

Ant-weight 3D Printed Battlebot

Electrical & Computer Engineering

Group 1 Attribute by: Zilong Jiang, Justin Leong , Yuxuan Nan TA: Bill Yang

May 6, 2025

What problem are we solving?

A competition for Antweight 3D Printed Battlebots was proposed. The problem is that everyone wants to win while also following all design constraints. The constraints included a **weight limit** of 2lbs, **3D** printed structure, **2 minute** rounds, etc. To win, our goal was to **outlast/destroy** differently designed Battlebots.

Factors to solve the problem!

- **Designing** an Ant-weight 3D-printed Battlebot for the Ant-weight Battlebot competition
- Combines PCB design, embedded systems, and wireless control
- Goal: Build a robot that is durable, responsive, and within weight limits
- Design a pneumatic weapon in order to scoop up competitors
- Focused on control, weapon function, and lightweight structure

The final design of our battlebot! Current score for this battlebot: 1 win - 1 loss.

Our Design Approach

Use PLA+ 3D printing:

• Material is stronger and more solid than regular PLA, also lightweight

ESP32-WROOM-32E:

• fast Bluetooth control (low-latency response)

H-bridge driver converts control signals into PWM

• **output** for precise motor speed and direction control

Pneumatic weapons

• for offense

Buck converter steps down 12V battery voltage to 3.3V

• safely power the ESP32 microcontroller

Let's see what inside our battlebot

Left image shows the internals and how everything was **mounted**. **Right** image shows the layout of our **heaviest** components (pneumatic, drivetrain, and battery).

Block Diagram & Subsystems

Original Block Diagram Design

7

General Changes for Final Design

Latest schematic version used for our PCB (individual sections shown later)

9

High Level Requirement Table

- Uses **Bluetooth** with a response time of under **100ms**.
- Drivetrain uses **two high-torque DC** motors powered by an **H-bridge** circuit for precise movement and speed control.
- Skid Bucket weapon controlled via a pneumatic actuator, capable of flipping or destabilizing 2 lb opponents.
- **3D-printed** chassis using **PLA+** plastic, ensuring durability and stability.
- Utilize a 3S 11.1V 500mAh LiPo battery with proper protections

A short clip of our functioning robot! <u>Functional Video</u> <u>Round 1 Fight!</u>

- Utilized **two high torque** DC motors from Greartisan
- Each provides 2.2kg*cm of torque with no-load speed of 200 rpm
- Note: Originally, utilized an H-bridge from Texas Instruments, the DRV8833RTY
 - However, due to how we wired original circuit, we fried 3 of these chips since we were giving 12V to an H-bridge with maximum 10.8V
 - Ended up using a L9110s DC motor driver module
- "Sticky tires" most amount of grip to complement the high torque DC motors
- Side Note: Peak current draw is 1A with an average of 0.3A

Subsystem: Drivetrain, Requirements & Verification

Requirements	Verification
Can produce a maximum of 2.2kg*cm of torque under no load	 Tested by pushing something of 2.2kg for approx. 1cm Ended up using the battlebot to push something of roughly 4lbs (close to 2.2kg) with our final battlebot
Can reach a maximum of 210 rpm under no load	 We did not have a tachometer, counted revolutions and approximated the rpm Roughly 210 rpm (3.5 revolutions per second)

- The battlebot weapon is a **ramp-based** flipping mechanism powered by a **13mm pneumatic piston** actuated by **compressed CO**₂.
 - Circuit driven by **bjt** transistor (tip120)
 - **12V** trigger solenoid
 - Using a **flyback diode** to gives inductive load spike a safe path to circulate
 - $10k\Omega$ is our choice to minimize current draw from the microcontroller.

Subsystem: Chassis (of Weapon/Chassis)

- 3D prints utilizing **PLA+ plastic** served as the main chassis of our Ant-weight battlebot
 - PLA+ offers a balance between durability and weight efficiency
 - **Less brittleness** than PLA, also has increased impact resistance
- Mounted most of the **heavy components at bottom** of chassis
 - Lower center of gravity
- **Two layers of Ramp and scooper** will allow us to slide under the chassis of opponents
 - And be able to scoop and ramp under; or use backside of battlebot to ram

Requirements	Verification
1.5A battery current draw requirement	• Current draw with the solenoid trigger is 0.5A
Solid build structure using PLA+ plastic • Able to move 2 lbs	 Our robot can move over 4 lbs of weight
Gas tank that can withhold 120 psi for pneumatic weapon	 We utilized pre-filled CO₂ cartridge that holds over 120psi Amount of carbon dioxide able to be used on weapon was predetermined Able to launch over 7 times with fully power flip.

- Relied upon a **11.1V** 500mAh **LiPo** battery
 - Max output of approximately **12.6V**; used this voltage range of **6-12V** for our motors
- Used a buck converter (LM2596S-3.3) to convert 12V to 3.3V
 - Allows for use in circuit (Control System)
- Shut off safety: Switch and battery connector to shut off system

Subsystem: Power System, Requirements & Verification

ELECTRICAL & COMPUTER ENGINEERING

Subsystem: Control System

- Relies on an ESP32-WROOM-32E as our central processing unit
- Uses Bluetooth connectivity
 - (Originally wanted WiFi)
- Can leverage PWM and GPIO for control of motors (drivetrain) and Pneumatic (weapon) systems

Original design of our Control System!

ELECTRICAL & COMPUTER ENGINEERING

Subsystem: Control System, Requirements & Verification

Requirements	Verification
Connect via Bluetooth	 Able to use phone to connect to Battlebot Utilize Dabble library to connect LED to display bluetooth is in use
Be able to control all 4 directional movements of battlebot with given signals - left, right, forward, backwards	 Able to move in the 4 directions properly H Bridge A1,A2,B1,B2

Average and Peak Current Draw of both motors:

 $I_{\text{motors}} = N_{\text{motors}} * I_{\text{motor}} = 2 * 0.1A = 0.2A$ $I_{\text{peakM}} = N_{\text{motors}} * I_{\text{motor_peak}} = 2 * 2A = 4A$

Total and Peak Current Draws:

 $I_{\text{total}} = I_{\text{motors}} + I_{\text{pneumatic}} + I_{\text{IC}} = 0.2\text{A} + 3\text{A} + 0.15\text{A} = 3.35\text{A}$ $I_{\text{peak}} = I_{\text{motors}_\text{peak}} + I_{\text{pneumatic}_\text{peak}} + I_{\text{IC}_\text{peak}} = 4\text{A} + 5\text{A} + 0.2\text{A} = 9.2\text{A}$

Capacity of Battery Wanted = I_{total} * Total Time = 3.35A * 2min = 3.35 * 2/60 h = **0.1116 Ah** Peak current of battery = **9.2A**

(3.35A/500mAh = 6.7C and 9.2A/500mAh = 18.4C), both of which are **within discharge rate limits** of our battery: **6.7C < 35C** and **18.4C < 70C**

Conclusion

- We Successfully built a Bluetooth-controlled Antweight Battlebot with a scooper, pneumatic weapon, and sticky wheels.
- We successfully combined the drivetrain, power, pneumatic weapon, chassis, and control system into a cohesive unit to create a fully functional battle bot
- The battlebot meets competition goals: durable, responsive, and combat-ready
- In the future, we would need to buy a lighter motor so that it could satisfy our light weight requirements

Thank You! Any questions for us?

ELECTRICAL & COMPUTER ENGINEERING