

SMART	SNACK	DISPENSER	

By

Eric Nieto Gonzalez

Adam Kramer

Elinor Simmons

Final Report for ECE 445, Senior Design, Spring 2025

TA: Surya Vasanth

7 May 2025

Project No. 23

ii

Abstract	

This report is a comprehensive overview of our project, the Smart Snack Dispenser. The Smart Snack
Dispenser helps prevent unintentional overeating by automating portion control. Users can select
portion sizes anywhere from 15 g to 70 g of Skittles, M&Ms, and peanuts. The machine also features
nutrition tracking to promote more mindful and healthier eating habits. Our machine is made up of six
different subsystems that include various components such as a microcontroller, touchscreen display,
stepper and dc motors, and four unique sensors. This report will walk through our high-level
requirements, subsystem overview, design process, results and verifications, and cost breakdown. The
final section reflects on our project’s successes, challenges, and potential future work.

iii

Contents	

1. Introduction .. 1

1.1 Problem .. 1

1.2 Solution .. 1

1.3 High Level Requirements .. 1

1.3.1 Accuracy .. 2

1.3.2 Speed ... 2

1.3.3 Usability ... 2

1.4 Subsystem Overview .. 2

1.4.1 Dispensing Subsystem ... 3

1.4.2 Microcontroller Subsystem ... 3

1.4.3 Sensor Subsystem .. 3

1.4.4 Touchscreen LCD Subsystem ... 3

1.4.5 Software Subsystem .. 3

1.4.6 Power Subsystem .. 3

2 Design .. 3

2.1 Dispensing Subsystem .. 4

2.2 Microcontroller Subsystem .. 4

2.3 Sensor Subsystem ... 5

2.3.1 RFID Sensor .. 5

2.3.2 Ultrasonic Sensor ... 5

2.3.3 Weight Sensor ... 6

2.3.4 IR Sensor .. 6

2.4 Touchscreen LCD Subsystem .. 6

2.4 Software Subsystem ... 7

2.6 Power Subsystem ... 7

2.6.1 12 V to 5 V Voltage Regulator ... 8

2.6.2 12 V to 5 V Voltage Regulator ... 9

2.6.3 12 V Wall Adapter .. 10

3. Verification ... 10

iv

3.1 Dispensing Subsystem .. 10

3.2 Microcontroller Subsystem .. 11

3.3 Sensor Subsystem ... 11

3.3.1 RFID ... 11

3.3.2 Ultrasonic Sensor ... 12

3.3.3 Weight Sensor ... 13

3.3.4 IR Break Beam Sensor .. 13

3.4 Touchscreen LCD Subsystem .. 14

3.5 Software Subsystem ... 14

3.6 Power Subsystem ... 15

3.6.1 12 V Wall Adapter .. 15

3.6.2 12 V to 5 V Voltage Regulator ... 16

3.6.3 5 V to 3.3 V Voltage Regulator .. 16

4. Costs and Schedule ... 17

4.1 Part Costs .. 17

4.2 Labor Costs ... 17

4.3 Schedule ... 17

6. Conclusion .. 17

6.1 Accomplishments ... 17

6.2 Uncertainties .. 18

6.3 Ethical considerations .. 18

6.3.1 Ethics ... 18

6.3.2 Safety ... 19

6.4 Future Work ... 19

References .. 21

Appendix A Requirement and Verification Table .. 23

Appendix B Weight Sensor Measurement Tables ... 27

Appendix C Part Costs and Schedule ... 28

1

1.	Introduction	
To help prevent mindless overeating, we propose the Smart Snack Dispenser. This is a machine that
automates portion control and nutrition tracking. This report is an overview of our project development
and is organized as follows:

• Chapter 1 – Introduction: This chapter describes our problem and solution, as well as our high-
level requirements and subsystems.

• Chapter 2 – Design: This chapter walks through our design process and explains our design
decisions.

• Chapter 3 – Verification: This chapter discusses our results and the verifications made to ensure
our project was successful

• Chapter 4 – Costs and Schedule: This chapter provides a breakdown of our cost of parts and
labor. It also includes a detailed schedule of the work done throughout the semester.

• Chapter 5 – Conclusion: This chapter summarizes are success, challenges, and possible future
work. It also discusses the ethical considerations of our project.

1.1	Problem	
The problem that we seek to address is that oftentimes while snacking, people lose track of how much
they eat. This can lead to unwanted weight gain, unhealthy eating habits, and a poor relationship with
food. While mindful eating can help address the consequences of uncontrolled snacking, practical
devices engineered to help users adopt healthier and more mindful snacking habits are in need.
Currently, the market lacks such devices, leaving people to rely on willpower alone to manually measure
and track their calorie intake when it comes to snacking. Research shows that people make over 200
unconscious food-related decisions daily. Without a solution to automate the measuring and tracking
process, it only becomes more likely that people will mindlessly snack, especially later in the day, due to
decision fatigue. People snacking might be too hungry and impatient or not have the energy to manually
track what they eat.

1.2	Solution	
The solution that we propose is a Smart Snack Dispenser (SSD). This is designed to help people who
snack make more mindful decisions about the amount that they eat. The secondary function of the SSD
is to track the calories and macronutrients in the snacks that they have dispensed for later viewing.
Through a combination of six main sensors, four motors, and one touchscreen display, which are all
connected to the main microcontroller, the SSD is meant to function as a standalone kitchen appliance
with its only wired connection being to a standard wall outlet. The SSD can dispense M&M’s, peanuts,
and Skittles, or any combination of the three.

1.3	High	Level	Requirements	
For our project to be considered successful, we defined three high-level requirements: accuracy, speed,
and usability.

2

1.3.1	Accuracy	
Our first high-level requirement was that the machine must dispense the correct portion within a 15%
tolerance or less. Since our main project focus is to help users control their portion sizes, it is important
for us to make sure that the portions are weighed properly. Another requirement was that the machine
must correctly keep track of the nutrients that are in each portion. These nutrients include calories,
sugar, protein, sodium, and fat. For us to help users maintain a balanced diet, we must be accurate in
tracking the nutrients that the user is consuming.

1.3.2	Speed	
Our second high-level requirement was that the machine must dispense the snack within 30 seconds or
less after the snack has been selected. We also wanted to ensure that user input was immediately
registered as it is selected on our touchscreen interface. For this product to be beneficial to the user, we
needed to make our machine operate faster than a person could do by hand. If a person could portion
out and track the nutrients of their snack by themselves faster than our machine, then our machine
would not be of much use.

1.3.3	Usability	
Our final high-level requirement was that the user interface must be smooth and organized. It should be
easy for a user to dispense a snack or find their personalized data. It is important for us to make the user
interface intuitive to use for the consumer. If the machine is difficult or confusing to operate, the user is
unlikely to use the product. We also wanted the user interface to be visually appealing to enhance the
user experience and ensure that the interface is well-designed.

1.4	Subsystem	Overview	
In Figure 1, we can see our final block diagram. Our project is made up of six different subsystems. A
brief description of each subsystem is provided below.

 Figure 1: Block Diagram

3

1.4.1	Dispensing	Subsystem	
The dispensing subsystem includes our motor drivers, stepper motors, and dc motor. The stepper
motors rotate our wheels to dispense our snacks, while the dc motor provides vibration to help with any
jamming. Both motors are controlled through the motor drivers.

1.4.2	Microcontroller	Subsystem	
This subsystem acts as our central hub and interconnects our software to our sensor, dispensing, and
display subsystems. We chose the ESP32 for its Wi-Fi and Bluetooth capabilities.

1.4.3	Sensor	Subsystem	
This subsystem includes RFID, an ultrasonic sensor, a weight sensor, and an IR sensor. The RFID allows
for each user to have their own profile. The ultrasonic sensor checks to see if a bowl is in place before
dispensing. The weight sensor weighs the dispensed amount. Finally, the IR sensor checks if the snacks
need to be refilled.

1.4.4	Touchscreen	LCD	Subsystem	
This is our display subsystem. It acts as our main interface for users to select and dispense their snacks.
It also displays any information from our sensors through the ESP32.

1.4.5	Software	Subsystem	
This subsystem contains all of our internal features. This includes a calorie limit and nutrition tracking.
The software subsystem also interconnects our microcontroller to the rest of the subsystems.

1.4.6	Power	Subsystem	
Our power subsystem includes a 12 V wall adapter, a 12 V to 5 V voltage regulator, and a 5 V to 3.3 V
voltage regulator. All three of these voltages are used to power our various components such as our
sensors, motors, and microcontroller.

2	Design	
Our physical machine is shown in Figure 2 as a visual aid. Figure 3 showcases our final PCB design which
includes the ESP32, a 12 V to 5 V voltage regulator outlined in red, and a 5 V to 3.3 V voltage regulator
outlined in blue.

 Figure 2: Physical Machine Figure 3: Main Custom PCB

4

2.1	Dispensing	Subsystem		
We considered many different designs for the physical dispensing of the snacks. We wanted to
implement the simplest design while minimizing jamming and maximizing consistency and accuracy in
the amount we dispensed across trials. We first considered a rack-and-pinion linear actuator design,
where a gear would rotate and push a geared track attached to a plunger system forward, and push the
snack contained in the plunger out into a chute emptying into a bowl. We also considered a classic
electric linear actuator using the same mechanism of pushing the snack out of a container and into a
chute emptying into a bowl. However, we decided that both mechanisms would be more difficult to
design due to the complexity of the moving mechanical parts. We also considered an auger screw (also
known as a screw conveyor), such as those used in agriculture to move dry bulk materials like grain,
feed, and fertilizer. We considered this design due to its continuous screw motion, which we thought
would be easy to implement with a stepper motor or a simple dc motor and encoder. However, after
consulting with the machine shop, they advised against this design because in their experience this
design has a high likelihood of jamming and creates lots of friction which could degrade the mechanism
over time. Finally, we landed on a rotating wheel dispensing system, where underneath each snack a 3D
printed wheel is placed. Each wheel has four cutouts separated by 90° that a small amount of a given
snack falls into each time the stepper motor is triggered to rotate by 90°. When the wheel rotates by
180°, the snack falls into a cup beneath the machine. We chose the XY42STH34-0354A stepper motor,
which operates at 12 V [1], along with the DRV8825 stepper motor driver [2]. We also applied a dc
motor to induce physical shaking in case any of the snacks got jammed. Specifically, we utilized the ROB-
11696, which operates at 5 V [3], and paired it with the TB6612 dc motor driver [4].

2.2	Microcontroller	Subsystem	
For our desired microcontroller, which acts as the heart of this system, we chose the ESP32 as our
programmable chip. This was chosen because it can be coded using a common software called Arduino
IDE. This chip also offers a wide range of GPIO pins and can use Bluetooth and Wi-Fi, which are
necessary in our application. The ESP32 has thorough documentation online which allows us to clearly
familiarize ourselves with all the options it has. Even though the ATMega328 was another reliable
option, it does not have access to wireless features like the ones mentioned for the ESP32. Similarly, the
STM32 also does not include built-in Wi-Fi. The ECE 445 website included an “ESP32 Example Board”
(see [5]). This page contained a bare minimum circuit that was necessary for the ESP32 to function. This
schematic included a programming circuit, which was needed to download our code onto the
microcontroller. Since this schematic included all of our needs, we used this design for our PCB. The
schematic that was used for our PCB is shown in Figure 4.

5

 Figure 4: Schematic of Microcontroller Subsystem

2.3	Sensor	Subsystem	

2.3.1	RFID	Sensor	
To correctly identify each user that would be using the SSD, we chose to use an RFID sensor. This allows
us to give tags to each participating user so that they can tap each time they wished to use the machine.
This also works with those who have tags that are not registered to the dispenser, since they still fall
under the same software. We chose the RC552 RFID which operates at 3.3 V, making it compatible with
our ESP32 [6]. Alternate options were software-based accounts, where passwords and account
information would have stored directly in the microcontroller. This way the user would tap their
respective account on the touchscreen and use our coded keyboard to enter their unique password. This
was not chosen as we wanted to save as much memory in our ESP32 as possible for other necessary
functions.

2.3.2	Ultrasonic	Sensor	
We chose an ultrasonic sensor to identify the presence of a bowl. This prevents any prevented snack
spillage and unnecessary waste of food. We specifically chose the HC-SR04, which operates at 5 V [7].
Since this sensor operates at 5 V, we had to add a small voltage divider circuit to make the component
compatible with the ESP32. The schematic for this circuit is shown in Figure 5, where “Echo” is one of
the signals from the ultrasonic sensor. We confirmed that the voltage was properly stepped down using
Equation (1).

 Figure 5: Voltage Divider for Ultrasonic Sensor

6

𝑉!"# = 𝑉$% ∗
𝑅16 + 𝑅17

𝑅15 + 𝑅16 + 𝑅17 = 5	𝑉 ∗
2000Ω

1000Ω + 2000Ω = 3.33	𝑉	 (1)

We had originally considered a PIR sensor, but this sensor only provided momentary signals. After
motion was detected, the signal would no longer be active. The ultrasonic sensor provided us with a
continuous signal, allowing us to constantly check if a bowl was in place.

2.3.3	Weight	Sensor		
Our weight sensor was made up of two components, the load cell and the load cell amplifier. We chose
to use the TAL221 500 g load cell because we wanted a load cell big enough to allow reasonable
portions and various bowl sizes, but small enough to read weight in our desired range [8]. Additionally,
we used a HX711 load cell amplifier so that we could read data from our load cell. This amplifier
operated at two voltages. One was 5 V, which was the excitation voltage, and the other was 3.3 V, which
was the logic level. Both voltages were compatible with our system. This load cell amplifier was made
into a custom PCB by using the schematic provided by SparkFun [9]. Our schematic and PCB are shown
in Figure 6 and Figure 7. There were not many alternative options for this sensor. Since we needed to
measure weight, it did not make sense to use anything other than a load cell. As for the HX711, this was
the only product that we found that was compatible with a microcontroller. The HX711 was also
particularly useful because it allowed us to easily tare the bowl by using the “HX711.h” library and the
scale.tare() function.

Figure 6: Load Cell Amplifier Schematic Figure 7: Load Cell Amplifier PCB

2.3.4	IR	Sensor	
The IR sensor allowed us to see if the snack containers needed to be refilled by checking to see if the
beam was broken by snacks or not. This ensured that the snack never ran out while dispensing and
would let the user know to restock before continuing. We specifically chose the 3 mm IR Break Beam
from Adafruit [10]. We connected the transmitter to 5 V for better range, as recommended by Adafruit,
and the receiver was connected to 3.3 V as this was our logic level. An alternative to this sensor could
have been a photoresistor, but we believed that this sensor would have had more challenges with
ambient light. In contrast, the IR sensor can handle a variety of light conditions, which makes it ideal
since homes can vary in lighting.

2.4	Touchscreen	LCD	Subsystem	
We chose the Hosyond MSP4022 4.0” touchscreen for our user interface [11]. This display operated at
3.3 V, making it easy to use with the ESP32. We wanted a touchscreen that would not take up too much

7

of our budget and would also be large enough for easy interaction. This touchscreen manufacturer used
a variety of drivers. For our case, we used the SPI ST7796S Driver. This display also operated at 3.3 V,
making it easy to connect with the ESP32. Alternate user interfaces screens could have been buttons
alongside a serial LCD display. However, we did not pursue this option as it would have either been too
bulky due to the number of buttons needed for all our functions, or too limiting, as fewer buttons would
have restricted our selection options.

2.4	Software	Subsystem	
The finalized code consists of 1,500 lines which is composed of initialized libraries, variables, Arduino
setup function, Arduino loop function, and 15 custom functions. The custom functions handle a variety
of steps like setting up each sensor, a math function for all the needed calculations, multiple drawing
functions to ensure the displays shows clean text, and much more. This was all done through the
software Arduino IDE, which allows us to connect our computer straight into the ESP32 through a
programmer. Calorie tracking was also implemented by allowing the user to set an upper limit for
themselves. Once applied, the counter would subtract the number of calories in the weighed portion
from the limit after each dispense. This would keep going until the counter hits a negative value which
informs us that the user has finally reached their goal. Furthermore, Bluetooth and Wi-Fi functions were
also created to call needed information outside of the ESP32 and to connect to the computer needed for
external data storage. Therefore, the computer itself also had python code to ensure a connection was
established between the ESP32 and the computer. This allowed for crucial information like data, time,
user, snacks and the order they were chosen, the weighed amount, calories, fats, sodium, protein, and
sugars to be transferred over.

2.6	Power	Subsystem	
Our power subsystem contained three main parts. This includes a 12 V wall adapter, a 12 V to 5 V
voltage regulator, and a 5 V to 3.3 V voltage regulator. These were all voltages that we needed to power
our different subsystems. Specifically, our stepper motors needed 12 V. The RFID, touchscreen display,
motor drivers, and ESP32 needed 3.3 V. Our ultrasonic sensor and the dc motor needed 5 V. Lastly, the
load cell amplifier needed both 5 V and 3.3 V.

To select our components, we needed an estimate for the current draw. After looking through
datasheets we came up with an estimated output current of around 2.96 A. A breakdown of the current
draw for each component can be seen in Table 1.

Table 1: Estimated Maximum Total Current Draw
Device Maximum Current Draw

RFID (RC522) 30 mA
Ultrasonic Sensor (HC-SR04) 20 mA

Emitter (x3) 60 mA
Receiver (x3) 30 mA

Motor Driver (TB6612 or DRV8825) ~10 mA
Stepper Motor (XY42STH32-0354A) 0.7 A

DC Motor (ROB-11696) 0.8 A
Touchscreen Display (MSP4022) ~300 mA

8

HX711 Load Cell Amplifier with 500 g load
cell

~10 mA

ESP32-S3-WROOM-1 (Wi-Fi + all GPIOs) ~ 1 A
 Total: ~2.96 A

Our final value of 2.96 A is over-estimated. This is because not all of these components will be operating
at the same time. The reason we still used this number as our estimate was because we wanted to
ensure that enough current would be provided.

2.6.1	12	V	to	5	V	Voltage	Regulator	
We chose the LMR51430 from Texas Instruments as our voltage regulator. This is a synchronous buck
converter that is capable of outputting three amps of current. This is specifically a switching regulator.
We chose a switching regulator over a linear voltage regulator due to the large voltage drop. For a linear
voltage regulator when the voltage is dropped, that difference is converted as heat. If we had used a
linear voltage regulator for a voltage drop of seven volts and a maximum current draw of three amps,
this would have resulted in 21 W of power dissipated as heat (see Equation (2)). This is clearly too much
power, which is why we used a switching regulator. In Figure 8, we can see a simplified version of our
voltage regulator circuit. This was taken from the datasheet [12].

 Figure 8: General LMR51430 Schematic

 In this datasheet, there is a “Detailed Design Procedure” section. This section was a walkthrough of how
to select the components for a 12 V input and 5 V ± 3 % output. This is the exact input and output
voltage that we needed, so we used the same recommended components from the datasheet. The 3 %
tolerance from this example is also how we chose this tolerance in our requirements for this voltage
regulator. The schematic that we used for our PCB with all of the component values can be seen in
Figure 9.

𝑃& = 𝐼!"#(𝑉$% − 𝑉!"#) = 3	𝐴 ∗ (12	𝑉 − 5	𝑉) = 21	𝑊	 (2)

 Figure 9: 12 V to 5 V Voltage Regulator Schematic

9

2.6.2	12	V	to	5	V	Voltage	Regulator	
We chose the TPS62933O from Texas Instruments for this voltage regulator. This is a synchronous buck
converter that is capable of outputting three amps of current. This also a switching regulator. Our
voltage drop is a smaller this time (1.7 V), which would give us a heat dissipation of 5.1 W if we had used
a linear voltage regulator (see Equation (3)). Although this may have been manageable with a heat sink,
we did not want to have to worry about overheating or using extra components like heat sinks, so we
stuck with a switching regulator.

𝑃& = 3	𝐴 ∗ (5	𝑉 − 3.3	𝑉) = 5.1	𝑊	 (3)

In Figure 10, there is a general schematic for this voltage regulator. This was taken from the datasheet
[13]. This datasheet also had a section called “Detailed Design Procedure.” This section contained a table
that had recommended resistor, capacitor, and inductor values for a 3.3 V output. The ECE 445 website
also had an “ESP32 Example Board.” This board used the same voltage regulator for a 5 V to 3.3 V
conversion. We compared the values between the ECE 445 website and the datasheet and found that
they were almost the same. The only difference was that the datasheet had a smaller Cout value and did
not provide a Cin value. Since we had the same needs as the ECE 445 example board, we ended up using
the same component values. We decided to use the larger output capacitance to help with the voltage
ripple and we used the same Cin value since the datasheet did not provide a value, as previously
mentioned. The detailed schematic that we used for the PCB is shown in Figure 11.

 Figure 10: General TPS62933O Schematic

 Figure 11: 5 V to 3.3 V Voltage Regulator Schematic

10

2.6.3	12	V	Wall	Adapter	
We decided to use a wall adapter as our main source of power. We chose this over a battery because we
wanted the machine to act as a household appliance. We also did not want the user to have to worry
about replacing or recharging the batteries. Since 12 V was our largest needed voltage, we chose a 12 V
wall adapter. Specifically, we chose the L6R36-120 from Tri-Mag [14]. This wall adapter is rated for 36
W. According to the 12 V to 5 V regulator datasheet, this regulator has around a 90 % efficiency. For a
maximum output power of 15 W, this would require a 16.67 W input (see Equation (4)). The wall
adapter datasheet stated that this adapter has around an 85 % efficiency. This means that for a 16.67 W
output we would need a 19.61 W input (see Equation (5)). We made our rating a little larger than this
(36 W) in case our efficiencies were lower than expected.

15	𝑊 ÷ 0.9 = 16.67	𝑊	 (4)

16.67	𝑊 ÷ 0.85 = 19.61	𝑊	 (5)

3.	Verification	

3.1	Dispensing	Subsystem	
The detailed requirements and verification table can be found in Appendix A Table 1.

To verify that our stepper motors meet the 30 second time requirement, we recorded several trials of
dispensing our largest allowable amount (70 g). In our best-case scenario, which includes minimal
jamming and most wheel slots being completely filled, we recorded a time of 23.62 seconds. However,
our other trials included moderate to severe jamming. Our recorded times and the average time for
these trials are shown in Table 2.

Table 2 Dispenses with jamming issues
37.35 seconds
30.30 seconds
31.40 seconds
31.37 seconds
30.17 seconds
32.37 seconds
31.12 seconds

Average: 32.01 seconds

Our average time with jamming was 32.01 seconds. Overall, we found that in ideal cases we were able
to meet our high-level speed requirement. However, for cases with jamming, we were just above our
requirement. We still consider this high-level requirement as met since jamming was not entirely in our
control and is mainly an issue with physical design. We were able to qualitatively verify that the motor
was spinning in the correct direction by 90 degrees each turn through observation.

11

3.2	Microcontroller	Subsystem	
The detailed requirements and verification table can be found in Appendix A Table 2.

We coded all of our software using Arduino IDE and programmed it onto the ESP32 using a USB to UART
bridge and the programming circuit mentioned in Section 2.3. We used the ESP32 chip that was
provided by the Electronics Services shop. This was the ESP32-S3-WROOM-1-N16, which has 16 MB of
flash [15]. All of our code programmed onto the ESP32 successfully through the programming circuit on
our main PCB, which confirms that our chip had enough storage. Since our project was fully functional,
we were also able to verify through observation that our subsystems were communicating through the
GPIOs on our microcontroller. This is also shown through our verifications of other subsystems. We can
further verify this from Figure 12, where we can see that there is nothing physically connecting our
machine and the computer.

 Figure 12: Machine and computer with no physical connection

3.3	Sensor	Subsystem	
The detailed requirements and verification table can be found in Appendix A Table 3.

3.3.1	RFID	
For our tests, we had two distinct RFID tags. One was a white tag that was pre-registered as “Eric’s Tag”
and a blue tag that was unregistered. The two tags are shown in Figure 13. In Figure 14, we can see that
when the white tag is scanned the screen displays “Eric’s Tag.” In Figure 15, we can see that when the
blue tag is scanned the screen displays “Unknown tag.” This confirms that each tag is being registered
distinctly. Finally, each RFID tag has a unique ID, which has been verified to be genuine as shown at the
top of the display. We know that this ID is correct, since it can only be changed with a machine that is
accessible at the manufacturing plant.

12

 Figure 13: Two RFID Tags

 Figure 14: Eric's tag on display Figure 15: Unknown tag on display

3.3.2	Ultrasonic	Sensor	
In Figure 16, we can see that the distance reads 2,162 cm and to “Please place bowl.” Our ultrasonic
sensor faces forward. The reason that the distance is so large is because there is nothing placed, and the
sensor is just reading out into the open. When a bowl is placed in front of the sensor, we can see in
Figure 17 that the distance now reads 8 cm. Finally, when the bowl is placed the display now reads
“Bowl placed” (see Figure 18). The sensor is coded so that it considers the bowl placed at 5 cm. Through
these images, we can see that the sensor fully works as intended.

 Figure 16: Ultrasonic sensor without bowl

Figure 17: Ultrasonic sensor with bowl closer Figure 18: Bowl placed

13

3.3.3	Weight	Sensor	
To verify our 15% tolerance, we first compared the user-defined amount to the amount that was
actually dispensed. Then, we also compared the weight of the dispensed amount to the weight read
from a commercial food scale. We compared these weights using the Equation (6). Our measurement
tables for each snack can be seen in Appendix B.

%	error	 = ?
desired	 − 	measured

desired
? ∗ 100	 (6)	

Our tables show that our error percentages are under 15%, which verifies our 15% tolerance
requirement. In Figure 19, we can see in the top left corner that a bowl has been placed, and the current
weight reads -0.02 g. The reason that there is a negative is because Machine Shop placed our load cell
upside down, so this negative can be ignored. Since our weight sensor is very sensitive, it can pick up
readings from slight vibrations, so we could not get it to read exactly zero grams. However, the bowl
weighed around four grams, so we consider the bowl to be successfully tared.

 Figure 19: Bowl tare verification

3.3.4	IR	Break	Beam	Sensor	
In Figure 20, we can see that the peanuts fall below the IR sensors, allowing the receiver to sense the IR
beam. In Figure 21 the screen says, “Refill Peanuts.” In Figure 22, the peanuts are filled above the IR
sensors, preventing the receiver from sensing the IR beam. At the bottom of Figure 22, we can see that
the refill notification is now gone. These series of pictures verify that our IR break beam sensor is
working as intended.

 Figure 20: Peanuts need refilled Figure 21: Refill Screen Figure 22: Peanuts filled

14

3.4	Touchscreen	LCD	Subsystem	
Figures 23 and Figure 24 show the display and database information. The display’s information
corresponds with the database’s information. This verifies that the touchscreen displays the correct
values. We were able to verify that the display was touch capable and only registered user input where
the buttons were drawn through observations during our testing. This was further proven in our in-
person demonstration of the machine. As proven in other sections such as Section 3.3.2 and Section
3.3.4, we found that the touchscreen would display the correct notifications when necessary.

Figure 23: Touchscreen Display Information Figure 24: Database Information

3.5	Software	Subsystem		
The detailed requirements and verification table can be found in Appendix A Table 5.

Our first requirement was to ensure that the display only shows what the user has chosen to be on the
screen. This refers to the multiple screens of information they can select from as the process is going
rather than just being limited to one screen of information. The user was able to choose between snack
information, current nutritional values, or chosen snacks. As shown in our in-person demonstration, this
was verified observationally.

Our second requirement was to keep track and display the correct nutritional values. The values shown
in Figure 25, Figure 26, and Figure 27 were found by taking the nutritional values from the labels on each
snack and converting them to per gram using Equation (7). This was done so that we could track the
nutrition per dispensed serving.

𝑁𝑢𝑡𝑟𝑖𝑡𝑖𝑜𝑛	𝑝𝑒𝑟	𝐺𝑟𝑎𝑚 =
𝑁𝑢𝑡𝑟𝑖𝑡𝑖𝑜𝑛	𝑉𝑎𝑙𝑢𝑒	

𝐺𝑟𝑎𝑚𝑠	𝑝𝑒𝑟	𝑆𝑒𝑟𝑣𝑖𝑛𝑔	
	 (7)

An example calculation for the calories in peanuts is shown in Equation (8).

	
160	𝐶𝑎𝑙𝑜𝑟𝑖𝑒𝑠	𝑝𝑒𝑟	𝑠𝑒𝑟𝑣𝑖𝑛𝑔

28	𝑔	𝑝𝑒𝑟	𝑠𝑒𝑟𝑣𝑖𝑛𝑔
= 5.71	 (8)

15

Figure 25: Peanuts Nutrition per gram Figure 26: M&Ms Nutrition per gram Figure 27: Skittles Nutrition per gram

The nutrition values collected for a 19.77 g serving of peanuts is shown in Figure 24. An example
calculation for how the calories were obtained is shown in Equation (9).

𝐶𝑎𝑙𝑃𝑒𝑟𝐺3 ∗ 𝑅𝑒𝑎𝑙	𝑊𝑒𝑖𝑔ℎ𝑡 = 𝐶𝑎𝑙𝑜𝑟𝑖𝑒𝑠	 → 	 (5.71) ∗ (19.77) = 112.88	[𝐶𝑎𝑙]	 (9)

The calories shown in Figure 24 correspond to the value that we obtained in Equation (9), verifying that
the nutrition is being tracked correctly.

3.6	Power	Subsystem	
The detailed requirements and verification table can be found in Appendix A Table 6.

3.6.1	12	V	Wall	Adapter	
In order to verify that our wall adapter was within our 5% tolerance, we first observed the output using
a multimeter. In Table 3, we have five different measurements of the output voltage and the average of
those values. Then we compared this average to our tolerance.

Table 3 12 V Wall Adapter Output Voltage
12.0355 V
12.0354 V
12.0353 V
12.0353 V
12.0353 V

Average: 12.03536 V

Since our average is larger than 12 V, we compared this value to the positive tolerance. Our calculation
to get this value is shown in Equation (10).

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	 = 	12	𝑉	 + 	12	𝑉	 ∗ 	5%	 = 	12.6	𝑉	 (10)

We can clearly see that 12.03536 V is less than 12.6 V, so our 12 V wall adapter meets our 5% tolerance
requirement. We were also able to verify that when we connected this output to our stepper motors,
they were able to operate properly. In our verifications, we mentioned using an oscilloscope to measure
the percent error. We found that this was not necessary because the output voltage was so constant,
we were unable to see any ripple in the waveform. We also mentioned checking the current and power
in our verifications. We did not have access to a load that would provide us continuously with 3 A, so we
were unable to check that the maximum output current was 3 A and the output power was 15 W.
However, we found that this was not necessary because we were able to power our entire machine with
just the wall outlet, meaning that the necessary current was being provided.

16

3.6.2	12	V	to	5	V	Voltage	Regulator	
We once again measured the output voltage using a multimeter. Our measurements and the average
value are shown in Table 4.

Table 4 12 V to 5 V Regulator Output Voltage
4.95875 V
4.95842 V
4.95853 V
4.95856 V
4.95880 V

Average: 4.958612 V

For this voltage regulator, we had a 3% tolerance requirement and since our average is less than 5 V, we
compared this value to the negative tolerance. Our calculation is shown in Equation (11).

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	 = 	5	𝑉 − 	5	𝑉	 ∗ 	3%	 = 	4.85	𝑉	 (11)

We can see that 4.958612 V is greater than 4.85 V, so our 12 V to 5 V regulator meets our 3% tolerance
requirement. As we mentioned in our 12 V wall adapter discussion, we did not find using the
oscilloscope necessary for the same reasons as above. Once again, we also did not find the 3 A
maximum output current to be a necessary requirement. This was put in place because 3 A was the
maximum possible output current from our voltage regulator and we were not sure what our exact
output current would be. However, since our machine was able to fully operate, we know that our
output current was 3 A or less.

3.6.3	5	V	to	3.3	V	Voltage	Regulator	
To verify our 5% tolerance for our 5 V to 3.3 V voltage regulator, we observed our output using the
multimeter. Our measurements and the average value our shown in Table 5. Since our average value is
greater than 3.3 V, we compared this value to the positive tolerance. Our calculation is shown in
Equation (12).

Table 5 5 V to 3.3 V Regulator Output Voltage
3.34102 V
3.34086 V
3.34098 V
3.34092 V
3.34096 V

Average: 3.340948 V

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑡𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒	 = 	3.3	𝑉 + 	3.3	𝑉	 ∗ 	5%	 = 	3.465	𝑉	 (12)

We can see that 3.340948 V is less than 3.465 V, so our 5 V to 3.3 V regulator meets our 3% tolerance
requirement. For all of the same reasons that we mentioned in the 12 V wall adapter section and the 12

17

V to 5 V voltage regulator section, we did not find it necessary to use the oscilloscope or confirm that
the maximum output current was 3 A.

4.	Costs	and	Schedule		

4.1	Part	Costs	
The table detailing our part costs is shown in Appendix C Table 1. The total actual cost of our project
came out to be $152.43.

4.2	Labor	Costs	
The average starting salary of an Electrical Engineering graduate from the University of Illinois Urbana-
Champaign is $87,769. There are 52 weeks in a year and 40 hours a week would give an hourly rate of
$42.19/hour. We estimated that we each worked an average of 10 hours per week per person. We
started working in week 4 and we finished in week 15. This is 12 total weeks, so this gives us a total of
120 hours per person. We used Equation (13) to calculate our total labor cost estimate.

𝑖𝑑𝑒𝑎𝑙	𝑠𝑎𝑙𝑎𝑟𝑦	(ℎ𝑜𝑢𝑟𝑙𝑦	𝑟𝑎𝑡𝑒) ∗ 𝑎𝑐𝑡𝑢𝑎𝑙	ℎ𝑜𝑢𝑟𝑠	𝑠𝑝𝑒𝑛𝑡 ∗ 2.5 = $42.19 ∗ 120 ∗ 	2.5 = $12,657	 (13)
	

This adds up to $12,657 per person. Our total labor costs come out to $37,971. We estimate that
Machine Shop worked for a total of eight hours at a rate of $40/hour. This comes out to $320. Overall,
all of the labor costs at up to $38,291.

4.3	Schedule	
The table detailing our schedule throughout the semester can be found in Appendix C Table 2.

6.	Conclusion		

6.1	Accomplishments		
Throughout the verification chapter, we proved that the SSD was successfully completed and fulfilled all
the requirements. We were able to implement all our desired sensors for their intended purposes. This
was achieved by carefully selecting our components and developing the code needed to integrate them
into our system. Another accomplishment was completing our high-level requirements. As we proved in
Section 3.1, we were able to meet our time requirement in ideal scenarios. We considered this to be
successful, since jamming was not entirely in our control. In Section 3.3.3 we also showed all of our
weight measurements within our 15 % tolerance. Finally, the various figures in our verification chapter
show the user interface as organized and visually appealing. In the end, our machine was able to
operate as an independent appliance, with the only connection being through a wall outlet. Every
subsystem—from sensor inputs to snack delivery—met our requirements, making it a cohesive,
dependable smart snack appliance that is ready for real world use.

18

6.2	Uncertainties		
A major uncertainty we had in our machine was the subject of anti-jamming. Unfortunately, there were
scenarios where the snacks would get stuck within the stock area. This was typically caused by the
snacks sticking together from the sugar and salt, or from the snacks getting stuck in the wheel after
falling an odd way. This slowed down our dispensing process and made our timing requirement more
difficult. This also caused our dispensing mechanism to be inconsistent. Depending on the level of
jamming, the machine would dispense anywhere from one piece to the maximum pieces that could fit in
the wheel. This affected not only our timing, but also our weight requirement. Anti-jamming can be
improved by placing a dc motor in the center of each stock to attack the problem directly. This will
significantly improve our solution considering that before we only had one dc motor in an arbitrary
place. This was done due to Machine Shop suggesting this option. Furthermore, the code can be
improved for the dc motors such that they activate when their weight has not changed if two rotations
have passed. This is beneficial as it can provide input to the dc motors and allow them to activate when
needed rather than every three turns.

Another topic that we are uncertain of is the geometric shape of our dispensing wheels, which were
designed by Machine Shop. All three wheels were made identical. This was unideal because each snack
weighed a different amount, so each wheel dispensed a different amount on each turn. For example, for
a full wheel, Skittles would dispense around five grams per turn, while M&Ms would dispense around
seven grams per turn. Since our wheels did not produce consistent amounts across the three snacks, the
tolerance for each snack was different, making our weight requirements more difficult to achieve. A
potential solution is to create multiple iterations of each wheel to find the most optimal wheel, allowing
us to provide a more consistent amount.

6.3	Ethical	considerations	

6.3.1	Ethics	
The SSD raises ethical concerns related to user privacy, data security, and autonomy. Since the system
tracks individual snacking habits and nutritional data through RFID, it is essential to comply with ethical
standards outlined by organizations such as the IEEE Code of Ethics (see [16]) and the ACM Code of
Ethics and Professional Conduct (see [17]). IEEE’s Principle 1 emphasizes the need to prioritize the well-
being and privacy of individuals, ensuring that users' personal information remains secure and is not
shared without explicit consent. Strong encryption, secure authentication, and strict access control
measures must be implemented to prevent unauthorized access to user data.

Furthermore, ACM’s Principle 2.9 (Ensure Fairness and Non-Discrimination) emphasizes the
responsibility of technology designers to create systems that are fair and accessible to all users. The SSD
should be designed to prevent unintentional bias, ensuring that all individuals, regardless of their dietary
restrictions, cultural preferences, or physical abilities, can use the system effectively. This includes
offering a variety of snack options that cater to different nutritional needs, designing an intuitive
interface that accommodates diverse users, and ensuring that the system does not unintentionally
disadvantage any group. By integrating fairness into the design, the dispenser can serve as an inclusive
and equitable tool for promoting healthier snacking habits.

19

6.3.2 Safety
Safety is a critical consideration in the design of the SSD, particularly regarding electrical and food
hygiene risks. The IEEE Code of Ethics Principle 1 states that engineers must “hold paramount the safety,
health, and welfare of the public,” which directly applies to preventing hazards associated with electrical
components and food safety.

• Electrical Safety: Since the dispenser plugs into a wall outlet, it must comply with industry
standards for insulation, grounding, and circuit protection to prevent electrical shocks, short
circuits, and overheating. Overcurrent protection and temperature monitoring should also be
included to mitigate fire hazards.

• Food Safety: The design must ensure that snacks remain uncontaminated. In accordance with
ACM’s Principle 1.2 (Avoid Harm), the dispenser should minimize food exposure to external
contaminants. The use of food-grade materials, airtight containers, and easily cleanable surfaces
will help maintain hygiene. Users should also receive clear maintenance and cleaning guidelines
to prevent bacterial buildup or cross-contamination.

By adhering to IEEE and ACM ethical and safety standards, the SSD can be designed as a secure, user-
friendly, and responsible solution that prioritizes privacy, accessibility, and well-being.

6.4	Future	Work	
There are multiple sections that we want to improve upon in the future. First, we want to expand our
SSD into a 3D geometric shape to take up more volume. We want to pursue this as our current design
limits us in storage. Concepts for this idea can be seen below in Figure 28. Pursuing this would allow us
to increase snack storage, so that the user can refill less frequently and enjoy their snack for a longer
period. Increasing overall space would also allow us to increase snack options to cover a wider range of
nutrition. This would allow each user to mix and match more to their liking, while also reaching all of
their goals.

Another aspect that needs more work is our anti-jamming system. The current solution to this problem
is our dc motor with the uneven weight. This allows us to create vibrations in the machine to shake all
the snacks down to a lower level. Unfortunately, this only proved to be effective for minimal jamming.
More severe jams, caused by the snacks sticking together from the sugar and salt or from getting stuck
in the wheel, had to be managed by hand. This also bring up the topic of cleaning procedures. In order
to turn our project into a commercial product, we need to ensure that it can be cleaned properly. A
proposed idea would be to create removable stock containers for easy-access cleaning. A small, thin
brush would also be provided to reach harder places like the custom-made channels.

20

 Figure 28: Future Design Concept

Finally, even though we successfully implemented Bluetooth data transfer to a desired computer, this is
still limited by range as the computer needs to be within a certain distance for this to work. Our new
solution for this is create a mobile app that can be accessed through Wi-Fi. This allows each user to have
access to their collected data from their phone at any location in the world.

21

References		
[1] “1.8°42MM High Torque Hybrid Stepping Motor,” (n.d.), adafruit.com. [Online]. Available:

https://cdn-shop.adafruit.com/product-files/324/C140-A+datasheet.jpg, Accessed on May 6,
2025.

[2] “DRV8825 Stepper Motor Driver Carrier, High Current,” (n.d.), pololu.com. [Online]. Available:
https://www.pololu.com/product/2133, Accessed on May 6, 2025.

[3] Hobby Motor - Gear,” 2016, sparkfun.com. [Online]. Available:
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/951/ROB-11696 Web.pdf,
Accessed on May 6, 2025.

[4] “Adafruit TB6612 1.2A DC/Stepper Motor Driver Breakout Board,” 2022, adafruit.com. [Online].
Available: https://www.adafruit.com/product/2448, Accessed on May 6, 2025.

[5] “ESP32-S3-WROOM Example Board: Motor Controller,” 2025, courses.grainger.illinois.edu.
[Online]. Available: https://courses.grainger.illinois.edu/ece445/wiki//esp32 example/index,
Accessed on May 6, 2025.

[6] “CN0090,” (n.d.), digikey.com. [Online]. Available:
https://www.digikey.com/en/products/detail/sunfounder/CN0090/18668629, Accessed on May
6, 2025.

[7] “HC-SR04 Ultrasonic Sonar Distance Sensor + 2 x 10K resistors,” 2018, adafruit.com. [Online].
Available: https://www.adafruit.com/product/3942, Accessed on May 6, 2025.

[8] “14728,” (n.d.), digikey.com. [Online]. Available:
https://www.digikey.com/en/products/detail/sparkfun-electronics/SEN-14728/9555602,
Accessed on May 6, 2025.

[9] “SparkFun HX711 Load Cell ,” 2019, sparkfun.com. [Online]. Available:
https://cdn.sparkfun.com/assets/f/5/5/b/c/SparkFun HX711 Load Cell.pdf, Accessed on May 6,
2025.

[10] “IR Break Beam Sensors with Premium Wire Header Ends - 3mm LEDs,” 2021, adafruit.com.
[Online]. Available: https://www.adafruit.com/product/2167, Accessed on May 6, 2025.

[11] 4.0 Inches 480x320 TFT Touch Screen LCD Display Module SPI ST7796S Driver for Arduino
R3/Mega2560,” 2023, amazon.com. [Online]. Available: https://www.amazon.com/Hosyond-
480x320-Display-ST7796S-Mega2560/dp/B0CKRJ81B5?th=1, Accessed on May 6, 2025.

[12] “LMR51430 SIMPLE SWITCHER® Power Converter 4.5-V to 36-V, 3-A, Synchronous Buck
Converter in a SOT-23 Package,” 2022, ti.com. [Online]. Available:
https://www.ti.com/lit/ds/symlink/lmr51430.pdf, Accessed on May 6, 2025.

[13] “TPS6293x 3.8-V to 30-V, 2-A, 3-A Synchronous Buck Converters in a SOT583 Package,” 2022,
ti.com. [Online]. Available: https://www.ti.com/lit/ds/symlink/tps62933o.pdf, Accessed on May
6, 2025.

[14] “L6R36 Series 36W Wall Mount Power Supply,” (n.d.), tri-mag.com. [Online]. Available:
https://www.tri-mag.com/wp-content/uploads/2021/07/L6R36 Series 1908a.pdf, Accessed on
May 6, 2025.

22

[15] “ESP32-S3-WROOM-1 ESP32-S3-WROOM-1U,” (n.d.), espressif.com. [Online]. Available:
https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-1 wroom-1u
datasheet en.pdf, Accessed on May 6, 2025.

[16] “IEEE Code of Ethics,” 2025, ieee.org. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html, Accessed on May 6, 2025.

[17] “ACM Code of Ethics and Professional Conduct,” 2025, acm.org. [Online]. Available:
https://www.acm.org/code-of-ethics, Accessed on May 6, 2025.

23

Appendix	A	 	Requirement	and	Verification	Table	

Table 1 Dispensing Subsystem Requirements and Verifications
Requirement Verification Verification

status
(Y or N)

1. Stepper motors must:
a. Dispense snacks within 30

seconds or less
b. Spin in the correct

direction

1. Record the time of a dispense with
a stopwatch.

2. See if the motor is spinning in the
correct direction.

3. Accuracy wll be checked through
our code and comparing real results
with the datasheet provided.

Y

2. Wheels:
a. Can produce the ideal

number of pieces for each
snack on average

b. Minimize jamming

1. Create and test wheel designs to
ensure the right amount is being
grabbed per spin by running
multiple dispenses.

2. Test the dispensing to see how often
the dispenser will jam.

Y

3. DC motor must:
a. Spin a small weight fast

enough to provide the
necessary vibration to
avoid snack jamming

1. Run a dispense and check if the
containers are vibrating.

Y

Table 2 Microcontroller Subsystem Requirements and Verifications
Requirement Verification Verification

status
(Y or N)

1. All code will be stored within the
ESP32 to ensure full
independence.

1. Buy a chip that has enough local
storage for the necessary
programming.

Y

2. ESP32 must relay communication
between subsystems when signals
are sent through the GPIOs.

2. Run dispenses and verify that the
subsystems are communicating
properly.

Y

24

Table 3 Sensor Subsystem Requirements and Verifications
Requirement Verification Verification

status
(Y or N)

1. RFID must:
a. Read the tag
b. Display the correct

information associated
with that tag

1. Check that the correct user is
displayed when the tag is scanned.

2. The data collected will be compared
with the datasheet of the RFID
alongside the tags where the correct
information can be read.

Y

2. Ultrasonic sensor must recognize
when the distance is shortened
due to the placement of a bowl.

1. Check the code output terminal to
see if the sensor is reading the
correct distance when a bowl is not
present.

2. Place and bowl and check the
output terminal to see if it reads a
shorter distance.

Y

3. Weight sensor must:
a. Measure the correct

amount of weight within
15%

b. Be able to tare the weight
of the bowl

1. Compare the weight sensor readings
with a commercial food scale.

2. Measure the weight of the bowl and
then check to see if that weight is
subtracted from the weight sensor
at the end of dispensing.

Y

4. The receiver must:
a. Be able to sense the IR

beam from across the
length of the container

b. Not sense the IR beam
when snacks are present,
so a false notification is
not sent

1. Place the IR sensors the correct
distance away from each other and
check the code terminal to verify
that there is a reading.

2. Place an object between the two
sensors and check that there is no
reading from the receiver.

Y

25

Table 4 Touchscreen LCD Subsystem Requirements and Verifications
Requirement Verification Verification

status
(Y or N)

1. The LCD correctly shows values
collected from various sensors.

1. Verify that the values placed on the
screen are correct and match the
measured values.

2. Ensure that the value placement is
within reason and is readable.

Y

2. The display should be capable of
user touch to be able to select a
variety of options.

1. Write the necessary code that is
needed to make the touchscreen
function.

2. Verify that touch location is within
reason and does not register at a
different part of the screen.

Y

3. The LCD should display the correct
notifications when necessary.

1. Perform scenarios where
notifications are necessary, such as
not placing a bowl or the containers
need refilled and ensure that these
notifications are displayed on the
screen.

Y

Table 5 Software Subsystem Requirements and Verifications
Requirement Verification Verification

status
(Y or N)

1. The machine should only display
the features that the user has
chosen.

1. Run through the dispensing process
and ensure that the correct features
are enabled and implemented.

Y

2. The machine must keep track of
the correct nutrition values.

1. Compare the displayed nutrition per
portion with our own values
calculated by hand.

2. Compare the daily total with our
own values calculated by hand.

Y

26

Table 6 Power Subsystem Requirements and Verifications
Requirement Verification Verification

status
(Y or N)

1. The wall adapter must be able to
provide 12 V ± 5% and a maximum
output current of 3 A.

1. Check the output voltage with a
multimeter and observe the output
with the oscilloscope to measure the
percent error.

2. Connect the stepper motors to
ensure that they are provided the
necessary voltage to operate.

3. Connect to the 12 V to 5 V regulator
and measure the output power to
ensure it is receiving the necessary
amount of power to output 15 W.

Y

2. The 12 V to 5 V voltage regulator
must be able to provide 5 V ± 3%
and a maximum output current of
3 A.

1. Check the output voltage and
current with a multimeter before
and after connecting the voltage
regulator to the rest of the circuit.

2. Check the output voltage with the
oscilloscope to measure the percent
error.

Y

3. The 5 V to 3.3 V voltage regulator
must be able to provide 3.3 V ± 5%
and a maximum output current of
3 A.

1. Connect to the 5 V to 3.3 V regulator
once the 12 V to 5 V regulator once
it has been verified and check the
output voltage and current with a
multimeter.

2. Check the output voltage with the
oscilloscope to measure the percent
error.

3. Connect to the rest of the circuit
and operate the machine to ensure
all the other components are
receiving their necessary power.

Y

27

Appendix	B	 Weight	Sensor	Measurement	Tables	

Table 1 M&M Weight Measurements
Entered Portion Weighed Portion % Error between

Entered and
Weighed Portion

Commercial Scale
Weight

% Error between
Weighed Portion
and Commercial

Scale Weight
15 g 13.67 g 8.87 % 12 g 13.92 %
22 g 20.61 g 6.32 % 21 g 1.86 %
70 g 63.26 g 9.63 % 60 g 5.43 %

Table 2 Skittles Weight Measurements
Entered Portion Weighed Portion % Error between

Entered and
Weighed Portion

Commercial Scale
Weight

% Error between
Weighed Portion
and Commercial

Scale Weight
15 g 16.92 g 12.8 % 17 g 0.471 %
22 g 21.81 g 0.864 % 19 g 14.79 %
70 g 61.34 g 12.37 % 57 g 7.61 %

Table 3 Peanuts Weight Measurements
Entered Portion Weighed Portion % Error between Entered and

Weighed Portion
15 g 15.04 g 0.267 %
22 g 21.5 g 2.27 %

28

Appendix	C	 Part	Costs	and	Schedule	

Table 1 Part Costs
Part Manufacturer Retailer Retail Cost

($)
Bulk Purchase

Cost ($)
Actual Cost

($)

ESP32-S3-WROOM-1-
N16

Espressif
Systems

Digi-Key $5.92 $3.79590 $0

Ultrasonic Sensor (HC-
SR04)

OSEPP
Electronics

Adafruit $3.95 $3.16 $0

RFID Tags & Chip
(RC522)

SunFounder Digi-Key $5.60 $5.60 $0

Touchscreen Display
(MSP4022)

Hosyond Amazon $18.99 $18.99 $18.99

Load Cell (TAL221) SparkFun Digi-Key $17.89 $12.50 $12.50
Motor Driver x 3

(DRV8825)
Polulu Polulu 3 x $14.95 3 x $12.65 3 x $14.95

Motor Driver (TB6612) Adafruit ECE Supply
Center

$10.68 $6.26 $6.26

Stepper Motor x 3
(XY42STH32-0354A)

SparkFun ECE Supply
Center

3 x $25.50 3 x $14.95 3 x $14.95

DC Motor (ROB-11696) SparkFun ECE Supply
Center

$4.27 $2.50 $2.50

Wall Adapter (L6R36-
120)

Tri-Mag Digi-Key $10.36 $8.78 $8.78

Voltage Regulator
(LM51430)

Texas
Instruments

Digi-Key $1.29 $0.59912 $1.17

Voltage Regulator
(TPS62993O)

Texas
Instruments

Digi-Key $1.04 $0.46482 $0.94

Terminal Block
Connector (1725685)

Phoenix
Contact

Digi-Key $4.33 $2.82 $2.82

6.8 uH Inductor
(SRN8040TA-6R8M)

Bourns Inc. Digi-Key $0.58 $0.25750 $0.53

4.7 uH Inductor (HPC
6028NF-4R7M)

TAI-TECH
Advanced
Electronics

Digi-Key $0.16 $0.06250 $0.15

NPN Transistor x 2
(SS8050-G)

Compchip
Technology

Digi-Key 2 x $0.24 2 x $0.02750 $0

IR Sensor (3 mm IR
Break Beam)

Adafruit Adafruit $2.95 $2.36 $2.95

HX711 IC Chip Avia Semicon LCSC
Electronics

$0.45 $0.2493 $0.45

PNP Transistor
(MMBT4403LT1G)

onsemi Digi-Key $0.13 $0.01252 $0.12

Barrel Jack (PJ-102AH) Same Sky Digi-Key $0.76 $0.43611 $0.69

29

0.1 uF Capacitor x 10
(CL21B104KBCNNNC)

Samsung
Electro-

Mechanics

Digi-Key 10 x $0.08 10 x $0.00496 10 x $0.009

22 uF Capacitor x 2
(CL32B226KAJNNNE)

Samsung
Electro-

Mechanics

Digi-Key 10 x $0.56 10 x $0.13 10 x $0.312

32 kW Resistor
(RT0805BRD0732KL)

Yageo Digi-Key $0.10 $0.04221 $0.09

13.7 kW Resistor
(ERA-6AEB1372V)

Panasonic
Electronic

Components

Digi-Key $0.10 $0.03276 $0.06

100 W Resistor x 2
(ERA-6AEB101V)

Panasonic
Electronic

Components

Digi-Key 2 x $0.10 2 x $0.03276 2 x $0.09

20 kW Resistor
(ERA-6AEB203V)

Panasonic
Electronic

Components

Digi-Key $0.10 $0.03276 $0.09

8.2 kW Resistor
(ERA-6AEB822V)

Panasonic
Electronic

Components

Digi-Key $0.10 $0.03276 $0.09

3.3 uH Inductor
(LQM21PN3R3MGRD)

Murata
Electronics

Digi-Key $0.17 $0.06375 $0.16

1 kW Resistor x 4 N/A Electronic
Services Shop

N/A N/A $0

0.1 uF Capacitors x 10 N/A Electronic
Services Shop

N/A N/A $0

1uF Capacitor x 2 N/A Electronic
Services Shop

N/A N/A $0

10uF Capacitor x 5 N/A Electronic
Services Shop

N/A N/A $0

33 uF Capacitor x 2 N/A Electronic
Services Shop

N/A N/A $0

Test Points x 7 N/A Electronic
Services Shop

N/A N/A $0

10 kW Resistor x 5 N/A Electronic
Services Shop

N/A N/A $0

100 kW Resistor x 4 N/A Electronic
Services Shop

N/A N/A $0

4.7 uF Capacitor x 2 N/A Electronic
Services Shop

N/A N/A $0

Total $218.35 $157.92 $152.43

30

Table 2 Schedule
Timeline Task Description Team Member
Week 4 Prepare for proposal Refine subsystems select main

components. Come up with physical
mechanism and speak with Machine Shop.

Write proposal document.

Everyone

Week 5 Order parts Order main parts needed for breadboard
demo.

Elinor

Week 5 Prepare for breadboard
demo

Begin building the prototype for the
breadboard demo. Continue selecting

components.

Everyone

Week 6 Prepare for 1st order
PCB

Start designing the first order PCBs for PCB
review.

Elinor

Week 6 Continue breadboard
demo preparation

Continue wiring and coding for
breadboard demo.

Eric

Week 6 Select motors Research and buy motors for dispensing
mechanism. Buy motor driver for

breadboard demo.

Adam

Week 7 Submit 1st order PCBs Submitted two PCB prototypes. Elinor
Week 7 Continue breadboard

demo preparation
Continue wiring and coding for

breadboard demo.
Eric

Week 7 Prepare for Design
Document

Assign parts and write design document. Everyone

Week 7 Flowchart Organize flow of operation for machine. Adam
Week 8 Breadboard Demo Display progress during breadboard demo Everyone
Week 8 Submit 2st order PCBs Adjust 1st order PCBs and submit for

second order. Prepare new PCBs.
Elinor and

Adam
Week 8 Order parts Order parts needed for 1st order PCBs. Elinor

Week 10 Develop software Continue working on graphical user
interface code.

Eric

Week 10 Solder and test Solder and test 1st order PCBs. Elinor
Week 10 Prepare for 3rd order

PCBs
Prepare and adjust PCBs for 3rd order.

Order more parts for testing.
Elinor and

Adam
Week 11 Submit 3rd order PCBs Submitted adjusted PCBs. Elinor
Week 11 Download code to

microcontroller
Attempt to program code onto custom

PCB that has the ESP32. Debug.
Everyone

Week 11 Continue software
development

Continue developing code for user
interface and interconnecting

components.

Eric

Week 11 Get code working with
custom PCB

Wire components to custom PCB and
attempt to get working. Debug.

Eric and Elinor

Week 11 Prepare for 4th order
PCBs

Finalize and prepare PCBs for 4th order. Elinor and
Adam

Week 12 Submit 4th order PCBs Submitted finalized PCBs. Elinor
Week 12 Get all components

working with custom
PCBs

Debugged and got everything working
with the custom PCBs.

Eric and Elinor

31

Week 12 Continue software
development

Continue developing code for user
interface and interconnecting

components.

Eric

Week 12 Test 3rd order PCB Soldered and tested 3rd order PCB. Elinor
Week 13 Continue software

development and
physical testing

Continue developing code and testing
dispensing mechanism.

Eric and Adam

Week 14 Test 4th order PCB Solder and test 4th order PCB. Elinor
Week 14 Prepare for Mock

Demo
Connect everything to final PCB and

prepare as much as possible for mock
demo.

Everyone

Week 15 Prepare for Final Demo Finalize project and fix any issues for final
demo. Take final measurements and data.

Everyone

Week 15 Prepare for Mock/Final
Presentation

Prepare slides for mock/final presentation. Everyone

Week 16 Final Presentation Finalize slides and practice for final
presentation.

Everyone

Week 16 Final Paper Write final paper. Everyone

