Portable Offline Translator

ECE 445 Design Document - Spring 2025

Project #77
Joshua Cudia and Lorenzo Bujalil Silva

Professor: Arne Flifet

I I OUCTION. ...ttt ettt e e e e et e e e e e e e e e e eeesesee e e eeeeesaeeaaeeeeessasaaaeeeesssesaaaseeeesessnasaeeeeeens 3

0 o4 0] o) (<35 RO 3
|10 1013 T) FO OO PRRPRR 3

1.3 VESUAL ATQ. ettt et ettt b ettt b et e e st sbe et et e b bt enteaen 3

1.4 High Level REQUITEIMENLS.cciuiieiiiieciieciiecieesiieesteeecteeeteeesteeeseeeeteeesseessseessseesssessssesessesesssessseans 5

B B 1o3 V. USSR 7
2.1 BlOCK DIQGIAMLeiiiiiiiiiit ettt b e b e s bt e sbe e s bt e bt e bt e beesbeesbe e bt enbeenseenseans 7

2.2 Functional Overview & Block Diagram Requir€ments............cccvevveriverieerieenieenieenieereereeve e sene e 7
2.2.1 MCU (Main Processing SYSTEIM).......cccueruererrerierieniniietentenieetentestesieententesiesieesessesbesseeneensenne 7

2.2.1 Raspberry Pi Compute Module 4/5 (Secondary Processing Subsystem).........c.cccceevveeveennenne. 9

2.2.1 AUAIO I/O SUDSYSIEII.....ccueeiiiiiiieiirieeiteet ettt sttt b ettt et 12

2.2.1 USCIE I/O SUDSYSEEIM....c.cviiiiiiiiiieiiiestieeieeecteeeteeestteeseteeseseessseessseessseeeseeesseeessseesssessssessssenans 13

2.2.1 Power Management SUDSYSEEIM..........ccverierieriieriieiieieerieesieesteeseeseeseessessseanseenseensesnsesssenns 13

2.3 SOTEWAIE DESIZN...eeiiiiiiiiieiiieeieeecee ettt et e e et e s teeeteeebeeestaeesbeessseessseassseessseeensaeesseessseessses 14

2.4 TOLETANCE ANALYSIS...ccuveiierieriierieriieriestesttesteesseesseessaesseesseesseesseesseesseesseesseesseesseessessseesseessesssesssenns 17
2.4.1 TranSlation ACCUTACYc.eerueeuteieeieeiteeiteetestesttesttesttesteesaeesbeesbeesbeesbeesseesbeenseenbeenseenseenseenne 17

2.4.2 Translation LateNCY.......ccveviieriieiiieiieiietietesteete e st e seeestaesteestaessaesssessaessaesseesseesseesseesseessens 17

2.4.3 POWET MANAZEIMENL.eeiiiiiiitiiiieniteesite et et e ettt et eesbteesbteesiteesabeesabeeeabeesabeesbeeesbbeesareenaseas 17

3 CoSt ANA SCHEAULE......c.eieiieieeeeee ettt ettt ettt e st et e seeeeeseeeeeaeeneeneeseeneeneensenseenes 19
3.1 COSt ANALYSIS. .ceuteuieiieitetete ettt sttt b e bt ettt b e ettt b ettt s b et e b st sbeeaten 19

3.2 SCREAUIE. ...ttt ettt et a et et e et n et e beereen e et e aeeneenteseeneene 20

3.3 RISK ANALYSIS..eeuiitieiieiiiiiiierieesie ettt et et et e bt et esteesbeessesssessseensesssessseassesasesssesnsesnsesssesssesssenssennns 21

4 Discussion of Ethics and Safety........cceiiiiiiiiiiiie ettt et tae e ere e tbe e e beeearee s 22
4.1 OPEN SOUICE USAZE.....ccuvieiuieeeiieeiieetieeiie ettt eeteeeteesteesteesteeasseeassseesnseessseesnseesnseesnseesseeessseesnses 22

4.2 Battery SATEtY...c.eeiieieieitieiieieet ettt ettt ettt et e b et e e bt e bt e be e beebeeteenteeneeas 22

4.3 TTanSIAtioN IMISUSE......ceeetereieiieterte ettt ettt ettt e et e eeea et e e bt eae et e teeseese e seseeeseeneesesaeeneeneansens 22

S RETEIEIICES. ..ttt ettt ettt ettt et e et et et et et e e abe et e e bt e a et enteeateeabeeabeenteenteenteenteeabeents 22

1 Introduction

1.1 Problem

Traveling is an exciting part of life that can bring joy and new experiences. Trips are the most memorable
when everything goes according to plan. However, the language barrier can limit communication with

others, causing unnecessary stress on an otherwise enjoyable trip. Although most modern phones provide
translation applications, these require a reliable internet connection. In times when the connection is weak

or there is no connection at all, translation apps may not be a solution.

1.2 Solution

We want to solve this problem by building a portable translator that you can ideally use anywhere in the
world without internet connection. The idea is to have a small device that can be programmed to make
translations between two different languages, then is able to listen what the person says, converts the
speech to text, translates the text to the target language, then converts the translated text back to speech,
and drives a speaker with the target translated speech. We want to design our translator to encompass a
few subsystems: Main Processing Subsystem (MCU), Secondary Processing Subsystem (Compute
Module), Audio Subsystem, User Interface Subsystem, Communication Subsystem, and Power
Management Subsystem. Through this design, someone should be able to turn on the device, set the
languages up and start talking into the device, and after a few seconds the translated speech will be
played. Then, the device can be programmed the other way to have the other party translate. Ideally, this
will facilitate communication between people without a common language and make life easier while

traveling.

1.3 Visual Aid

A common representation of an embedded translation device can currently be seen on the market.
However, we have noticed that many times this device will be sold as a package with a variety of

functionality including online translation or photo translation.

Online translation | Offline translation

B ©

Recording | Photo translation

Group translation| Realtime translation

ChatGPT Settings

I

Figure 1. Retail Translator

This inclusion of functionality provides some better usage for the device, but will also significantly
increase the cost. Ideally, all of this additional functionality would be provided by a phone that most
people already have. The problem that we are setting to solve is one where the user will have no access to
the internet and need to be able to communicate. We want to design a device that is proficient in
simplicity. Being able to clearly understand and translate to ensure proper communication when there are

no other resources available.

1.4

g Prav Mext

.

Figure 2. Visual Diagram
High Level Requirements

Translation Latency: This system should be capable of translating spoken input to text and vice
versa within 3 seconds to ensure real-time usability. This will be the time that it takes from once

the person stops talking to the time that the person is able to hear audio on the speaker.

Translation Accuracy: This system should be capable of maintaining an accuracy of at least 90%
for common phrases and vocabulary. This is going to be very dependent on the model size, where
models that have more parameters are capable of recognizing more languages with higher
accuracy and responding better to prompts given. This stage can be calculated through the first
recognition model capable of interpreting through a score of 90% on the semantic similarity
score. Then on the translation model capable of scoring 90% on a multilingual sentence

transformer. Then finally another semantic similarity score of 90% on the text to speech model.

3. Speaker Noise: The speaker output should be clear and audible within typical decibel ranges (e.g
60db) of normal conversation. This will ensure that we are able to understand what the output

language is saying and conversation can flow with ease.

2 Design

2.1 Block Diagram

Subsystem 5:
User Interface

v ol o P

SPI GPIO

Subsystem 4: -~ ~ Subsystem 4:
Audio (Input] Audi utput]
(Input Subsystem 1: MCU o (Output)
N MAX98357A
128 \ 125 \ Subsystem 3: Power Management
INMP441 \ STMs2F407 Mrematni g oamron
24-bit Audio Data (168 MHz) 16/32-bit Audio Data (PCM)
PR
o | L/ : V4
| [’
Dayton Aud
18650 Dual Battery Holder
3av CEa2A-4 v LM317LIDR (LDO) f+—\
,» — 18650 Lilon
P ~
7484v
12c v 18650 Li-lon
LM317DCYR (LDO) f&e———
_

Subsystem 2: ﬁaspberry Pi
Compute Module 4/5

Figure 3. Block Diagram

2.2 Functional Overview & Block Diagram Requirements

2.2.1 MCU (Main Processing System)

The main processing subsystem will manage the workflow for the system, control all I/O, and
communicate commands/data to the secondary processing subsystem. When the system powers on a
simple interface will be prompted to the user to allow them to select the source and target language to
translate. The MCU will support the user inputs through a push button to select the language and will
drive the display. Then when the user decides to start translation, through a particular push button, the
MCU will change states to start listening on the port for audio data from the microphone. The INMP441
microphone will output a digital signal and communicate over 12S which can be interpreted through our
MCU. The MCU will also need to buffer data and need to normalize it to be within the appropriate bit
range to be interpreted by the STT model. After preprocessing the data, we will need to set up code to
communicate packets of this data over a SPI protocol to the compute module. We also may need to set up

some kind of custom protocol to set the compute module to start listening for a data sequence. Then the

compute module will take over and do the translations and conversions to speech and output pulse code
modulation data. This data is transmitted again over SPI to the MCU that is listening. We decided to use
SPI in this case because we needed high data transfer speeds to communicate the audio data. Since there
is only 1 MB of flash memory and 192 KB of SRAM, we are strictly limited by the available memory to
store entire audio files. This then will require us to create a circular buffering system where we are
collecting data from the speaker from one end of a buffer and then offloading the data when we get to a
certain threshold of capacity in this buffer. The microphone will be able to write directly to memory
through DMA, and when the CPU has an available time slice it will be able to send off the data quickly to
the compute module over SPI. Then the MCU will move to another state to start writing the data to the
MAX98357A that will drive the speaker. Then the MCU will move back to a state of user input again to
allow the user to translate again. Other than managing the entire workflow for the system, it needs to
control the I/0O which will include reading inputs from the user on the push buttons and will need to drive
an LCD display to show what the user is currently selecting. With enough time, we may also add some

status messages onto the LCD display to see what is happening in the system.

We decided to use the STM32F407 for this project because we required high levels of communication
between various systems along with the numerous 1/0. We also found that it has a LCD parallel interface
and JTAG interface. We also have a long reach goal to do some audio manipulation (e.g. filtering, noise
reduction) before sending it off to the compute module. We can also expect to support a real time control

of the audio and peripheral management.

Subsystem Requirements Subsystem Verification

1. The main requirement of the MCU is to 1. Equipment: An oscilloscope and logic
orchestrate the state of the system and analyzer will verify SPI and 125
manage data flow. We can quantify this communication timing, while a DMM
impact by being able to buffer 10 s of ensures proper voltage levels. Debug
speech data into the pipeline to be software (in CubelDE) will track state
translated. Since it is also managing the transitions, and a function generator will
flow of the system, the end to end provide test audio signals.
performance should be measurable here to 2. Test Procedures: The MCU will be
be under 500 ms. This would include the powered on, and correct LCD language

selection will be verified via button

time between a user finishing speaking to presses. Audio input from the INMP441

getting speech out from the speaker. microphone will be monitored to confirm
proper I2S transmission and buffering.
SPI communication with the compute
module will be tested by sending
pre-recorded data, ensuring a response
time below 500 ms.

3. Presentation of Results: Oscilloscope and
logic analyzer readings will confirm
protocol timing, while debug logs and
testpoint outputs will verify state changes.
Voltage and current measurements will
ensure power stability, and system latency
will be recorded to confirm it remains
under 500 ms. Waveform captures of 12S
and SPI signals will be documented as

verification evidence.

2.2.1 Raspberry Pi Compute Module 4/5 (Secondary Processing Subsystem)

The main purpose of the compute module is to offload high compute tasks, including speech to text
transcription, translation, and text to speech conversion. It would be too computationally complex to host
all three models on the STM32 while processing I/0 data. We specifically chose the RPI Compute
Module because it has the computational power to run the AI models, it can interface over SPI to the
MCU, it runs Linux, and it has eMMC Flash to store the models on board. We decided that we need to use
SPI in this case since we are going to be offloading data in real time from the MCU. For this subsystem,
we are going to have to build an infrastructure around querying the models, reading and sending data to
and from the MCU, and a data processing pipeline to move through different stages of translation. It will
also need to have some level of state awareness to know what kind of translation is being requested. We

hope to design the PCB so that we can simply plug in the compute module onto the PCB through pinouts.

We need to start to build a software program that will orchestrate the pipeline of data through various ML
models that will perform transcription, translation, and speech synthesis. This will also need to support

listening to the microcontroller port to decide when it should start to process data. We will need to start

with a general implementation of this data pipeline where we can initially use APIs to query models.
Once we get this to work, we can figure out exactly how much memory and storage we will require from
these models to determine if we need to do some quantization or add more storage space. This is to have

the models on board and able to be queried offline.

Once we get a basic understanding of the capabilities of being able to query a pipeline online, we are able
to start pulling in models and generating a system capable of being queried on a higher performance host
system (e.g. M2 Mac Pro). We will design a build system capable of pulling various open source projects
together to be queried under one pipeline with each of their models being locally stored in memory.
Effectively the model framework we are going to be using is the one based around a tensor library for
machine learning called ggml that has branching projects capable of doing inference for speech
recognition and speech translation. The two projects that we are going to be using are whisper.cpp and
llama.cpp. When the speech data comes through as 24-bit mono PCM, we are going to reconstruct this
data and then do some data processing such as sign extensions to be able to provide it to the 32-bit based
whisper.cpp framework that will return tokens in the desired language, from these tokens we will have
them as a string that will be used to prompt the llama.cpp framework to translate to a desired language
with some prompt engineering to extract the desired language extracted. Once we get the translated
language, we will provide this to a text to speech model, Piper, that will interpret the tokens and
regenerate the PCM data to be delivered back in SPI to the STM32. From the initial testing, we are able to
store larger models within memory to have higher accuracy, but we may need to decrease the performance

to be able to actually store the models on the edge.

Once we are able to validate test results on a host system we are able to move to the compute module that
we will run some initial testing through a designed I/O board where we can flash the system and simulate

input.

Translate the following to (Insert Desired
Language): --reverse_prompt {Insert Desired
Language)

24-bit Mono, PCM
Data for Destination
Language

Source Langauge
Tokens

Destination Langauge

24-pit, Mono, PCM Data +
Source Language Meta data

whisper.cpp llama.cpp

Figure 4. Software Pipeline

10

Subsystem Requirements

Subsystem Verification

1.

The main requirement of this processor
would be to ensure appropriate translation
of the data. Ideally this processor should
have the software infrastructure to
translate the data with 90% accuracy
across each of the models. This would be
measured across an ideal translation. We
would also ensure that the data is
translated within 300 ms.

1.

Equipment: We will use a logic analyzer
to verify SPI communication integrity
between the compute module and MCU,
while an oscilloscope will confirm signal
timing. Benchmarking software will
measure Al inference time, and memory
profiling tools will ensure efficient
storage use.

Test Procedures: The compute module
will boot and establish SPI
communication with the MCU, ensuring
proper data reception. Audio input will be
processed into 24-bit PCM before feeding
into whisper.cpp for transcription. The
accuracy of whisper.cpp transcription will
be compared against expected outputs.
Translated text from llama.cpp will be
evaluated for correctness, and Piper will
generate speech, with PCM data
reconstructed and returned to the MCU.
The system will be tested under load to
ensure a translation time below 300 ms
and an accuracy rate of 90% or higher.
Presentation of Results: SPI transaction
logs will confirm end-to-end data
transmission, while debug logs will
capture Al model inference times. We will
evaluate the accuracy by comparing
transcriptions and translations to ground
truth datasets. Benchmarking results will

document translation speed, and system

11

memory usage will be analyzed to ensure

feasibility for edge deployment.

2.2.1 Audio I/O Subsystem

We are going to have a LCD display that can let the user decide what languages to translate between and
some push buttons to be able to decide. We are also going to have a push button that will start listening on
the microphone, then stop listening so we can ensure that all of the data has been stored. In the case that
the translation lasts too long, we may add some feature to automatically stop the input of speech so we
make sure not to have too much data to translate. This UI subsystem will essentially make it so that this is

a usable product.

Subsystem Requirements Subsystem Verification

1. The main requirements of this system 1. Define Equipment: To verify this
would be accuracy in retrieving audio data subsystem, we will first utilize the test
points for the I12S communication between

the MCU and the INMP441 microphone
the speaker. We would hope to have 95% as well as the I12S communication between
accuracy in retrieving data from the the MAX98357A audio amplifier. In order

to achieve audible volume, we will

and delivering understandable speech on

microphone and driving the speaker to be .
measure the speaker output using a

understood by a person at around 60 dB. decibel meter.

2. Define Test Procedures: We will record
test phrases with the microphone and
analyze the 12S waveforms using the test
points and a logic analyzer. We will
benchmark these results with our goal of
95% accuracy. We will also consider the
SNR of the audio amplifier with expected
values in the MAX98357A datasheet.

3. Define Presentation of Results: Captured
12S waveforms will be stored to verify
digital accuracy, while decibel readings
will confirm speaker output level. Audio
comparison metrics (e.g., signal-to-noise
ratio, transcription accuracy) will be
documented.

12

2.2.1 User I/0O Subsystem

We are going to have a LCD display that can let the user decide what languages to translate between and
some push buttons to be able to decide. We are also going to have a push button that will start listening on
the microphone, then stop listening so we can ensure that all of the data has been stored. In the case that
the translation lasts too long, we may add some feature to automatically stop the input of speech so we
make sure not to have too much data to translate. This UI subsystem will essentially make it so that this is

a usable product.

Subsystem Requirements Subsystem Verification

1. The main requirements of this device 1. Functional Verification: We will ensure
that we are able to send commands to the
interface to be able to move between
able to select across languages and see the different languages and verify that the
correct text appears on the display. We
also want to try to run some button tests
achieve a refresh rate on this LCD display that will check if the UI is updating
correctly depending on what we pressed.
of at least 30 Hz. We can do some isolated testing for this
device by connecting to a development
board and writing SPI commands to the
device.

2. To verify the refresh rate of this device we
can use an oscilloscope to check the
VSYNC signal and confirm that the frame
update time is less than 1/30 Hz.

3. Finally we can test the communication
interface by validating that the SPI
commands received at the device are the
ones that we intended to send from the
STM32.

would be to have a usable interface to be

selection on the screen. We hope to

2.2.1 Power Management Subsystem

This portable power management system will use a Samsung 25R 18650 2500mAh 20A rechargeable
Li-Ion battery to supply stable voltage to two power rails. The 5V power rail will be used for the
Raspberry Pi Compute Module (CM), while the 3.3V power rail will support the MCU, LCD, and audio

subsystem.

The system includes two LM317DCYR adjustable LDO regulators:

13

e One will step down the battery voltage to 5V.
e The other will step down the voltage to 3.3V.

Additionally, an 18650 battery holder will securely hold the battery and allow for easy replacement.

Subsystem Requirements:

Subsystem Verification

1. Voltage Stability:

o The 5V and 3.3V power rails
should maintain +0.1V tolerance
to their respective subsystems.

2. Current Supply:

o The 5V regulator should supply at
least 1.5A continuously to support
the worst-case current draw from
the Raspberry Pi CM4/5.

o The 3.3V regulator should supply
around 400mA to ensure the
functionality of the MCU, LCD,
and audio subsystem.

3. Thermal Management

o The LM317 regulators should not
exceed 85°C during normal
operation, and heat dissipation
methods should be implemented
to prevent overheating.

4. Protection Mechanisms:

o Overcurrent protection should be
in place to prevent system
damage if a component draws
excessive power (e.g., PCB
fuses).

1. Define Equipment: We will use a digital
multimeter (DMM) and oscilloscope will
measure voltage stability to ensure the 5V
and 3.3V power rails stay within £0.1V
tolerance.

2. Define Test Procedures: The 5V regulator
will be tested by applying a 1.5A load,
and the 3.3V regulator will be tested with
a 400mA load to verify continuous current
supply. We will verify the load and line
regulation of each output channel during
this process.

3. Define Presentation of Results: Voltage
readings will be recorded under different
loads to confirm stability. Current draw
measurements will ensure regulators meet
required supply levels.

2.3 Software Design

The basis of the software design will be made up of data processing across audio sensors,

microcontrollers, button and LCD user interfaces, and a high performance processing unit.

14

LCD Display

Button Interface Managed by
Clay Ul
Y [y
GPIO Signal for Metadata SPI Communication for
Reading Drawing User Interface
h 4 h 4 Left
Voltage
24-bit, Mono, PCM Data 24-bit, Mono, PCM Data >
Microph > STM32 > Amplifier Speaker

Right

Voltage

Raspberry Pi

Translate the following to (Insert Desired Compute Module 5

Language): --reverse_prompt (Insert Desired
Language)

v

24-bit, Mono, PCM Data +
Source Language Meta data

24-bit Mono, PCM
Data for Destination
Language

Source Langauge
Tokens

Destination Langauge

We can start the analysis of our software design in the STM32 where we have a notion of a state where it

will be operating in USER, AUDIO COLLECT, WAIT DATA, and AUDIO_ DRIVE states.

Wait for User FEEEEL s Wait for User
Start / Power Start to Depress
On Button Start Button
» AUDIO_COLLECT
User
End Signal Depresses
Start Button
) AUDIO_DRIVE |« WAIT_DATA
w;g?;;g T&M Data Ready Wait for Data
- Signal from Ready Signal
Amplifier and
then raise End Compute from Compute
Signal Module Module

Through these states we can ensure that we are managing a smooth pipeline where data can transition

between submodules with ease. Initially, we will wait for the user to send data to set the source and the

15

destination languages which will need to be managed through selection of data from the user interface.
Then when the source and destination languages have been decided, we will receive a signal from the user
to start collecting data from the microphone. Before we start collecting data we will send a signal to the
compute module to send the language meta data and initialize it to start listening for PCM data. At this
point we need to start buffering data into memory through DMA on the 12S interface. Due to memory
limitations of the STM32 we will offload this data when reaching a threshold of data capacity and we will
have a high speed SPI interface to be provided to the Raspberry Pi. Once the user has stopped pressing the
start button, we will send an acknowledgement signal to the Pi to show the end of data. The data will be
received by the compute module and it will start to transcribe the data by doing some preprocessing
(Sign-extending) and it will configure the whisper.cpp framework to expect the particular language and it
will pull the necessary model into memory. Once it finishes, we will get token data from the source
language and we can provide that to the translation model, llama.cpp. In this case we are going to be

doing the translation by prompting the model to translate text.

std::string model_path = "llama.cpp/models/mistral-7b.Q4_K_M.gguf";

std::string prompt = "-p Translate the following text to " + dest_langauge + ": ' " + escaped_text +

--reverse-prompt " + dest_langauge + ":";

This prompt will be able to query the llama model and extract the translated text through the reverse
prompt. Then we do some setup for the context of the model for the model, and we run inference. Then
we will receive the tokens for the translated language and we can use that to show debugging on the LCD
interface and we can deliver that to the TTS model, Piper. Then we can configure the model to the
particular language we are expecting and request that the generated PCM data should be mono and use
24-bit depth. Then the translated speech is on board the compute module and we can send over a signal to
the STM32 to expect receiving the data. At this point we are going to need to do more buffering by
receiving partial amounts of the data directly to memory and offloading that to the speaker. We are going

to need to develop a quick method that will reduce the delay as much as possible to ensure clear output.

16

2.4 Tolerance Analysis

2.4.1 Translation Accuracy

Our system aims to achieve full-sentence translation with an accuracy confidence level above 90%. The
entire processing pipeline must maintain data integrity to ensure reliable output. Additionally, the

translated output should be delivered at a decibel level that is interpretable by the end user.

To improve accuracy, the system will incorporate a filtering mechanism to reduce the impact of input
noise. This filtering will help enhance the quality of the translation and ensure that the final output

remains clear and intelligible.

We also expect to attempt to improve the accuracy of the translation by reducing the potential loss of data
within previous models in the pipeline by running some level of checking and requerying of the model.
We will also try to use the largest model we can on board the device that can fit to provide the most
amount of performance for the translation. This may require us doing some quantization of the models
that we have provided but many of the open source projects that we are working with have a tiny version

of their models that has been highly optimized.

2.4.2 Translation Latency

We aim to maintain a translation latency of 500 ms or less to enable real-time usability, especially for

users in remote locations. To achieve this, we will:

e Limit buffer sizes within the system to reduce processing delays.
e Optimize data processing on the compute module to minimize potential spikes in latency.

2.4.3 Power Management

To ensure efficient power management, we have included the worst-case current draw for the different

voltage domains.

Component (3.3V) Peak Current Draw (mA)
STM32F4071GH7 (MCU) 240.00
1CS-43434 (12S Microphone) 0.55
ST7789 (LCD Display) 90.00

17

Component (5V) Peak Current Draw (mA)
Raspberry Pi Compute Module 5 1600.00
MAX98357TAEWLA+T 2.40
CMS-16098A-SP (Speaker) 2.75
Total 1935.70

Table 1. Worst Case Current Draw

18

3 Cost and Schedule

3.1 Cost Analysis

The total cost for parts, as shown in Table 2, is $199.21 before shipping. Considering a 5% shipping cost,
which adds $9.96, and a 10% sales tax, which adds $19.21, the total cost will be $229.09.

Designator Package Quantity Designation/Value Price per Piece ($)

D403,D401,D404,D402 D DO-41 _SOD81 P10.16mm_Horizonta 4 1N4002 0.2
1

R303,R305,R306,R307,R301 R_0805 2012Metric_ Pad1.20x1.40mm_ |5 10k 0.1
HandSolder

J201 PinSocket 1x10 P2.54mm_Vertical 1 Conn_01x10_Female 0.56

C401,C402 C 0603 _1608Metric_ Pad1.08x0.95mm_ 2 0.1uF 0.49
HandSolder

SW301,SW303,SW302 SW_SPST B3S-1000 3 SW_Push 0.57

U401,U402 SOT-223-3_TabPin2 2 LM317 SOT-223 0.64

L.S201 CUI_CMS-16098A-SP 1 CMS-16098A-SP 2.41

C309 C 0603 _1608Metric_Pad1.08x0.95mm_ |1 4.Tu 0.49
HandSolder

C307,C303,C304,C305,C308 C 0603 1608Metric_ Pad1.08x0.95mm_ 5 100n 0.49
HandSolder

U301 UFBGA-201_10x10mm_Layout15x15 P |1 STM32F4071EHx 12.07
0.65mm

U201 21-0896B_ 9 MXM 1 MAX98357TAEWL+T 4.3

MK201 MIC ICS-43434 1 1CS-43434 3.12

C404,C403 C 0603 _1608Metric_ Pad1.08x0.95mm_ 2 10u 0.49
HandSolder

C301,C302 C_0603_1608Metric_Pad1.08x0.95mm_ 2 20p 0.49
HandSolder

R201,R202 R 0805 2012Metric Pad1.20x1.40mm_ 2 100k 0.1

HandSolder

19

C311,C306

R302,R304

C310

J301

Y301

R401

R403,R404

C406,C405

BT401

R402

CM5

CM5 Expansion Board

C_0603_1608Metric_Pad1.08x0.95mm_ 2

HandSolder

R 0805 _2012Metric Pad1.20x1.40mm_ 2

HandSolder

C_0603_1608Metric_Pad1.08x0.95mm __
HandSolder

PinSocket 2x03 P2.54mm_Vertical
Crystal HC49-U_Vertical

R _0805_2012Metric_Pad1.20x1.40mm_
HandSolder

R 0805 2012Metric_Pad1.20x1.40mm_ 2

HandSolder

C_0603_1608Metric_Pad1.08x0.95mm_ 2

HandSolder

BAT 1048P

R 0805 2012Metric Pad1.20x1.40mm_
HandSolder

Raspberry Pi Compute Module 5

GPIO Expansion board for CM5

lu 0.49
2k2 0.1
10n 0.49
Conn_02x03 Odd Even [0.56
Crystal 52

1k 0.1
330 0.1
1uF 0.49
1048P 10.77
542 0.1
CM5 80
CMS5 Expander 20
Total $199.21

Table 2. Itemized List of Components and Cost

3.2 Schedule

Week Task

March 3rd - March 10th -

Complete First-Round PCB Design — Josh
Solder Module Components for Breadboard
Demonstration — Josh

Initiate Software Integration for MCU and SCU
in Breadboard Demo — Lorenzo

March 10th - March 17th -

Finalize Second-Round PCB Design — Josh
Debug First-Round PCB Design — Entire Team

20

- Complete Software Integration for MCU and
SCU in Breadboard Demo — Lorenzo

- Optimize Hardware Integration as Needed —
Entire Team

March 24th - March 31st - Debug Second-Round PCB Design — Entire Team

- Complete Final Assembly — Josh
- Conduct Integration Testing — Lorenzo

March 31st - April 14th - Finalize PCB Design and Software — Entire Team

April 21st - Perform Mock Demonstration — Entire Team

April 28th - Execute Final Demonstration — Entire Team

May 5th - Prepare and Deliver Final Presentation — Entire
Team

Table 3. Schedule for Project Progression

3.3 Risk Analysis

The development and use of a portable translator introduces several potential risks that must be
considered to ensure its reliability and usability. One major risk is hardware failure, particularly within the
Main Processing Subsystem (MCU) or Secondary Processing Subsystem (Compute Module). If these
components malfunction, the device may be unable to process translations accurately, leading to
communication failures. Additionally, since the device operates without an internet connection, there is a
risk that the translation algorithms may not be as comprehensive or up-to-date as online alternatives,
potentially resulting in inaccurate translations. Another concern is audio subsystem reliability; if the
microphone or speaker malfunctions, users may struggle to input or hear translations, reducing the
device's effectiveness. Furthermore, since this device is meant to be portable, inefficient power
consumption could lead to short battery life, limiting the device's usability during travel. To mitigate these
risks, we will implement robust error-handling mechanisms, optimize power efficiency, and rigorously

test the device under various conditions.

21

4 Discussion of Ethics and Safety

4.1 Open Source Usage

Our project is based on various open source projects. We have adapted these projects to meet our specific
needs. We acknowledge our responsibility to properly attribute the original authors and comply with
licensing requirements. We will ensure that all intellectual property is properly cited and comply with

their licenses.

4.2 Battery Safety

To comply with industry standards, including IEEE 1725-2021 for rechargeable battery safety, we will

incorporate protection mechanisms against overcharging, overheating, and short circuiting.

4.3 Translation Misuse

Our project can be prone to the sensitive nature of translating sensitive language which could cause harm
to others. We intend to censor this language as much as possible to prevent from any possible misuse of
this device. We intend to develop a table of commonly used sensitive words and censor appropriately if

a particular word is found.

5 References

[1] Piper TTS, "Piper TTS Model," [Online]. Available: https:/github.com/rhasspy/piper.

[2] G. Gerganov, "whisper.cpp,” [Online]. Available: https:/github.com/ggerganov/whisper.cpp.

[3] Raspberry Pi Ltd., Raspberry Pi Compute Module 4/5 Datasheet, [Online]. Available:
https://datasheets.raspberrypi.com/cm4/cm4-datasheet.pdf.

[4] STMicroelectronics, STM32F407 Datasheet, [Online]. Available:
https://www.st.com/en/microcontrollers-microprocessors/stm32{407-417.html.

[5] TDK InvenSense, INMP441 Datasheet, [Online]. Available:
https://invensense.tdk.com/wp-content/uploads/2015/02/INMP441 .pdf.

22

https://github.com/rhasspy/piper
https://github.com/rhasspy/piper
https://github.com/ggerganov/whisper.cpp
https://datasheets.raspberrypi.com/cm4/cm4-datasheet.pdf
https://datasheets.raspberrypi.com/cm4/cm4-datasheet.pdf
https://www.st.com/en/microcontrollers-microprocessors/stm32f407-417.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f407-417.html
https://invensense.tdk.com/wp-content/uploads/2015/02/INMP441.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/INMP441.pdf

Maxim Integrated, MAX98357A Datasheet, [Online]. Available:
https://invensense.tdk.com/wp-content/uploads/2015/02/INMP441 .pdf.

Dayton Audio, Dayton Audio CE32A4-4 Datasheet, [Online]. Available:
https://www.daytonaudio.com/images/resources/285-103-dayton-audio-ce32a-4-spec-sheet.pdf.

Adafruit, ST7789 Datasheet, [Online]. Available:
https://cdn-learn.adafruit.com/downloads/pdf/2-0-inch-320-x-240-color-ips-tft-display.pdf.

G. Gerganov, "llama.cpp,” [Online]. Available: https://github.com/ggml-org/llama.cpp.

N. Barker, "clay," [Online]. Available:_https://github.com/nicbarker/clay.

23

https://invensense.tdk.com/wp-content/uploads/2015/02/INMP441.pdf
https://invensense.tdk.com/wp-content/uploads/2015/02/INMP441.pdf
https://www.daytonaudio.com/images/resources/285-103-dayton-audio-ce32a-4-spec-sheet.pdf
https://www.daytonaudio.com/images/resources/285-103-dayton-audio-ce32a-4-spec-sheet.pdf
https://cdn-learn.adafruit.com/downloads/pdf/2-0-inch-320-x-240-color-ips-tft-display.pdf
https://cdn-learn.adafruit.com/downloads/pdf/2-0-inch-320-x-240-color-ips-tft-display.pdf
https://github.com/rhasspy/piper
https://github.com/ggml-org/llama.cpp
https://github.com/rhasspy/piper

