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‭1‬ ‭Introduction‬

‭1.1‬ ‭Problem‬
‭Traveling is an exciting part of life that can bring joy and new experiences. Trips are the most memorable‬

‭when everything goes according to plan. However, the language barrier can limit communication with‬

‭others, causing unnecessary stress on an otherwise enjoyable trip. Although most modern phones provide‬

‭translation applications, these require a reliable internet connection. In times when the connection is weak‬

‭or there is no connection at all, translation apps may not be a solution.‬

‭1.2‬ ‭Solution‬
‭We want to solve this problem by building a portable translator that you can ideally use anywhere in the‬

‭world without internet connection. The idea is to have a small device that can be programmed to make‬

‭translations between two different languages, then is able to listen what the person says, converts the‬

‭speech to text, translates the text to the target language, then converts the translated text back to speech,‬

‭and drives a speaker with the target translated speech. We want to design our translator to encompass a‬

‭few subsystems: Main Processing Subsystem (MCU), Secondary Processing Subsystem (Compute‬

‭Module), Audio Subsystem, User Interface Subsystem, Communication Subsystem, and Power‬

‭Management Subsystem. Through this design, someone should be able to turn on the device, set the‬

‭languages up and start talking into the device, and after a few seconds the translated speech will be‬

‭played. Then, the device can be programmed the other way to have the other party translate. Ideally, this‬

‭will facilitate communication between people without a common language and make life easier while‬

‭traveling.‬

‭1.3‬ ‭Visual Aid‬
‭A common representation of an embedded translation device can currently be seen on the market.‬

‭However, we have noticed that many times this device will be sold as a package with a variety of‬

‭functionality including online translation or photo translation.‬
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‭Figure 1. Retail Translator‬

‭This inclusion of functionality provides some better usage for the device, but will also significantly‬

‭increase the cost. Ideally, all of this additional functionality would be provided by a phone that most‬

‭people already have. The problem that we are setting to solve is one where the user will have no access to‬

‭the internet and need to be able to communicate. We want to design a device that is proficient in‬

‭simplicity. Being able to clearly understand and translate to ensure proper communication when there are‬

‭no other resources available.‬
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‭Figure 2. Visual Diagram‬

‭1.4‬ ‭High Level Requirements‬

‭1.‬ ‭Translation Latency: This system should be capable of translating spoken input to text and vice‬

‭versa within 3 seconds to ensure real-time usability. This will be the time that it takes from once‬

‭the person stops talking to the time that the person is able to hear audio on the speaker.‬

‭2.‬ ‭Translation Accuracy: This system should be capable of maintaining an accuracy of at least 90%‬

‭for common phrases and vocabulary. This is going to be very dependent on the model size, where‬

‭models that have more parameters are capable of recognizing more languages with higher‬

‭accuracy and responding better to prompts given. This stage can be calculated through the first‬

‭recognition model capable of interpreting through a score of 90% on the semantic similarity‬

‭score. Then on the translation model capable of scoring 90% on a multilingual sentence‬

‭transformer. Then finally another semantic similarity score of 90% on the text to speech model.‬
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‭3.‬ ‭Speaker Noise: The speaker output should be clear and audible within typical decibel ranges (e.g‬

‭60db) of normal conversation. This will ensure that we are able to understand what the output‬

‭language is saying and conversation can flow with ease.‬
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‭2‬ ‭Design‬

‭2.1‬ ‭Block Diagram‬

‭Figure 3. Block Diagram‬

‭2.2‬ ‭Functional Overview & Block Diagram Requirements‬

‭2.2.1‬ ‭MCU (Main Processing System)‬
‭The main processing subsystem will manage the workflow for the system, control all I/O, and‬

‭communicate commands/data to the secondary processing subsystem. When the system powers on a‬

‭simple interface will be prompted to the user to allow them to select the source and target language to‬

‭translate. The MCU will support the user inputs through a push button to select the language and will‬

‭drive the display. Then when the user decides to start translation, through a particular push button, the‬

‭MCU will change states to start listening on the port for audio data from the microphone. The INMP441‬

‭microphone will output a digital signal and communicate over I2S which can be interpreted through our‬

‭MCU. The MCU will also need to buffer data and need to normalize it to be within the appropriate bit‬

‭range to be interpreted by the STT model. After preprocessing the data, we will need to set up code to‬

‭communicate packets of this data over a SPI protocol to the compute module. We also may need to set up‬

‭some kind of custom protocol to set the compute module to start listening for a data sequence. Then the‬
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‭compute module will take over and do the translations and conversions to speech and output pulse code‬

‭modulation data. This data is transmitted again over SPI to the MCU that is listening. We decided to use‬

‭SPI in this case because we needed high data transfer speeds to communicate the audio data. Since there‬

‭is only 1 MB of flash memory and 192 KB of SRAM, we are strictly limited by the available memory to‬

‭store entire audio files. This then will require us to create a circular buffering system where we are‬

‭collecting data from the speaker from one end of a buffer and then offloading the data when we get to a‬

‭certain threshold of capacity in this buffer. The microphone will be able to write directly to memory‬

‭through DMA, and when the CPU has an available time slice it will be able to send off the data quickly to‬

‭the compute module over SPI. Then the MCU will move to another state to start writing the data to the‬

‭MAX98357A that will drive the speaker. Then the MCU will move back to a state of user input again to‬

‭allow the user to translate again. Other than managing the entire workflow for the system, it needs to‬

‭control the I/O which will include reading inputs from the user on the push buttons and will need to drive‬

‭an LCD display to show what the user is currently selecting. With enough time, we may also add some‬

‭status messages onto the LCD display to see what is happening in the system.‬

‭We decided to use the STM32F407 for this project because we required high levels of communication‬

‭between various systems along with the numerous I/O. We also found that it has a LCD parallel interface‬

‭and JTAG interface. We also have a long reach goal to do some audio manipulation (e.g. filtering, noise‬

‭reduction) before sending it off to the compute module. We can also expect to support a real time control‬

‭of the audio and peripheral management.‬

‭Subsystem Requirements‬ ‭Subsystem Verification‬

‭1.‬ ‭The main requirement of the MCU is to‬

‭orchestrate the state of the system and‬

‭manage data flow. We can quantify this‬

‭impact by being able to buffer 10 s of‬

‭speech data into the pipeline to be‬

‭translated. Since it is also managing the‬

‭flow of the system, the end to end‬

‭performance should be measurable here to‬

‭be under 500 ms. This would include the‬

‭1.‬ ‭Equipment: An oscilloscope and logic‬

‭analyzer will verify SPI and I2S‬

‭communication timing, while a DMM‬

‭ensures proper voltage levels. Debug‬

‭software (in CubeIDE) will track state‬

‭transitions, and a function generator will‬

‭provide test audio signals.‬

‭2.‬ ‭Test Procedures: The MCU will be‬

‭powered on, and correct LCD language‬

‭selection will be verified via button‬
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‭time between a user finishing speaking to‬

‭getting speech out from the speaker.‬

‭presses. Audio input from the INMP441‬

‭microphone will be monitored to confirm‬

‭proper I2S transmission and buffering.‬

‭SPI communication with the compute‬

‭module will be tested by sending‬

‭pre-recorded data, ensuring a response‬

‭time below 500 ms.‬

‭3.‬ ‭Presentation of Results: Oscilloscope and‬

‭logic analyzer readings will confirm‬

‭protocol timing, while debug logs and‬

‭testpoint outputs will verify state changes.‬

‭Voltage and current measurements will‬

‭ensure power stability, and system latency‬

‭will be recorded to confirm it remains‬

‭under 500 ms. Waveform captures of I2S‬

‭and SPI signals will be documented as‬

‭verification evidence.‬

‭2.2.1‬ ‭Raspberry Pi Compute Module 4/5 (Secondary Processing Subsystem)‬
‭The main purpose of the compute module is to offload high compute tasks, including speech to text‬

‭transcription, translation, and text to speech conversion. It would be too computationally complex to host‬

‭all three models on the STM32 while processing I/O data. We specifically chose the RPI Compute‬

‭Module because it has the computational power to run the AI models, it can interface over SPI to the‬

‭MCU, it runs Linux, and it has eMMC Flash to store the models on board. We decided that we need to use‬

‭SPI in this case since we are going to be offloading data in real time from the MCU. For this subsystem,‬

‭we are going to have to build an infrastructure around querying the models, reading and sending data to‬

‭and from the MCU, and a data processing pipeline to move through different stages of translation. It will‬

‭also need to have some level of state awareness to know what kind of translation is being requested. We‬

‭hope to design the PCB so that we can simply plug in the compute module onto the PCB through pinouts.‬

‭We need to start to build a software program that will orchestrate the pipeline of data through various ML‬

‭models that will perform transcription, translation, and speech synthesis. This will also need to support‬

‭listening to the microcontroller port to decide when it should start to process data. We will need to start‬
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‭with a general implementation of this data pipeline where we can initially use APIs to query models.‬

‭Once we get this to work, we can figure out exactly how much memory and storage we will require from‬

‭these models to determine if we need to do some quantization or add more storage space. This is to have‬

‭the models on board and able to be queried offline.‬

‭Once we get a basic understanding of the capabilities of being able to query a pipeline online, we are able‬

‭to start pulling in models and generating a system capable of being queried on a higher performance host‬

‭system (e.g. M2 Mac Pro). We will design a build system capable of pulling various open source projects‬

‭together to be queried under one pipeline with each of their models being locally stored in memory.‬

‭Effectively the model framework we are going to be using is the one based around a tensor library for‬

‭machine learning called ggml that has branching projects capable of doing inference for speech‬

‭recognition and speech translation. The two projects that we are going to be using are whisper.cpp and‬

‭llama.cpp. When the speech data comes through as 24-bit mono PCM, we are going to reconstruct this‬

‭data and then do some data processing such as sign extensions to be able to provide it to the 32-bit based‬

‭whisper.cpp framework that will return tokens in the desired language, from these tokens we will have‬

‭them as a string that will be used to prompt the llama.cpp framework to translate to a desired language‬

‭with some prompt engineering to extract the desired language extracted. Once we get the translated‬

‭language, we will provide this to a text to speech model, Piper, that will interpret the tokens and‬

‭regenerate the PCM data to be delivered back in SPI to the STM32. From the initial testing, we are able to‬

‭store larger models within memory to have higher accuracy, but we may need to decrease the performance‬

‭to be able to actually store the models on the edge.‬

‭Once we are able to validate test results on a host system we are able to move to the compute module that‬

‭we will run some initial testing through a designed I/O board where we can flash the system and simulate‬

‭input.‬

‭Figure 4. Software Pipeline‬
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‭Subsystem Requirements‬ ‭Subsystem Verification‬

‭1.‬ ‭The main requirement of this processor‬
‭would be to ensure appropriate translation‬
‭of the data. Ideally this processor should‬
‭have the software infrastructure to‬
‭translate the data with 90% accuracy‬
‭across each of the models. This would be‬
‭measured across an ideal translation. We‬
‭would also ensure that the data is‬
‭translated within 300 ms.‬

‭1.‬ ‭Equipment: We will use a logic analyzer‬

‭to verify SPI communication integrity‬

‭between the compute module and MCU,‬

‭while an oscilloscope will confirm signal‬

‭timing. Benchmarking software will‬

‭measure AI inference time, and memory‬

‭profiling tools will ensure efficient‬

‭storage use.‬

‭2.‬ ‭Test Procedures: The compute module‬

‭will boot and establish SPI‬

‭communication with the MCU, ensuring‬

‭proper data reception. Audio input will be‬

‭processed into 24-bit PCM before feeding‬

‭into whisper.cpp for transcription. The‬

‭accuracy of whisper.cpp transcription will‬

‭be compared against expected outputs.‬

‭Translated text from llama.cpp will be‬

‭evaluated for correctness, and Piper will‬

‭generate speech, with PCM data‬

‭reconstructed and returned to the MCU.‬

‭The system will be tested under load to‬

‭ensure a translation time below 300 ms‬

‭and an accuracy rate of 90% or higher.‬

‭3.‬ ‭Presentation of Results: SPI transaction‬

‭logs will confirm end-to-end data‬

‭transmission, while debug logs will‬

‭capture AI model inference times. We will‬

‭evaluate the accuracy by comparing‬

‭transcriptions and translations to ground‬

‭truth datasets. Benchmarking results will‬

‭document translation speed, and system‬
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‭memory usage will be analyzed to ensure‬

‭feasibility for edge deployment.‬

‭2.2.1‬ ‭Audio I/O Subsystem‬
‭We are going to have a LCD display that can let the user decide what languages to translate between and‬

‭some push buttons to be able to decide. We are also going to have a push button that will start listening on‬

‭the microphone, then stop listening so we can ensure that all of the data has been stored. In the case that‬

‭the translation lasts too long, we may add some feature to automatically stop the input of speech so we‬

‭make sure not to have too much data to translate. This UI subsystem will essentially make it so that this is‬

‭a usable product.‬

‭Subsystem Requirements‬ ‭Subsystem Verification‬

‭1.‬ ‭The main requirements of this system‬

‭would be accuracy in retrieving audio data‬

‭and delivering understandable speech on‬

‭the speaker. We would hope to have 95%‬

‭accuracy in retrieving data from the‬

‭microphone and driving the speaker to be‬

‭understood by a person at around 60 dB.‬

‭1.‬ ‭Define Equipment: To verify this‬
‭subsystem, we will first utilize the test‬
‭points for the I2S communication between‬
‭the MCU and the INMP441 microphone‬
‭as well as the I2S communication between‬
‭the MAX98357A audio amplifier. In order‬
‭to achieve audible volume, we will‬
‭measure the speaker output using a‬
‭decibel meter.‬

‭2.‬ ‭Define Test Procedures: We will record‬
‭test phrases with the microphone and‬
‭analyze the I2S waveforms using the test‬
‭points and a logic analyzer. We will‬
‭benchmark these results with our goal of‬
‭95% accuracy. We will also consider the‬
‭SNR of the audio amplifier with expected‬
‭values in the MAX98357A datasheet.‬

‭3.‬ ‭Define Presentation of Results:  Captured‬
‭I2S waveforms will be stored to verify‬
‭digital accuracy, while decibel readings‬
‭will confirm speaker output level. Audio‬
‭comparison metrics (e.g., signal-to-noise‬
‭ratio, transcription accuracy) will be‬
‭documented.‬
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‭2.2.1 User I/O Subsystem‬
‭We are going to have a LCD display that can let the user decide what languages to translate between and‬

‭some push buttons to be able to decide. We are also going to have a push button that will start listening on‬

‭the microphone, then stop listening so we can ensure that all of the data has been stored. In the case that‬

‭the translation lasts too long, we may add some feature to automatically stop the input of speech so we‬

‭make sure not to have too much data to translate. This UI subsystem will essentially make it so that this is‬

‭a usable product.‬

‭Subsystem Requirements‬ ‭Subsystem Verification‬

‭1.‬ ‭The main requirements of this device‬

‭would be to have a usable interface to be‬

‭able to select across languages and see the‬

‭selection on the screen. We hope to‬

‭achieve a refresh rate on this LCD display‬

‭of at least 30 Hz.‬

‭1.‬ ‭Functional Verification: We will ensure‬
‭that we are able to send commands to the‬
‭interface to be able to move between‬
‭different languages and verify that the‬
‭correct text appears on the display. We‬
‭also want to try to run some button tests‬
‭that will check if the UI is updating‬
‭correctly depending on what we pressed.‬
‭We can do some isolated testing for this‬
‭device by connecting to a development‬
‭board and writing SPI commands to the‬
‭device.‬

‭2.‬ ‭To verify the refresh rate of this device we‬
‭can use an oscilloscope to check the‬
‭VSYNC signal and confirm that the frame‬
‭update time is less than 1/30 Hz.‬

‭3.‬ ‭Finally we can test the communication‬
‭interface by validating that the SPI‬
‭commands received at the device are the‬
‭ones that we intended to send from the‬
‭STM32.‬

‭2.2.1 Power Management Subsystem‬

‭This portable power management system will use a Samsung 25R 18650 2500mAh 20A rechargeable‬

‭Li-Ion battery to supply stable voltage to two power rails. The 5V power rail will be used for the‬

‭Raspberry Pi Compute Module (CM), while the 3.3V power rail will support the MCU, LCD, and audio‬

‭subsystem.‬

‭The system includes two LM317DCYR adjustable LDO regulators:‬
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‭●‬ ‭One will step down the battery voltage to 5V.‬
‭●‬ ‭The other will step down the voltage to 3.3V.‬

‭Additionally, an 18650 battery holder will securely hold the battery and allow for easy replacement.‬

‭Subsystem Requirements:‬ ‭Subsystem Verification‬

‭1.‬ ‭Voltage Stability:‬
‭○‬ ‭The 5V and 3.3V power rails‬

‭should maintain ±0.1V tolerance‬
‭to their respective subsystems.‬

‭2.‬ ‭Current Supply:‬
‭○‬ ‭The 5V regulator should supply at‬

‭least 1.5A continuously to support‬
‭the worst-case current draw from‬
‭the Raspberry Pi CM4/5.‬

‭○‬ ‭The 3.3V regulator should supply‬
‭around 400mA to ensure the‬
‭functionality of the MCU, LCD,‬
‭and audio subsystem.‬

‭3.‬ ‭Thermal Management‬
‭○‬ ‭The LM317 regulators should not‬

‭exceed 85°C during normal‬
‭operation, and heat dissipation‬
‭methods should be implemented‬
‭to prevent overheating.‬

‭4.‬ ‭Protection Mechanisms:‬
‭○‬ ‭Overcurrent protection should be‬

‭in place to prevent system‬
‭damage if a component draws‬
‭excessive power (e.g., PCB‬
‭fuses).‬

‭1.‬ ‭Define Equipment: We will use a digital‬
‭multimeter (DMM) and oscilloscope will‬
‭measure voltage stability to ensure the 5V‬
‭and 3.3V power rails stay within ±0.1V‬
‭tolerance.‬

‭2.‬ ‭Define Test Procedures: The 5V regulator‬
‭will be tested by applying a 1.5A load,‬
‭and the 3.3V regulator will be tested with‬
‭a 400mA load to verify continuous current‬
‭supply. We will verify the load and line‬
‭regulation of each output channel during‬
‭this process.‬

‭3.‬ ‭Define Presentation of Results: Voltage‬
‭readings will be recorded under different‬
‭loads to confirm stability. Current draw‬
‭measurements will ensure regulators meet‬
‭required supply levels.‬

‭2.3‬ ‭Software Design‬
‭The basis of the software design will be made up of data processing across audio sensors,‬

‭microcontrollers, button and LCD user interfaces, and a high performance processing unit.‬
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‭We can start the analysis of our software design in the STM32 where we have a notion of a state where it‬

‭will be operating in USER, AUDIO_COLLECT, WAIT_DATA, and AUDIO_DRIVE states.‬

‭Through these states we can ensure that we are managing a smooth pipeline where data can transition‬

‭between submodules with ease. Initially, we will wait for the user to send data to set the source and the‬
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‭destination languages which will need to be managed through selection of data from the user interface.‬

‭Then when the source and destination languages have been decided, we will receive a signal from the user‬

‭to start collecting data from the microphone. Before we start collecting data we will send a signal to the‬

‭compute module to send the language meta data and initialize it to start listening for PCM data. At this‬

‭point we need to start buffering data into memory through DMA on the I2S interface. Due to memory‬

‭limitations of the STM32 we will offload this data when reaching a threshold of data capacity and we will‬

‭have a high speed SPI interface to be provided to the Raspberry Pi. Once the user has stopped pressing the‬

‭start button, we will send an acknowledgement signal to the Pi to show the end of data. The data will be‬

‭received by the compute module and it will start to transcribe the data by doing some preprocessing‬

‭(Sign-extending) and it will configure the whisper.cpp framework to expect the particular language and it‬

‭will pull the necessary model into memory. Once it finishes, we will get token data from the source‬

‭language and we can provide that to the translation model, llama.cpp. In this case we are going to be‬

‭doing the translation by prompting the model to translate text.‬

‭std‬‭::‬‭string‬‭model_path =‬‭"llama.cpp/models/mistral-7b.Q4_K_M.gguf"‬‭;‬

‭std‬‭::‬‭string‬‭prompt =‬‭"-p Translate the following text to "‬‭+ dest_langauge +‬‭": ' "‬‭+ escaped_text +‬‭" '‬

‭--reverse-prompt "‬‭+ dest_langauge +‬‭":"‬‭;‬

‭This prompt will be able to query the llama model and extract the translated text through the reverse‬

‭prompt. Then we do some setup for the context of the model for the model, and we run inference. Then‬

‭we will receive the tokens for the translated language and we can use that to show debugging on the LCD‬

‭interface and we can deliver that to the TTS model, Piper. Then we can configure the model to the‬

‭particular language we are expecting and request that the generated PCM data should be mono and use‬

‭24-bit depth. Then the translated speech is on board the compute module and we can send over a signal to‬

‭the STM32 to expect receiving the data. At this point we are going to need to do more buffering by‬

‭receiving partial amounts of the data directly to memory and offloading that to the speaker. We are going‬

‭to need to develop a quick method that will reduce the delay as much as possible to ensure clear output.‬
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‭2.4‬ ‭Tolerance Analysis‬

‭2.4.1‬ ‭Translation Accuracy‬

‭Our system aims to achieve full-sentence translation with an accuracy confidence level above 90%. The‬

‭entire processing pipeline must maintain data integrity to ensure reliable output. Additionally, the‬

‭translated output should be delivered at a decibel level that is interpretable by the end user.‬

‭To improve accuracy, the system will incorporate a filtering mechanism to reduce the impact of input‬

‭noise. This filtering will help enhance the quality of the translation and ensure that the final output‬

‭remains clear and intelligible.‬

‭We also expect to attempt to improve the accuracy of the translation by reducing the potential loss of data‬

‭within previous models in the pipeline by running some level of checking and requerying of the model.‬

‭We will also try to use the largest model we can on board the device that can fit to provide the most‬

‭amount of performance for the translation. This may require us doing some quantization of the models‬

‭that we have provided but many of the open source projects that we are working with have a tiny version‬

‭of their models that has been highly optimized.‬

‭2.4.2‬ ‭Translation Latency‬

‭We aim to maintain a translation latency of 500 ms or less to enable real-time usability, especially for‬

‭users in remote locations. To achieve this, we will:‬

‭●‬ ‭Limit buffer sizes within the system to reduce processing delays.‬
‭●‬ ‭Optimize data processing on the compute module to minimize potential spikes in latency.‬

‭2.4.3‬ ‭Power Management‬

‭To ensure efficient power management, we have included the worst-case current draw for the different‬

‭voltage domains.‬

‭Component (3.3V)‬ ‭Peak Current Draw (mA)‬

‭STM32F407IGH7 (MCU)‬ ‭240.00‬

‭ICS-43434 (I2S Microphone)‬ ‭0.55‬

‭ST7789 (LCD Display)‬ ‭90.00‬
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‭Component (5V)‬ ‭Peak Current Draw (mA)‬

‭Raspberry Pi Compute Module 5‬ ‭1600.00‬

‭MAX98357AEWL+T‬ ‭2.40‬

‭CMS-16098A-SP (Speaker)‬ ‭2.75‬

‭Total‬ ‭1935.70‬

‭Table 1. Worst Case Current Draw‬
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‭3‬ ‭Cost and Schedule‬

‭3.1‬ ‭Cost Analysis‬

‭The total cost for parts, as shown in Table 2, is $199.21 before shipping. Considering a 5% shipping cost,‬

‭which adds $9.96, and a 10% sales tax, which adds $19.21, the total cost will be $229.09.‬

‭Designator‬ ‭Package‬ ‭Quantity‬ ‭Designation/Value‬ ‭Price per Piece ($)‬

‭D403,D401,D404,D402‬ ‭D_DO-41_SOD81_P10.16mm_Horizonta‬
‭l‬

‭4‬ ‭1N4002‬ ‭0.2‬

‭R303,R305,R306,R307,R301‬ ‭R_0805_2012Metric_Pad1.20x1.40mm_‬
‭HandSolder‬

‭5‬ ‭10k‬ ‭0.1‬

‭J201‬ ‭PinSocket_1x10_P2.54mm_Vertical‬ ‭1‬ ‭Conn_01x10_Female‬ ‭0.56‬

‭C401,C402‬ ‭C_0603_1608Metric_Pad1.08x0.95mm_‬
‭HandSolder‬

‭2‬ ‭0.1uF‬ ‭0.49‬

‭SW301,SW303,SW302‬ ‭SW_SPST_B3S-1000‬ ‭3‬ ‭SW_Push‬ ‭0.57‬

‭U401,U402‬ ‭SOT-223-3_TabPin2‬ ‭2‬ ‭LM317_SOT-223‬ ‭0.64‬

‭LS201‬ ‭CUI_CMS-16098A-SP‬ ‭1‬ ‭CMS-16098A-SP‬ ‭2.41‬

‭C309‬ ‭C_0603_1608Metric_Pad1.08x0.95mm_‬
‭HandSolder‬

‭1‬ ‭4.7u‬ ‭0.49‬

‭C307,C303,C304,C305,C308‬ ‭C_0603_1608Metric_Pad1.08x0.95mm_‬
‭HandSolder‬

‭5‬ ‭100n‬ ‭0.49‬

‭U301‬ ‭UFBGA-201_10x10mm_Layout15x15_P‬
‭0.65mm‬

‭1‬ ‭STM32F407IEHx‬ ‭12.07‬

‭U201‬ ‭21-0896B_9_MXM‬ ‭1‬ ‭MAX98357AEWL+T‬ ‭4.3‬

‭MK201‬ ‭MIC_ICS-43434‬ ‭1‬ ‭ICS-43434‬ ‭3.12‬

‭C404,C403‬ ‭C_0603_1608Metric_Pad1.08x0.95mm_‬
‭HandSolder‬

‭2‬ ‭10u‬ ‭0.49‬

‭C301,C302‬ ‭C_0603_1608Metric_Pad1.08x0.95mm_‬
‭HandSolder‬

‭2‬ ‭20p‬ ‭0.49‬

‭R201,R202‬ ‭R_0805_2012Metric_Pad1.20x1.40mm_‬
‭HandSolder‬

‭2‬ ‭100k‬ ‭0.1‬
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‭C311,C306‬ ‭C_0603_1608Metric_Pad1.08x0.95mm_‬
‭HandSolder‬

‭2‬ ‭1u‬ ‭0.49‬

‭R302,R304‬ ‭R_0805_2012Metric_Pad1.20x1.40mm_‬
‭HandSolder‬

‭2‬ ‭2k2‬ ‭0.1‬

‭C310‬ ‭C_0603_1608Metric_Pad1.08x0.95mm_‬
‭HandSolder‬

‭1‬ ‭10n‬ ‭0.49‬

‭J301‬ ‭PinSocket_2x03_P2.54mm_Vertical‬ ‭1‬ ‭Conn_02x03_Odd_Even‬ ‭0.56‬

‭Y301‬ ‭Crystal_HC49-U_Vertical‬ ‭1‬ ‭Crystal‬ ‭52‬

‭R401‬ ‭R_0805_2012Metric_Pad1.20x1.40mm_‬
‭HandSolder‬

‭1‬ ‭1k‬ ‭0.1‬

‭R403,R404‬ ‭R_0805_2012Metric_Pad1.20x1.40mm_‬
‭HandSolder‬

‭2‬ ‭330‬ ‭0.1‬

‭C406,C405‬ ‭C_0603_1608Metric_Pad1.08x0.95mm_‬
‭HandSolder‬

‭2‬ ‭1uF‬ ‭0.49‬

‭BT401‬ ‭BAT_1048P‬ ‭1‬ ‭1048P‬ ‭10.77‬

‭R402‬ ‭R_0805_2012Metric_Pad1.20x1.40mm_‬
‭HandSolder‬

‭1‬ ‭542‬ ‭0.1‬

‭CM5‬ ‭Raspberry Pi Compute Module 5‬ ‭1‬ ‭CM5‬ ‭80‬

‭CM5 Expansion Board‬ ‭GPIO Expansion board for CM5‬ ‭1‬ ‭CM5 Expander‬ ‭20‬

‭Total‬ ‭$199.21‬

‭Table 2. Itemized List of Components and Cost‬

‭3.2‬ ‭Schedule‬

‭Week‬ ‭Task‬

‭March 3rd - March 10th‬ ‭-‬ ‭Complete First-Round PCB Design – Josh‬
‭-‬ ‭Solder Module Components for Breadboard‬

‭Demonstration – Josh‬
‭-‬ ‭Initiate Software Integration for MCU and SCU‬

‭in Breadboard Demo – Lorenzo‬

‭March 10th - March 17th‬ ‭-‬ ‭Finalize Second-Round PCB Design – Josh‬
‭-‬ ‭Debug First-Round PCB Design – Entire Team‬
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‭-‬ ‭Complete Software Integration for MCU and‬
‭SCU in Breadboard Demo – Lorenzo‬

‭March 24th - March 31st‬ ‭-‬ ‭Debug Second-Round PCB Design – Entire Team‬
‭-‬ ‭Optimize Hardware Integration as Needed –‬

‭Entire Team‬

‭March 31st - April 14th‬ ‭-‬ ‭Finalize PCB Design and Software – Entire Team‬
‭-‬ ‭Complete Final Assembly – Josh‬
‭-‬ ‭Conduct Integration Testing – Lorenzo‬

‭April 21st‬ ‭-‬ ‭Perform Mock Demonstration – Entire Team‬

‭April 28th‬ ‭-‬ ‭Execute Final Demonstration – Entire Team‬

‭May 5th‬ ‭-‬ ‭Prepare and Deliver Final Presentation – Entire‬
‭Team‬

‭Table 3. Schedule for Project Progression‬

‭3.3‬ ‭Risk Analysis‬
‭The development and use of a portable translator introduces several potential risks that must be‬

‭considered to ensure its reliability and usability. One major risk is hardware failure, particularly within the‬

‭Main Processing Subsystem (MCU) or Secondary Processing Subsystem (Compute Module). If these‬

‭components malfunction, the device may be unable to process translations accurately, leading to‬

‭communication failures. Additionally, since the device operates without an internet connection, there is a‬

‭risk that the translation algorithms may not be as comprehensive or up-to-date as online alternatives,‬

‭potentially resulting in inaccurate translations. Another concern is audio subsystem reliability; if the‬

‭microphone or speaker malfunctions, users may struggle to input or hear translations, reducing the‬

‭device's effectiveness. Furthermore, since this device is meant to be portable, inefficient power‬

‭consumption could lead to short battery life, limiting the device's usability during travel. To mitigate these‬

‭risks, we will implement robust error-handling mechanisms, optimize power efficiency, and rigorously‬

‭test the device under various conditions.‬
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‭4‬ ‭Discussion of Ethics and Safety‬

‭4.1  Open Source Usage‬
‭Our project is based on various open source projects. We have adapted these projects to meet our specific‬

‭needs. We acknowledge our responsibility to properly attribute the original authors and comply with‬

‭licensing requirements. We will ensure that all intellectual property is properly cited and comply with‬

‭their licenses.‬

‭4.2 Battery Safety‬
‭To comply with industry standards, including IEEE 1725-2021 for rechargeable battery safety, we will‬

‭incorporate protection mechanisms against overcharging, overheating, and short circuiting.‬

‭4.3 Translation Misuse‬
‭Our project can be prone to the sensitive nature of translating sensitive language which could cause harm‬

‭to others. We intend to censor this language as much as possible to prevent from any possible misuse of‬

‭this device. We intend to develop a table of commonly used sensitive words and censor appropriately if‬

‭a particular word is found.‬
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