
 Portable Offline Translator
 ECE 445 Design Document - Spring 2025

 Project #77

 Joshua Cudia and Lorenzo Bujalil Silva

 Professor: Arne Flifet

 1 Introduction ... 3

 1.1 Problem .. 3

 1.2 Solution .. 3

 1.3 Visual Aid .. 3

 1.4 High Level Requirements .. 5

 2 Design ... 7

 2.1 Block Diagram ... 7

 2.2 Functional Overview & Block Diagram Requirements .. 7

 2.2.1 MCU (Main Processing System) ... 7

 2.2.1 Raspberry Pi Compute Module 4/5 (Secondary Processing Subsystem) 9

 2.2.1 Audio I/O Subsystem ... 12

 2.2.1 User I/O Subsystem ... 13

 2.2.1 Power Management Subsystem ... 13

 2.3 Software Design ... 14

 2.4 Tolerance Analysis .. 17

 2.4.1 Translation Accuracy ... 17

 2.4.2 Translation Latency .. 17

 2.4.3 Power Management .. 17

 3 Cost and Schedule .. 19

 3.1 Cost Analysis ... 19

 3.2 Schedule ... 20

 3.3 Risk Analysis ... 21

 4 Discussion of Ethics and Safety .. 22

 4.1 Open Source Usage .. 22

 4.2 Battery Safety .. 22

 4.3 Translation Misuse ... 22

 5 References ... 22

 2

 1 Introduction

 1.1 Problem
 Traveling is an exciting part of life that can bring joy and new experiences. Trips are the most memorable

 when everything goes according to plan. However, the language barrier can limit communication with

 others, causing unnecessary stress on an otherwise enjoyable trip. Although most modern phones provide

 translation applications, these require a reliable internet connection. In times when the connection is weak

 or there is no connection at all, translation apps may not be a solution.

 1.2 Solution
 We want to solve this problem by building a portable translator that you can ideally use anywhere in the

 world without internet connection. The idea is to have a small device that can be programmed to make

 translations between two different languages, then is able to listen what the person says, converts the

 speech to text, translates the text to the target language, then converts the translated text back to speech,

 and drives a speaker with the target translated speech. We want to design our translator to encompass a

 few subsystems: Main Processing Subsystem (MCU), Secondary Processing Subsystem (Compute

 Module), Audio Subsystem, User Interface Subsystem, Communication Subsystem, and Power

 Management Subsystem. Through this design, someone should be able to turn on the device, set the

 languages up and start talking into the device, and after a few seconds the translated speech will be

 played. Then, the device can be programmed the other way to have the other party translate. Ideally, this

 will facilitate communication between people without a common language and make life easier while

 traveling.

 1.3 Visual Aid
 A common representation of an embedded translation device can currently be seen on the market.

 However, we have noticed that many times this device will be sold as a package with a variety of

 functionality including online translation or photo translation.

 3

 Figure 1. Retail Translator

 This inclusion of functionality provides some better usage for the device, but will also significantly

 increase the cost. Ideally, all of this additional functionality would be provided by a phone that most

 people already have. The problem that we are setting to solve is one where the user will have no access to

 the internet and need to be able to communicate. We want to design a device that is proficient in

 simplicity. Being able to clearly understand and translate to ensure proper communication when there are

 no other resources available.

 4

 Figure 2. Visual Diagram

 1.4 High Level Requirements

 1. Translation Latency: This system should be capable of translating spoken input to text and vice

 versa within 3 seconds to ensure real-time usability. This will be the time that it takes from once

 the person stops talking to the time that the person is able to hear audio on the speaker.

 2. Translation Accuracy: This system should be capable of maintaining an accuracy of at least 90%

 for common phrases and vocabulary. This is going to be very dependent on the model size, where

 models that have more parameters are capable of recognizing more languages with higher

 accuracy and responding better to prompts given. This stage can be calculated through the first

 recognition model capable of interpreting through a score of 90% on the semantic similarity

 score. Then on the translation model capable of scoring 90% on a multilingual sentence

 transformer. Then finally another semantic similarity score of 90% on the text to speech model.

 5

 3. Speaker Noise: The speaker output should be clear and audible within typical decibel ranges (e.g

 60db) of normal conversation. This will ensure that we are able to understand what the output

 language is saying and conversation can flow with ease.

 6

 2 Design

 2.1 Block Diagram

 Figure 3. Block Diagram

 2.2 Functional Overview & Block Diagram Requirements

 2.2.1 MCU (Main Processing System)
 The main processing subsystem will manage the workflow for the system, control all I/O, and

 communicate commands/data to the secondary processing subsystem. When the system powers on a

 simple interface will be prompted to the user to allow them to select the source and target language to

 translate. The MCU will support the user inputs through a push button to select the language and will

 drive the display. Then when the user decides to start translation, through a particular push button, the

 MCU will change states to start listening on the port for audio data from the microphone. The INMP441

 microphone will output a digital signal and communicate over I2S which can be interpreted through our

 MCU. The MCU will also need to buffer data and need to normalize it to be within the appropriate bit

 range to be interpreted by the STT model. After preprocessing the data, we will need to set up code to

 communicate packets of this data over a SPI protocol to the compute module. We also may need to set up

 some kind of custom protocol to set the compute module to start listening for a data sequence. Then the

 7

 compute module will take over and do the translations and conversions to speech and output pulse code

 modulation data. This data is transmitted again over SPI to the MCU that is listening. We decided to use

 SPI in this case because we needed high data transfer speeds to communicate the audio data. Since there

 is only 1 MB of flash memory and 192 KB of SRAM, we are strictly limited by the available memory to

 store entire audio files. This then will require us to create a circular buffering system where we are

 collecting data from the speaker from one end of a buffer and then offloading the data when we get to a

 certain threshold of capacity in this buffer. The microphone will be able to write directly to memory

 through DMA, and when the CPU has an available time slice it will be able to send off the data quickly to

 the compute module over SPI. Then the MCU will move to another state to start writing the data to the

 MAX98357A that will drive the speaker. Then the MCU will move back to a state of user input again to

 allow the user to translate again. Other than managing the entire workflow for the system, it needs to

 control the I/O which will include reading inputs from the user on the push buttons and will need to drive

 an LCD display to show what the user is currently selecting. With enough time, we may also add some

 status messages onto the LCD display to see what is happening in the system.

 We decided to use the STM32F407 for this project because we required high levels of communication

 between various systems along with the numerous I/O. We also found that it has a LCD parallel interface

 and JTAG interface. We also have a long reach goal to do some audio manipulation (e.g. filtering, noise

 reduction) before sending it off to the compute module. We can also expect to support a real time control

 of the audio and peripheral management.

 Subsystem Requirements Subsystem Verification

 1. The main requirement of the MCU is to

 orchestrate the state of the system and

 manage data flow. We can quantify this

 impact by being able to buffer 10 s of

 speech data into the pipeline to be

 translated. Since it is also managing the

 flow of the system, the end to end

 performance should be measurable here to

 be under 500 ms. This would include the

 1. Equipment: An oscilloscope and logic

 analyzer will verify SPI and I2S

 communication timing, while a DMM

 ensures proper voltage levels. Debug

 software (in CubeIDE) will track state

 transitions, and a function generator will

 provide test audio signals.

 2. Test Procedures: The MCU will be

 powered on, and correct LCD language

 selection will be verified via button

 8

 time between a user finishing speaking to

 getting speech out from the speaker.

 presses. Audio input from the INMP441

 microphone will be monitored to confirm

 proper I2S transmission and buffering.

 SPI communication with the compute

 module will be tested by sending

 pre-recorded data, ensuring a response

 time below 500 ms.

 3. Presentation of Results: Oscilloscope and

 logic analyzer readings will confirm

 protocol timing, while debug logs and

 testpoint outputs will verify state changes.

 Voltage and current measurements will

 ensure power stability, and system latency

 will be recorded to confirm it remains

 under 500 ms. Waveform captures of I2S

 and SPI signals will be documented as

 verification evidence.

 2.2.1 Raspberry Pi Compute Module 4/5 (Secondary Processing Subsystem)
 The main purpose of the compute module is to offload high compute tasks, including speech to text

 transcription, translation, and text to speech conversion. It would be too computationally complex to host

 all three models on the STM32 while processing I/O data. We specifically chose the RPI Compute

 Module because it has the computational power to run the AI models, it can interface over SPI to the

 MCU, it runs Linux, and it has eMMC Flash to store the models on board. We decided that we need to use

 SPI in this case since we are going to be offloading data in real time from the MCU. For this subsystem,

 we are going to have to build an infrastructure around querying the models, reading and sending data to

 and from the MCU, and a data processing pipeline to move through different stages of translation. It will

 also need to have some level of state awareness to know what kind of translation is being requested. We

 hope to design the PCB so that we can simply plug in the compute module onto the PCB through pinouts.

 We need to start to build a software program that will orchestrate the pipeline of data through various ML

 models that will perform transcription, translation, and speech synthesis. This will also need to support

 listening to the microcontroller port to decide when it should start to process data. We will need to start

 9

 with a general implementation of this data pipeline where we can initially use APIs to query models.

 Once we get this to work, we can figure out exactly how much memory and storage we will require from

 these models to determine if we need to do some quantization or add more storage space. This is to have

 the models on board and able to be queried offline.

 Once we get a basic understanding of the capabilities of being able to query a pipeline online, we are able

 to start pulling in models and generating a system capable of being queried on a higher performance host

 system (e.g. M2 Mac Pro). We will design a build system capable of pulling various open source projects

 together to be queried under one pipeline with each of their models being locally stored in memory.

 Effectively the model framework we are going to be using is the one based around a tensor library for

 machine learning called ggml that has branching projects capable of doing inference for speech

 recognition and speech translation. The two projects that we are going to be using are whisper.cpp and

 llama.cpp. When the speech data comes through as 24-bit mono PCM, we are going to reconstruct this

 data and then do some data processing such as sign extensions to be able to provide it to the 32-bit based

 whisper.cpp framework that will return tokens in the desired language, from these tokens we will have

 them as a string that will be used to prompt the llama.cpp framework to translate to a desired language

 with some prompt engineering to extract the desired language extracted. Once we get the translated

 language, we will provide this to a text to speech model, Piper, that will interpret the tokens and

 regenerate the PCM data to be delivered back in SPI to the STM32. From the initial testing, we are able to

 store larger models within memory to have higher accuracy, but we may need to decrease the performance

 to be able to actually store the models on the edge.

 Once we are able to validate test results on a host system we are able to move to the compute module that

 we will run some initial testing through a designed I/O board where we can flash the system and simulate

 input.

 Figure 4. Software Pipeline

 10

 Subsystem Requirements Subsystem Verification

 1. The main requirement of this processor
 would be to ensure appropriate translation
 of the data. Ideally this processor should
 have the software infrastructure to
 translate the data with 90% accuracy
 across each of the models. This would be
 measured across an ideal translation. We
 would also ensure that the data is
 translated within 300 ms.

 1. Equipment: We will use a logic analyzer

 to verify SPI communication integrity

 between the compute module and MCU,

 while an oscilloscope will confirm signal

 timing. Benchmarking software will

 measure AI inference time, and memory

 profiling tools will ensure efficient

 storage use.

 2. Test Procedures: The compute module

 will boot and establish SPI

 communication with the MCU, ensuring

 proper data reception. Audio input will be

 processed into 24-bit PCM before feeding

 into whisper.cpp for transcription. The

 accuracy of whisper.cpp transcription will

 be compared against expected outputs.

 Translated text from llama.cpp will be

 evaluated for correctness, and Piper will

 generate speech, with PCM data

 reconstructed and returned to the MCU.

 The system will be tested under load to

 ensure a translation time below 300 ms

 and an accuracy rate of 90% or higher.

 3. Presentation of Results: SPI transaction

 logs will confirm end-to-end data

 transmission, while debug logs will

 capture AI model inference times. We will

 evaluate the accuracy by comparing

 transcriptions and translations to ground

 truth datasets. Benchmarking results will

 document translation speed, and system

 11

 memory usage will be analyzed to ensure

 feasibility for edge deployment.

 2.2.1 Audio I/O Subsystem
 We are going to have a LCD display that can let the user decide what languages to translate between and

 some push buttons to be able to decide. We are also going to have a push button that will start listening on

 the microphone, then stop listening so we can ensure that all of the data has been stored. In the case that

 the translation lasts too long, we may add some feature to automatically stop the input of speech so we

 make sure not to have too much data to translate. This UI subsystem will essentially make it so that this is

 a usable product.

 Subsystem Requirements Subsystem Verification

 1. The main requirements of this system

 would be accuracy in retrieving audio data

 and delivering understandable speech on

 the speaker. We would hope to have 95%

 accuracy in retrieving data from the

 microphone and driving the speaker to be

 understood by a person at around 60 dB.

 1. Define Equipment: To verify this
 subsystem, we will first utilize the test
 points for the I2S communication between
 the MCU and the INMP441 microphone
 as well as the I2S communication between
 the MAX98357A audio amplifier. In order
 to achieve audible volume, we will
 measure the speaker output using a
 decibel meter.

 2. Define Test Procedures: We will record
 test phrases with the microphone and
 analyze the I2S waveforms using the test
 points and a logic analyzer. We will
 benchmark these results with our goal of
 95% accuracy. We will also consider the
 SNR of the audio amplifier with expected
 values in the MAX98357A datasheet.

 3. Define Presentation of Results: Captured
 I2S waveforms will be stored to verify
 digital accuracy, while decibel readings
 will confirm speaker output level. Audio
 comparison metrics (e.g., signal-to-noise
 ratio, transcription accuracy) will be
 documented.

 12

 2.2.1 User I/O Subsystem
 We are going to have a LCD display that can let the user decide what languages to translate between and

 some push buttons to be able to decide. We are also going to have a push button that will start listening on

 the microphone, then stop listening so we can ensure that all of the data has been stored. In the case that

 the translation lasts too long, we may add some feature to automatically stop the input of speech so we

 make sure not to have too much data to translate. This UI subsystem will essentially make it so that this is

 a usable product.

 Subsystem Requirements Subsystem Verification

 1. The main requirements of this device

 would be to have a usable interface to be

 able to select across languages and see the

 selection on the screen. We hope to

 achieve a refresh rate on this LCD display

 of at least 30 Hz.

 1. Functional Verification: We will ensure
 that we are able to send commands to the
 interface to be able to move between
 different languages and verify that the
 correct text appears on the display. We
 also want to try to run some button tests
 that will check if the UI is updating
 correctly depending on what we pressed.
 We can do some isolated testing for this
 device by connecting to a development
 board and writing SPI commands to the
 device.

 2. To verify the refresh rate of this device we
 can use an oscilloscope to check the
 VSYNC signal and confirm that the frame
 update time is less than 1/30 Hz.

 3. Finally we can test the communication
 interface by validating that the SPI
 commands received at the device are the
 ones that we intended to send from the
 STM32.

 2.2.1 Power Management Subsystem

 This portable power management system will use a Samsung 25R 18650 2500mAh 20A rechargeable

 Li-Ion battery to supply stable voltage to two power rails. The 5V power rail will be used for the

 Raspberry Pi Compute Module (CM), while the 3.3V power rail will support the MCU, LCD, and audio

 subsystem.

 The system includes two LM317DCYR adjustable LDO regulators:

 13

 ● One will step down the battery voltage to 5V.
 ● The other will step down the voltage to 3.3V.

 Additionally, an 18650 battery holder will securely hold the battery and allow for easy replacement.

 Subsystem Requirements: Subsystem Verification

 1. Voltage Stability:
 ○ The 5V and 3.3V power rails

 should maintain ±0.1V tolerance
 to their respective subsystems.

 2. Current Supply:
 ○ The 5V regulator should supply at

 least 1.5A continuously to support
 the worst-case current draw from
 the Raspberry Pi CM4/5.

 ○ The 3.3V regulator should supply
 around 400mA to ensure the
 functionality of the MCU, LCD,
 and audio subsystem.

 3. Thermal Management
 ○ The LM317 regulators should not

 exceed 85°C during normal
 operation, and heat dissipation
 methods should be implemented
 to prevent overheating.

 4. Protection Mechanisms:
 ○ Overcurrent protection should be

 in place to prevent system
 damage if a component draws
 excessive power (e.g., PCB
 fuses).

 1. Define Equipment: We will use a digital
 multimeter (DMM) and oscilloscope will
 measure voltage stability to ensure the 5V
 and 3.3V power rails stay within ±0.1V
 tolerance.

 2. Define Test Procedures: The 5V regulator
 will be tested by applying a 1.5A load,
 and the 3.3V regulator will be tested with
 a 400mA load to verify continuous current
 supply. We will verify the load and line
 regulation of each output channel during
 this process.

 3. Define Presentation of Results: Voltage
 readings will be recorded under different
 loads to confirm stability. Current draw
 measurements will ensure regulators meet
 required supply levels.

 2.3 Software Design
 The basis of the software design will be made up of data processing across audio sensors,

 microcontrollers, button and LCD user interfaces, and a high performance processing unit.

 14

 We can start the analysis of our software design in the STM32 where we have a notion of a state where it

 will be operating in USER, AUDIO_COLLECT, WAIT_DATA, and AUDIO_DRIVE states.

 Through these states we can ensure that we are managing a smooth pipeline where data can transition

 between submodules with ease. Initially, we will wait for the user to send data to set the source and the

 15

 destination languages which will need to be managed through selection of data from the user interface.

 Then when the source and destination languages have been decided, we will receive a signal from the user

 to start collecting data from the microphone. Before we start collecting data we will send a signal to the

 compute module to send the language meta data and initialize it to start listening for PCM data. At this

 point we need to start buffering data into memory through DMA on the I2S interface. Due to memory

 limitations of the STM32 we will offload this data when reaching a threshold of data capacity and we will

 have a high speed SPI interface to be provided to the Raspberry Pi. Once the user has stopped pressing the

 start button, we will send an acknowledgement signal to the Pi to show the end of data. The data will be

 received by the compute module and it will start to transcribe the data by doing some preprocessing

 (Sign-extending) and it will configure the whisper.cpp framework to expect the particular language and it

 will pull the necessary model into memory. Once it finishes, we will get token data from the source

 language and we can provide that to the translation model, llama.cpp. In this case we are going to be

 doing the translation by prompting the model to translate text.

 std :: string model_path = "llama.cpp/models/mistral-7b.Q4_K_M.gguf" ;

 std :: string prompt = "-p Translate the following text to " + dest_langauge + ": ' " + escaped_text + " '

 --reverse-prompt " + dest_langauge + ":" ;

 This prompt will be able to query the llama model and extract the translated text through the reverse

 prompt. Then we do some setup for the context of the model for the model, and we run inference. Then

 we will receive the tokens for the translated language and we can use that to show debugging on the LCD

 interface and we can deliver that to the TTS model, Piper. Then we can configure the model to the

 particular language we are expecting and request that the generated PCM data should be mono and use

 24-bit depth. Then the translated speech is on board the compute module and we can send over a signal to

 the STM32 to expect receiving the data. At this point we are going to need to do more buffering by

 receiving partial amounts of the data directly to memory and offloading that to the speaker. We are going

 to need to develop a quick method that will reduce the delay as much as possible to ensure clear output.

 16

 2.4 Tolerance Analysis

 2.4.1 Translation Accuracy

 Our system aims to achieve full-sentence translation with an accuracy confidence level above 90%. The

 entire processing pipeline must maintain data integrity to ensure reliable output. Additionally, the

 translated output should be delivered at a decibel level that is interpretable by the end user.

 To improve accuracy, the system will incorporate a filtering mechanism to reduce the impact of input

 noise. This filtering will help enhance the quality of the translation and ensure that the final output

 remains clear and intelligible.

 We also expect to attempt to improve the accuracy of the translation by reducing the potential loss of data

 within previous models in the pipeline by running some level of checking and requerying of the model.

 We will also try to use the largest model we can on board the device that can fit to provide the most

 amount of performance for the translation. This may require us doing some quantization of the models

 that we have provided but many of the open source projects that we are working with have a tiny version

 of their models that has been highly optimized.

 2.4.2 Translation Latency

 We aim to maintain a translation latency of 500 ms or less to enable real-time usability, especially for

 users in remote locations. To achieve this, we will:

 ● Limit buffer sizes within the system to reduce processing delays.
 ● Optimize data processing on the compute module to minimize potential spikes in latency.

 2.4.3 Power Management

 To ensure efficient power management, we have included the worst-case current draw for the different

 voltage domains.

 Component (3.3V) Peak Current Draw (mA)

 STM32F407IGH7 (MCU) 240.00

 ICS-43434 (I2S Microphone) 0.55

 ST7789 (LCD Display) 90.00

 17

 Component (5V) Peak Current Draw (mA)

 Raspberry Pi Compute Module 5 1600.00

 MAX98357AEWL+T 2.40

 CMS-16098A-SP (Speaker) 2.75

 Total 1935.70

 Table 1. Worst Case Current Draw

 18

 3 Cost and Schedule

 3.1 Cost Analysis

 The total cost for parts, as shown in Table 2, is $199.21 before shipping. Considering a 5% shipping cost,

 which adds $9.96, and a 10% sales tax, which adds $19.21, the total cost will be $229.09.

 Designator Package Quantity Designation/Value Price per Piece ($)

 D403,D401,D404,D402 D_DO-41_SOD81_P10.16mm_Horizonta
 l

 4 1N4002 0.2

 R303,R305,R306,R307,R301 R_0805_2012Metric_Pad1.20x1.40mm_
 HandSolder

 5 10k 0.1

 J201 PinSocket_1x10_P2.54mm_Vertical 1 Conn_01x10_Female 0.56

 C401,C402 C_0603_1608Metric_Pad1.08x0.95mm_
 HandSolder

 2 0.1uF 0.49

 SW301,SW303,SW302 SW_SPST_B3S-1000 3 SW_Push 0.57

 U401,U402 SOT-223-3_TabPin2 2 LM317_SOT-223 0.64

 LS201 CUI_CMS-16098A-SP 1 CMS-16098A-SP 2.41

 C309 C_0603_1608Metric_Pad1.08x0.95mm_
 HandSolder

 1 4.7u 0.49

 C307,C303,C304,C305,C308 C_0603_1608Metric_Pad1.08x0.95mm_
 HandSolder

 5 100n 0.49

 U301 UFBGA-201_10x10mm_Layout15x15_P
 0.65mm

 1 STM32F407IEHx 12.07

 U201 21-0896B_9_MXM 1 MAX98357AEWL+T 4.3

 MK201 MIC_ICS-43434 1 ICS-43434 3.12

 C404,C403 C_0603_1608Metric_Pad1.08x0.95mm_
 HandSolder

 2 10u 0.49

 C301,C302 C_0603_1608Metric_Pad1.08x0.95mm_
 HandSolder

 2 20p 0.49

 R201,R202 R_0805_2012Metric_Pad1.20x1.40mm_
 HandSolder

 2 100k 0.1

 19

 C311,C306 C_0603_1608Metric_Pad1.08x0.95mm_
 HandSolder

 2 1u 0.49

 R302,R304 R_0805_2012Metric_Pad1.20x1.40mm_
 HandSolder

 2 2k2 0.1

 C310 C_0603_1608Metric_Pad1.08x0.95mm_
 HandSolder

 1 10n 0.49

 J301 PinSocket_2x03_P2.54mm_Vertical 1 Conn_02x03_Odd_Even 0.56

 Y301 Crystal_HC49-U_Vertical 1 Crystal 52

 R401 R_0805_2012Metric_Pad1.20x1.40mm_
 HandSolder

 1 1k 0.1

 R403,R404 R_0805_2012Metric_Pad1.20x1.40mm_
 HandSolder

 2 330 0.1

 C406,C405 C_0603_1608Metric_Pad1.08x0.95mm_
 HandSolder

 2 1uF 0.49

 BT401 BAT_1048P 1 1048P 10.77

 R402 R_0805_2012Metric_Pad1.20x1.40mm_
 HandSolder

 1 542 0.1

 CM5 Raspberry Pi Compute Module 5 1 CM5 80

 CM5 Expansion Board GPIO Expansion board for CM5 1 CM5 Expander 20

 Total $199.21

 Table 2. Itemized List of Components and Cost

 3.2 Schedule

 Week Task

 March 3rd - March 10th - Complete First-Round PCB Design – Josh
 - Solder Module Components for Breadboard

 Demonstration – Josh
 - Initiate Software Integration for MCU and SCU

 in Breadboard Demo – Lorenzo

 March 10th - March 17th - Finalize Second-Round PCB Design – Josh
 - Debug First-Round PCB Design – Entire Team

 20

 - Complete Software Integration for MCU and
 SCU in Breadboard Demo – Lorenzo

 March 24th - March 31st - Debug Second-Round PCB Design – Entire Team
 - Optimize Hardware Integration as Needed –

 Entire Team

 March 31st - April 14th - Finalize PCB Design and Software – Entire Team
 - Complete Final Assembly – Josh
 - Conduct Integration Testing – Lorenzo

 April 21st - Perform Mock Demonstration – Entire Team

 April 28th - Execute Final Demonstration – Entire Team

 May 5th - Prepare and Deliver Final Presentation – Entire
 Team

 Table 3. Schedule for Project Progression

 3.3 Risk Analysis
 The development and use of a portable translator introduces several potential risks that must be

 considered to ensure its reliability and usability. One major risk is hardware failure, particularly within the

 Main Processing Subsystem (MCU) or Secondary Processing Subsystem (Compute Module). If these

 components malfunction, the device may be unable to process translations accurately, leading to

 communication failures. Additionally, since the device operates without an internet connection, there is a

 risk that the translation algorithms may not be as comprehensive or up-to-date as online alternatives,

 potentially resulting in inaccurate translations. Another concern is audio subsystem reliability; if the

 microphone or speaker malfunctions, users may struggle to input or hear translations, reducing the

 device's effectiveness. Furthermore, since this device is meant to be portable, inefficient power

 consumption could lead to short battery life, limiting the device's usability during travel. To mitigate these

 risks, we will implement robust error-handling mechanisms, optimize power efficiency, and rigorously

 test the device under various conditions.

 21

 4 Discussion of Ethics and Safety

 4.1 Open Source Usage
 Our project is based on various open source projects. We have adapted these projects to meet our specific

 needs. We acknowledge our responsibility to properly attribute the original authors and comply with

 licensing requirements. We will ensure that all intellectual property is properly cited and comply with

 their licenses.

 4.2 Battery Safety
 To comply with industry standards, including IEEE 1725-2021 for rechargeable battery safety, we will

 incorporate protection mechanisms against overcharging, overheating, and short circuiting.

 4.3 Translation Misuse
 Our project can be prone to the sensitive nature of translating sensitive language which could cause harm

 to others. We intend to censor this language as much as possible to prevent from any possible misuse of

 this device. We intend to develop a table of commonly used sensitive words and censor appropriately if

 a particular word is found.

 5 References
 [1] Piper TTS, "Piper TTS Model," [Online]. Available: https://github.com/rhasspy/piper .

 [2] G. Gerganov, "whisper.cpp," [Online]. Available: https://github.com/ggerganov/whisper.cpp .

 [3] Raspberry Pi Ltd., Raspberry Pi Compute Module 4/5 Datasheet , [Online]. Available:
 https://datasheets.raspberrypi.com/cm4/cm4-datasheet.pdf .

 [4] STMicroelectronics, STM32F407 Datasheet , [Online]. Available:
 https://www.st.com/en/microcontrollers-microprocessors/stm32f407-417.html .

 [5] TDK InvenSense, INMP441 Datasheet , [Online]. Available:
 https://invensense.tdk.com/wp-content/uploads/2015/02/INMP441.pdf .

 22

https://github.com/rhasspy/piper
https://github.com/rhasspy/piper
https://github.com/ggerganov/whisper.cpp
https://datasheets.raspberrypi.com/cm4/cm4-datasheet.pdf
https://datasheets.raspberrypi.com/cm4/cm4-datasheet.pdf
https://www.st.com/en/microcontrollers-microprocessors/stm32f407-417.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f407-417.html
https://invensense.tdk.com/wp-content/uploads/2015/02/INMP441.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/INMP441.pdf

 [6] Maxim Integrated, MAX98357A Datasheet , [Online]. Available:
 https://invensense.tdk.com/wp-content/uploads/2015/02/INMP441.pdf .

 [7] Dayton Audio, Dayton Audio CE32A-4 Datasheet , [Online]. Available:
 https://www.daytonaudio.com/images/resources/285-103-dayton-audio-ce32a-4-spec-sheet.pdf .

 [8] Adafruit, ST7789 Datasheet , [Online]. Available:
 https://cdn-learn.adafruit.com/downloads/pdf/2-0-inch-320-x-240-color-ips-tft-display.pdf .

 [9] G. Gerganov, "llama.cpp," [Online]. Available: https://github.com/ggml-org/llama.cpp .

 [10] N. Barker, "clay," [Online]. Available: https://github.com/nicbarker/clay .

 23

https://invensense.tdk.com/wp-content/uploads/2015/02/INMP441.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/INMP441.pdf
https://www.daytonaudio.com/images/resources/285-103-dayton-audio-ce32a-4-spec-sheet.pdf
https://www.daytonaudio.com/images/resources/285-103-dayton-audio-ce32a-4-spec-sheet.pdf
https://cdn-learn.adafruit.com/downloads/pdf/2-0-inch-320-x-240-color-ips-tft-display.pdf
https://cdn-learn.adafruit.com/downloads/pdf/2-0-inch-320-x-240-color-ips-tft-display.pdf
https://github.com/rhasspy/piper
https://github.com/ggml-org/llama.cpp
https://github.com/rhasspy/piper

