

Classroom Clarity Portable Hub

Team 21: Maddie Donku, Kaitlin Gowens, Jesse Gruber

ECE 445

TA: Aishee Mondal Professor: Michael Oelze

Team Introduction

Maddie Donku Electrical Engineering

Kaitlin Gowens Electrical Engineering

Jesse Gruber Electrical Engineering

Table of Contents

Introduction

Power Management Subsystem

Control Subsystem

Feedback Subsystem

Mobile App Subsystem

Conclusion

Introduction

What is Classroom Clarity?

A portable teacher support hub that facilitates communication between students and instructors during a live lecture through LEDs and a text display to share understanding levels and questions.

Problems Addressed?

- 1. Instructors going too fast through difficult material
- 2. Instructors don't notice questions waiting to be answered
- 3. Students are too shy to ask a question

Original Proposal Design

Main Hub/Central Control

*Note: In RFA, vibration motor was originally in a wearable

Final Design

Main Hub/Central Control

Block Diagram

Power Management Subsystem

Power Management Subsystem

How it Works

Requirements and Verification

The AC DC wall adapter must supply at least 1.5A to the hub and 5 V +/ 0.5 V

• The DC DC converter module must output **3.3 V +/- 0.3 V**

	Voltage [V]
5V Test point (Vin)	5.056
3V3 Test point (Vout)	3.291

Requirements and Verification

• The adapter must be able to **safely provide a stable supply of power** at the very least the length of one lecture (**50 minutes**)

• $43^{\circ}C \rightarrow$ limit for safe human touch

	Temperature [°C]
Block	24.9
Barrel Jack	33.5
Casing	30.3

Control Subsystem

Control Subsystem

Design

• Debouncing and Pull-up Circuits

 $\tau = R \cdot C$

Control Subsystem

Requirements and Verification

- The unpressed input voltage of each button GPIO must fall between 2.5 - 3.6 V, and the pressed input voltage must be between -0.3 - 0.8 V within one second of pressing the button.
- The rotary encoder processed signals must have a maximum of 2.5 - 3.6 V and a minimum of -0.3 - 0.8 V.
- The high output voltage of the vibration motor GPIO pin must be greater than 2 V and the low output voltage must be less than 1 V.

Verifications			
Component	High GPIO [V]	Low GPIO [mV]	
Clear Button	3.285	28	
Rotary Encoder A			
Signal	3.264	-80	
Rotary Encoder B			
Signal	3.263	-110	
Vibration Motor	2.5	0.185	

Control Subsystem

Requirements and Verification

 The high output voltage of the green, yellow, and red LED array GPIO pins must be greater than 1.9 V and the low output voltage must be less than 1.5 V.

Verifications				
Component	High GPIO [V]	Low GPIO [mV]		
Red LED 1	1.95	0		
Red LED 2	1.93	0.1		
Red LED 3	1.89	0.11		
Red LED 4	1.896	0.13		
Red LED 5	1.898	0.14		
Yellow LED 1	2.113	0.14		
Yellow LED 2	2.112	0.14		
Yellow LED 3	2.113	0.14		
Yellow LED 4	2.092	0.0		
Yellow LED 5	2.086	0.13		
Green LED 1	2.118	0.09		
Green LED 2	2.114	0.09		
Green LED 3	2.008	0.09		
Green LED 4	2.009	0.09		
Green LED 5	2.102	0.1		

GRAINGER ENGINEERING

Requirements and Verification

• LED arrays should react to any changes in "Understanding Rating" data sent by the app within 30 seconds.

*High Level Requirement

Requirements and Verification

 The notification LED should light up and vibration motor should vibrate within 30 seconds of a question being sent from the app.

*High Level Requirement

Requirements and Verification

- Signal A of the rotary encoder must lead signal B when turning the encoder clockwise. Signal B must lead signal A when turning counterclockwise.
- The LCD should display a maximum of **200 characters** with a black background and white font.

a) b) Signal A (yellow) and Signal B (green) for a) clockwise and b) counterclockwise rotation

Requirements and Verification

 Hub should hold at least 5 questions and 1 question should be displayed by the central hub if the queue is not empty.

*High Level Requirement

Mobile Application

Page start

If Statement

How it Works

Page start **Student Side** If Statement Press Student Action Button? 11:36 EFNG • 740 10.59 F G 1 8 940 11:00 EF G . . 11:05 EF G . . 120 11:00 🗇 F G າ • **1**20 **7**20 Student Login Student Login Student Login Instructor Login YES Enter Student Password for Incorrect Password. Press Continue to Enter Hub_1 or Hello, Student! Hello, Kait! Hub_1 Try Again. Disconnect Please connect a device Enter your name Input Display CONTINUE Enter the Student Password Enter the Instructor Password Connect Submit name DISCONNECT Submit Submit Connect a Device Hub_1 (F4:12:FA:EE:3F:55) Connect **Back to Welcome Back to Welcome** Connect to ... 3 5.0 囱 0 . == 3 由 Ŷ (68:54:CA:3A:F0:EF) CHE Connect Bluetooth qwertyuiop1234567890 (CC:FC:6F:2D:42:95) Connect asdfghjkl @ # \$ _ & - + () / LE_WH-1000XM5 Connect (70:E9:80:D7:12:5C) (7A:7F:E6:6C:32:ED) Connect ← ABC , 12 34 7123 , 3 . 4 (C1:A3:14:C1:D7:22) Back to Welcome Connect, **Back to Welcome** Correct Password?

GRAINGER ENGINEERING

Student Side

Ι

Requirements and Verification

- The app should respond to any user interactions within 1 second
- The app should be able to send and receive data with a less than 1% error rate per transmission.*

*High Level Requirement

Requirements and Verification

• The app must **bluetooth connect to ESP32 within 10 seconds** of initiating a connection request

Start Time HH:MM:SS	End Time HH:MM:SS	Connect Time
11:27:55.106995	11:27:56.639120	1.532125 s

Conclusion

Future Work

- Testing
 - Test multiple phones connected at once
- Additional Software Features
 - Students can view queued questions in the app
 - A question counter on the Hub
- Additional Physical Features
 - Use a rotary encoder with smaller pulse count for easier use
 - Design a stand for the hub

The Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

Appendix

Full Circuit Schematic

PCB 3D View

Control Procedure Flowchart

Mobile App Full Flowchart

Connection Time Terminal Output

I/flutter (19673): '2025-05-02T11:27:55.106995 - START CONNECT

I/flutter (19673): '2025-05-02T11:27:56.649120 - FINISHED CONNECTION

I/flutter (19673): '2025-05-02T11:27:55.106995 - START CONNECT D/[FBP-Android](19673): [FBP] onMethodCall: connect D/BluetoothGatt(19673): connect() - device: F4:12:FA:EE:3F:55, auto: false D/BluetoothGatt(19673): registerApp() D/BluetoothGatt(19673): registerApp() - UUID=8dac1b99-d26f-4f27-9f78-c87e5bb0e43d D/BluetoothGatt(19673): onClientRegistered() - status=0 clientIf=6 D/[FBP-Android](19673): [FBP] onMethodCall: getAdapterState D/BluetoothGatt(19673): onClientConnectionState() - status=8 clientIf=6 device=F4:12:FA:EE:3F:55 D/[FBP-Android](19673): [FBP] onConnectionStateChange:connected /[F8P-Android](19673): [F8P] status: SUCCESS D/[FBP-Android](19673): [FBP] onMethodCall: requestMtu D/BluetoothGatt(19673): configureMTU() - device: F4:12:FA:EE:3F:55 mtu: 512 D/BluetoothGatt(19673): onConnectionUpdated() - Device=F4:12:FA:EE:3F:55 interval=6 latency=8 timeout=508 status=8 D/8luetoothGatt(19673): onConfigureMTU() - Device=F4:12:FA:EE:3F:55 mtu=512 status=0 D/[F8P-Android](19673): [F8P] onMtuChanged: D/[FBP-Android](19673): [FBP] mtu: 512 D/[FBP-Android](19673): [FBP] status: GATT_SUCCESS (0) I/flutter (19673): Connected Device: BluetoothDevice{remoteId: F4:12:FA:EE:3F:55, platformName: Hub_1, services: null} D/[FBP-Android](19673): [FBP] onMethodCall: discoverServices D/BluetoothGatt(19673): discoverServices() - device: F4:12:FA:EE:3F:55 D/BluetoothGatt(19673): onSearchComplete() = Device=F4:12:FA:EE:3F:55 Status=8 D/[FBP-Android](19673): [FBP] onServicesDiscovered: D/[FBP-Android](19673): [FBP] count: 3 D/[FBP-Android](19673): [FBP] status: 0GATT_SUCCESS D/[FBP-Android](19673): [FBP] onMethodCall: setNotifyValue)/8luetoothGatt(19673): setCharacteristicNotification() - uuid: 00002a05-0000-1000-8000-00805f9b34fb enable: true /[FBP-Android](19673): [FBP] status: GGATT_SUCCESS /[FBP-Android](19673): [FBP] onMethodCall: setNotifyValue /Bluetooth5att(19673): setCharacteristicNotification() - uuid: 00002a05-0000-1000-0000-0000549b344b enable: true D/BluetoothGatt(19673): onConnectionUpdated() - Device=F4:12:F4:EE:3F:55 interval=36 latency=0 timeout=500 status=0 /[FBP-Android](19673): [FBP] onDescriptorWrite: /[FBP-Android](19673): [FBP] chr: 2a05 /[FBP-Android](19673): [FBP] desc: 2982 D/[FBP-Android](19673): [FBP] status: GATT_SUCCESS (0) /flutter (19673): Discovered Services: [BluetoothService[remoteId: F4:12:FA:EE:3F:SS, serviceUuid: 1881, primaryServiceUuid: null, characteristics: [BluetoothCharacteristic{remoteId: F4:12:F4:EE:3F:S5, serviceUuid: 1801, characteristicUuid: 2e05, primaryServiceUuid: null, descriptors: [BluetoothDescriptor(remoteId: F4:12:FA:EE:3F:55, serviceUuid: 1801, characteristicUuid: 2a05, descriptorUuid: 2902, primaryServiceUuid: nulllastValue: [2. 0]}], properties: CharacteristicProperties(broadcast: false, read: false, write#ithoutResponse: false, write: false, notify: false, indicate: true, authenticatedSignedWrites: false, extendedProperties: false, notifyEncryptionRequired: false, indicateEncryptionRequired; false), value; []}], }, BluetoothService(remoteId: F4:12:F4:EE:3F:55, serviceUuid: 1880, primeryServiceUuid: null, characteristics: [BluetoothCharacteristic(remoteId F4:12:F4:EE:3F:55, serviceUvid: 1800, characteristicUvid: 2a00, primaryServiceUvid: null, descriptors: [], properties: CharacteristicProperties(broadcast: /flutter (19673): Checking characteristic: 2a05 /flutter (19673): Checking characteristic: 2a08

I/flutter (19673): Checking characteristic: 2a01 I/flutter (19673): Checking characteristic: 2aa6

1/flutter (19673): Checking characteristic: 1afd884a-db39-4805-9675-4cde8b18d87a 1/flutter (19673): Checking characteristic: 8b9eBc81-39d7-4b86-8d34-4c192b643926 1/flutter (19673): Checking characteristic: d989a8e1-c67e-44bf-9e71-53828482688d 1/flutter (19673): Checking characteristic: c583a5c9-2d3c-4beb-97ea-8096d7a97493

[/flutter (19673): Checking characteristic: 979d3386-99d7-4884-9eS0-79eBeae765f7 [/flutter (19673): '2025-85-82711:27:56.649128 - FINISHED CONNECTION

ECE / 445