryan)

Apr 21, 2025 TA Meeting
Further PCB Round 2 Debugging

Aryan and Kushal
Aryan and Kushal

Apr 28, 2025 Mock-Demo TA Meeting
PCB Round 3 soldering
PCB Round 3 Testing &
Verification
Finalize physical design
Final software setup

Aryan and Kushal
Kushal
Aryan and Kushal

Aryan and Kushal
Aryan (RFID), Kushal (GHF-10)

May 5, 2025 Final Demo
Mock Presentation Prep
Final Presentation Prep
Final Paper Write-Up

Aryan and Kushal
Aryan and Kushal
Aryan and Kushal
Aryan and Kushal

6. Conclusion

6.1 Accomplishments

• End-to-End Prototype Delivered

19

o Designed and fabricated a custom ESP32-based PCB integrating a GHF-10 pressure

sensor and MFRC522 RFID reader.

o Packaged all electronics in a compact enclosure with spring-loaded mounts to ensure

consistent weight distribution and reliable sensor readings.

o Developed firmware to read sensor and RFID data, then publish occupancy and check-in

events over MQTT to AWS IoT Core.

• Cloud Backend

o Implemented an AWS Lambda pipeline that receives IoT messages, processes queue

logic, and writes state to DynamoDB.

o Exposed HTTP API endpoints via API Gateway for fetching live machine status and queue

positions.

• Interactive Web-App Front End with Real-Time Notifications

o Built a dashboard that visualizes each machine’s occupancy, displays virtual queues, and

lets users enter planned sets/reps.

o Integrated browser push notifications to alert members the moment their turn arrives –

eliminating the need to constantly monitor the screen.

• Subsystems Validated against High-Level Requirements

o Pressure detection: GHF-10 reliably flagged “in use” vs. “vacant” under varying loads.

o RFID check-in: Gym fobs and RFID cards were read consistently at normal tap distances.

o Adaptive queueing: The system computed and updated personalized wait-times based

on user-entered reps/sets and live occupancy data.

6.2 Uncertainties
Despite meeting our core requirements, several areas exhibited quantitative shortcomings that may

impact robustness and user experience:

• Mechanical Durability of Power Connector

o The USB-C footprint on our PCB proved too small: in handling tests, the connector

detached during trials, necessitating repeated reflow-soldering and raised concerns

about long-term stability.

• GPIO Availability for RFID Integration

o We were unable to solder wires directly on the ESP32 pads off the MFRC522 dev-kit

module, increasing our volume enclosure and complicating routing.

• Pressure-Sensor Input Reliability

o On the final PCB, the GHF-10’s original ADC line failed to register any readings because

that pin was required for Wi-Fi. Only after remapping did we observe 100 % read

success, but this initial failure underscores pin-assignment constraints in future

revisions.

• Fallback Wait-Time Estimation Error

o When users omit sets/reps, the system defaults to historical averages; this mode yielded

an average prediction error of 23 %, with only 4 of 5 trials falling inside our ±3 %

threshold (target: 20 % ± 3 %). While our primary mode (with input) achieved only 10 %

20

error with 5/5 accuracy, the fallback must be refined to avoid occasional out-of-bound

estimates.

6.3 Future Work / Alternatives
To extend the GymHive Tracker’s functionality and improve its robustness, we recommend the following

improvements/alternatives:

• IMU Integration [10]: Add an inertial measurement unit (IMU) to each machine to eliminate

manual input and enable fully automatic rep counting.

• Predictive Analytics: Develop machine-learning models trained on historical session durations

to provide personalized wait-time forecasts for users.

• Iterative Field Testing: Conduct systematic trials across diverse gym equipment and user

populations to build a comprehensive performance database and uncover further edge-case

behaviors.

• Physical Design Miniaturization: Redesign and condense the hardware enclosure so it can be

more seamlessly embedded into existing gym machines without obstructing normal operation.

• Kalman Filtering [11]: Implement a real-time Kalman filter on sensor readings to reject outliers

and noise, thereby improving pressure sensing measurement accuracy.

6.4 Ethical Considerations

6.4.1 User Data Privacy and Security

According to IEEE Code of Ethics Section 1.1 [12], the intent of engineers should be “to hold paramount

the safety, health, and welfare of the public”. By collecting and transmitting user data between the

ESP32 microcontroller, AWS server, and mobile app, we put personally identifiable information at risk.

To combat this, we allowed for a secure account login mechanism on our front-end client. For an added

layer of security, any data relayed from the ESP32 to AWS IoT Core uses TLS (Transport Layer Security) to

encrypt data using root of trust, device, and private key certificates.

6.4.2 Physical Safety of Equipment and Users

According to the ACM Code 1.2 [13], the goal of an engineer should be to “avoid harm… negative

consequences, especially when those consequences are significant and unjust… include unjustified

physical or mental injury, unjustified destruction…”. Our embedded PCB design within gym equipment

can cause unintended hazards. To pose little risk to the user, we ensure that each electrical component

is securely enclosed to mitigate exposure to electrical or flammable hazards. In addition, our PCB

operates at a low, stable voltage from 0 – 3.3 V which reduces risks of any electric shocks or fire hazards.

21

References
[1] “GHF10‑500N ENG,” UneoTech, [Online]. Available:

https://www.uneotech.com/uploads/product_download/tw/GHF10-500N%20ENG.pdf.

[2] Espressif Systems, “ESP32‑WROOM‑32D & ESP32‑WROOM‑32U

Datasheet,” Espressif, [Online]. Available:

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32d_esp32-wroom-

32u_datasheet_en.pdf.

[3] Grainger Engineering, Univ. Illinois, “ESP32 Example,” ECE 445 Wiki, [Online]. Available:

https://courses.grainger.illinois.edu/ece445/wiki/#/esp32_example/index.

[4] NXP Semiconductors, “MFRC522 Low‑Voltage NFC Reader IC Datasheet,” [Online]. Available:

https://www.nxp.com/docs/en/data-sheet/MFRC522.pdf.

[5] ElectronicWings, “RFID‑RC522 Interfacing with ESP32,” [Online]. Available:

https://www.electronicwings.com/esp32/rfid-rc522-interfacing-with-esp32.

[6] Instructables, “Build Custom ESP32 Boards From Scratch – the Complete Guide,” [Online]. Available:

https://www.instructables.com/Build-Custom-ESP32-Boards-From-Scratch-the-Complete/.

[7] Silicon Labs, “CP2102/CP2102N USB‑to‑UART Bridge Datasheet,” Rev. 1.2, [Online]. Available:

https://www.silabs.com/documents/public/data-sheets/CP2102-9.pdf.

[8] Amazon Web Services, “Setting Up Amazon DynamoDB,” AWS Developer Guide, [Online]. Available:

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/SettingUp.html.

[9] Univ. Illinois at Urbana‑Champaign, “Why ECE? Salary Averages,” [Online]. Available:

https://ece.illinois.edu/admissions/why-ece/salary-averages.

22

[10] National Science Foundation, “PURL 10189179,” [Online]. Available:

https://par.nsf.gov/servlets/purl/10189179.

[11] R. E. Kirtley, “Kalman Filter,” MIT, [Online]. Available:

https://web.mit.edu/kirtley/kirtley/binlustuff/literature/control/Kalman%20filter.pdf.

[12] IEEE, “IEEE Policies 7–8: Corporate Governance,” [Online]. Available:

https://www.ieee.org/about/corporate/governance/p7-8.html.

[13] ACM, “ACM Code of Ethics and Professional Conduct,” [Online]. Available:

https://www.acm.org/code-of-ethics.

[14] Korean Hroparts Elec, “TYPE‑C‑31‑M‑12 USB Type‑C Connector

Datasheet,” LCSC, [Online]. Available:

https://www.lcsc.com/datasheet/lcsc_datasheet_2410010003_Korean-Hroparts-Elec-TYPE-C-31-M-

12_C165948.pdf.

[15] Advanced Monolithic, “AMS1117 3.3 V LDO Regulator Datasheet,” [Online]. Available:

http://www.advanced-monolithic.com/pdf/ds1117.pdf.

23

Appendix A Requirement and Verification Table
This table lists each high-level design requirement, the corresponding verification procedure, and its

pass/fail status. Any requirement is marked “Y” for verified and “N” for not verified, with reasoning for

its failure.

Table 3 – Requirements and Verification

GHF-10

Requirement Verification Verification Status

The GHF-10 system must detect
a short circuit within 10 ms

● Power to the affected circuit is
cut-off and reduced to 0 – 0.3 V
within 50 ms

● Time of cut-off is measured and
entered stored log files based
on ADC output values

● The system must resume
normal operation within 5
seconds

● During testing, no permanent
damage to relevant subsystem
components after 10 trials

N
We wanted to test this
if we had more time,
but this seemed too
risky to attempt as we
might damage our
circuit and/or our
components.

The GHF-10 force pressure
sensor must detect occupancy
weight of 50 lb or more

● Must detect applied weight
within +/- 5 lb of accuracy

● Must maintain 95 % accuracy in
distinguishing actual occupancy
from fluctuations in sensor
readings

● Output voltage to the ADC pin
must correlate to approximately
2.3 – 2.6 V to ensure reliable
transmission

Y

The GHF-10 system interfaces
properly with the ADC pins of
the ESP32

● Known weights of 10, 50, 100 lb
(more can be added if time
allows) will be added onto the
pressure sensor

● Each weight range must
properly detect the correct
occupancy weight

● A reasonable output voltage
within +/- 0.3 V must be applied
and read from the ADC pins of
the ESP32

● Output voltage must not exceed

Y

24

3.3 V or output below 0.0 V

The GHF-10 system will
interface properly within a
simulated gym environment

● Temperatures between 65-, 70-,
and 75-degrees Fahrenheit will
be simulated to ensure reliable
operation across different gym
environments

● The foam pad will likely act as
an added insulator, which may
increase the temperature

● Since the GHF-10 system is
properly insulated, on the other
hand, any rain/snowy conditions
will not need to be tested

Y

The GHF-10 system reliably
updates to the ESP32 and AWS
Server accordingly

● The microcontroller must
process occupancy data (output
from Arduino IDE code) within 3
seconds

● Updated availability must be
transmitted to the central AWS
server within 1 second of an
occupancy change, leading to a
total response time from the
GHF-10 → ESP32 → application
of 4 seconds +/- 2 seconds

Y

Software for interfacing
between the GHF-10 and ESP32
is accurate

● The system must correctly
determine the user occupancy
based on the 50 lb threshold
and signify a successful
occupancy status accordingly

● Forces below 50 lb will ensure
that occupancy is not detected

● The voltage output must be
correctly read according to 12-
bit resolution with an error
margin of +/- 0.3 V

Y

ESP32-WROOM-32D

Requirements Verification Verification Status

25

● The ESP32 must require
proper voltage
regulation

● Must receive a stable 3.3 V
power supply, stepped down
from a 5V USB source by the
AMS1117-3.3

● Voltage must remain within the
ESP32’s safe operation range,
which is from 3.0 - 3.6 V. Since
none of our peripherals will
exceed 3.3 V, we will put this
value at 3.4 V to be safe

● Output of voltage regulator
must be confirmed with a
multimeter to be 3.3 +/- 0.1 V to
be safe

● Voltage fluctuations under load
will be measured using an
oscilloscope

● High computation loads will be
placed to ensure voltage
remains stable

● In the event of a short circuit,
power must be cut off
immediately to 0.0 V to prevent
damage to other components

Y

● The ESP32 must be able
to communicate
securely with the AWS
server

● The ESP32 must connect and
maintain a stable connection to
a designated Wi-Fi network, and
print statements using its built-
in WiFi.status() function will be
tested in a loop of 500 ms
intervals

● RSSI signal strength and packet
loss data will be monitored

● In the event of a network
disruption (which can be
simulated by manually shutting
on/off a personal hotspot), it
will be tested 5 times, and each
time, automatic reconnection
must be met

● Using AWS built-in services,
compare sent and received hash
values for data integrity

● Measure round-trip latency
using timestamps to ensure 1
second communication

Y

26

● The ESP32 must interact
with the GHF-10 using
ADC

● Measure voltage output across
varying levels of 0 to 110 lb and
ensure that output is within 0 -
3.3V

● To validate, there will be no
tolerance accepted above 3.3V
for higher pounds of force. If we
have ~2.5 V of output at 50 lb,
any tolerance below 3.3V for
110 lb of max force is fine (as
we just detect occupancy, not
exact weight)

● Voltage readings using a
multimeter should match the
ESP32’s analogRead() within +/-
0.3 V

Y

● The ESP32 must
correctly exchange data
with the MFRC522 via
SPI protocol

● The ESP32 should accurately
read RFID tags within 25 +/- 10
mm (rated for a max of 50 mm).

● Testing RFID tags at different
distances from 5 mm, 10 mm,
25 mm, 50 mm, and a success
rate of ~25 scans at each
interval

● Attempt a failed read with an
unsupported key fob type (for
example, my apartment key fob)
at 5 times, and must re-attempt
scan each time

Y

MFRC522

Requirements Verification Verification Status

● Ensure that the
MFRC522 is correctly
supplied with power

● Ensure power supply is off at
the beginning

● Ensure that DVDD, AVDD, TVDD,
PVDD pins are physically
connected to the positive
voltage rail of the power supply

● Verify that DVSS, AVSS, PVSS,
TVSS are physically connected
to a ground rail

● Using a multimeter, check for

Y

27

short circuits between the
power rails and ground (there
should be 0 shorts)

● Turn on the power supply and
set it to the correct voltage for
the MFRC522. Measure voltage
at DVDD, AVDD, TVDD, PVDD.
Ensure voltage is within 2.5 V –
3.3 V range for these positive
rails. For the ground pins, they
should measure 0 V.

● The crystal oscillator
must be correctly
connected and
oscillating

● Ensure power supply off
● Verify that the 27.12 MHz

crystal is physically connected to
OSCIN and OSCOUT. Ensure
capacitors are grounded

● Use an oscilloscope to probe the
OSCIN and OSCOUT pins

● Verify that a stable oscillating
signal at 27.12 +/- 0.5 MHz is
present. This can be measured
using the frequency of the
signal.

Y

● The antenna circuit
must be properly
connected to the PCB

● Ensure power supply off
● Verify all relevant components

are physically connected to the
pins in the correct configuration

● If available at the ECE 445, use a
network analyzer to measure
impedance and resonant
frequency of the antenna circuit

● If not available, connect the
MFRC522 to the
microcontroller, and attempt to
read an RFID tag. If the tag can
be read, the antenna circuit is
functioning as intended. Repeat
this 5 times in a row with a 100
% success rate.

Y

TYPE-C-31-M-12 & AMS1117-3.3

Requirements Verification Verification Status

28

● The AMS1117-3.3
regulator shall provide a
stable 3.3 V +/- 0.1 V
output to the ESP32 at
an input of 5 V +/- 0.25
V from the USB-C

● Apply a voltage of 5 V +/- 0.25 V
via the USB-C connector

● Measure the voltage at the
VCC_3V3 pin of the AMS1117-
3.3 using a multimeter

● Using a multimeter and variable
electronic load, increase load to
500mA and verify output
voltage is stable within 3.2 V
and 3.4 V

Y

● The output voltage at
the ESP32’s VDD pin
must be 3.3 V +/- 0.1 V

● Using a multimeter, ensure that
the output voltage at the VDD
pin of the ESP32 (ESP32_3V3)
must be within the specified
range

● Ensure that the measured
voltage is between 3.2 V to 3.4 V

Y

● The power subsystem
must be able to
withstand continuous
input of 5 V without
damage

● Connect USB-C power source to
supply continuous 5 V

● Under max load at 500 mA,
monitor all components to
ensure no overheating (namely,
the linear regulator)

● Ensure no components exceed
80 degrees Celsius under
operation

Y

29

Appendix B Final PCB Design

Figure 13 – Final PCB Design

