
GymHive Tracker
ECE 445 Design Document - Spring 2025

Team 28
Aryan Shah (aryans5)

Kushal Chava (kchav5)

TA: Aishee Mondal
Professor: Arne Fliflet

Date: 03-06-2025

Table of Contents

1. Introduction
1.1 Problem
1.2 Solution
1.3 Visual Aid
1.4 High-Level Requirements

2. Design
2.1 Physical Design
2.2 Block Diagram
2.3 Functional Overview & Block Diagram Requirements
 2.3.1 Pressure Sensing Subsystem
 2.3.2 Microcontroller Subsystem
 2.3.3 RFID Subsystem
 2.3.4 Power Subsystem
2.4 Hardware Design
 2.4.1 Operating Voltage & Regulation
2.5 Software Design
 2.5.1 Pressure Sensing ADC Communication
 2.5.2 RFID SPI Communication
 2.5.3 AWS App Subsystem
2.6 Commercial Component Selection
 2.6.1 Physical Design
2.7 Tolerance Analysis
 2.7.1 Pressure Sensor Force
 2.7.2 Pressure Sensor Voltage Divider
2.8 Cost Analysis
2.9 Schedule
2.10 Risk Analysis

3. Ethics & Safety
4. References

1. Introduction

1.1 Problem

During peak gym times, equipment tends to get occupied quickly, which leads to
long wait times and disrupted workout routines. Many gym-goers rely on consistent
machines to track their progress weekly, but delays caused by occupied machines tend
to force them to wait or alter their regimens. This inefficiency wastes time and reduces
overall workout effectiveness for the athlete.

1.2 Solution

Our solution to this obstacle for gym-goers is the GymHive Tracker, a
sensor-based system that monitors gym equipment utilization and provides individuals
with real-time availability updates. We place our tracker at key contact points - such as
pads, seats, or standing areas - and our system detects when a machine is occupied.
To further optimize user satisfaction, we plan to implement a queue system where users
can “check in” via their i-Card (simulating key fobs that commercial gym establishments
typically give) on an RFID-enabled tag attached to each machine. Once checked in,
users input their planned sets and reps, enabling the system to estimate wait times for
those in line.

Rep and set tracking will be based on manual user input. Gym-goers can input
their desired sets and reps and modify them during their turns. To improve accuracy, our
system will use data analysis from user inputs to learn and adjust estimated set
durations over time (which tend to vary depending on the type of gym equipment). The
system will notify the next gym-goer in the queue when the current user finishes their
last set, minimizing wasted time. Each gym machine will have a dedicated PCB
containing an ESP32 microcontroller chip that transmits data remotely to a central AWS
server for processing. Users access this data through a mobile app by scanning their
I-Card onto the machine's RFID reader, allowing for a seamless process. By integrating
features such as real-time tracking, adaptive set duration estimates, and estimated wait
times, the GymHive Tracker will enhance workout efficiency and promote optimized gym
operations.

1.3 Visual Aid

 The diagram shown above provides a visual guide to our design. Starting from
the left, we have an example of a gym machine commonly found in commercial gyms.
This piece of gym equipment contains pads, bars, or other areas a user typically applies
pressure onto while utilizing that machine. Our custom PCB would be placed onto these
common contact points, and powered via USB connection into a nearby outlet. The
PCB will be able to detect machine occupancy and user identification via protocols,
which will be explained in detail later. This data would be continuously sent across
packets to an AWS server, which will be queried by an app we design.

 With this design, a gym member can approach any piece of gym equipment and
hover their i-Card over it. The PCB will then detect the user via data from the i-Card
sent wirelessly over RFID. The user can then see the equipment’s status as occupied
on the app. If the gym machine has already been occupied, however, the user can also
join a queue system to wait for their turn on the machine. This queue system relies on
manual user input of desired sets and reps, and will output an estimated wait time for
that machine. Since this is only estimated, the user will also receive a notification when
the occupied user is on their last set so they know their turn onto the machine is coming
up.

1.4 High-Level Requirements

1. Real-Time Equipment Monitoring: The system must accurately detect gym
equipment occupancy with at least 95% accuracy (+/- 5 lbs threshold for
acceptance), filtering out random weight fluctuations

2. Efficient Data Transmission and Display: The user must be able to transmit
PII (personally identifiable information) via RFID within 1 second of scanning an
i-Card. The microcontroller must process occupancy data and user check-ins
within 3 seconds and transmit updated availability to the central AWS server
within 1 second of an occupancy change.

3. Queue Management and User Notifications: The system must estimate wait
times with a maximum error margin of 20 +/- 3% error margin (set and rep times
tend to vary drastically across users for some equipment) by analyzing
user-inputted reps and sets.

2. Design

2.1 Physical Design

 To test our PCB, it would be unfeasible to be able to acquire and alter the state of
an actual piece of gym equipment. To simulate this scenario, we use a chair to act as
our machine. Our PCB pressure sensor will be placed on top of the chair and a foam
pad will be placed on top of it to act as the point of contact we would be using from our
machine. This would also provide some weight fluctuations from the foam pad. This is
important as it provides trivial weight onto the pressure sensor, which is mentioned in
our requirements and tolerance analysis as a key factor in our final design. The

pressure sensor will have to determine whether the weight is coming from an actual
individual as opposed to just the foam pad. The user will then apply pressure onto the
foam pad to simulate their occupancy of the machine. The user can also test RFID
functionality by hovering their i-Card over the foam pad on the chair. The user will use
their normal smartphone to test our app’s functionality.

2.2 Block Diagram

2.3 Functional Overview & Block Diagram Requirements

2.3.1 Pressure Sensing Subsystem

The Pressure Sensing Subsystem is the portion of our project responsible for detecting
whether the gym equipment is occupied. The subsystem primarily relies on the GHF-10
component, a force pressure sensor that measures weight from 0 - 110 lbs and can
interact with the ADC chip of our ESP32. Below are the operating characteristics found
in the datasheet of our GHF-10 [1]:

The GHF-10 relies on a voltage divider configuration, whose mathematical analysis
follows in our tolerance analysis later in this report. To summarize, however, we require
a measurable output of 50 lbs, which we specified as our minimum threshold for human
occupancy. Because the output voltage of the GHF-10 will not be linear, we will set the
output voltage at ~2.5V at 50lbs to ensure the reading is meaningful by the ADC pins.
Due to the 12-bit resolution (which corresponds to raw outputs from 0 - 4095) of the
ESP32 ADC pins, this 2.5V corresponds to approximately a raw output of 3102. The
software requirements of this ADC protocol and the necessary code to continuously
output user occupancy from the serial ports are explained below.

To summarize, our protocol will follow the following format: GHF-10 → Voltage Divider
→ ADC Pin → output from Arduino IDE → MQTT protocol. The software section will
explain the software portion controlling the ESP32 and MQTT protocol. To ensure
accuracy, we have created a requirements & verification table:

Requirement Verification

The GHF-10 system must detect a short
circuit within 10ms

● Power to the affected circuit is
cut-off and reduced to 0-0.3V
within 50ms

● Time of cut-off is measured and
entered into stored log files based
on ADC output values

● System must resume normal
operation within 5 seconds

● During testing, no permanent
damage to relevant subsystem

components after 10 trials

The GHF-10 force pressure sensor must
detect occupancy weight of 50lbs or more

● Must detect applied weight within
+/- 5lbs of accuracy

● Must maintain 95% accuracy in
distinguishing actual occupancy
from fluctuations in sensor
readings

● Output voltage to the ADC pin
must correlate to approximately 2.3
- 2.6 V to ensure reliable
transmission

The GHF-10 system interfaces properly
with the ADC pins of the ESP32

● Known weights of 10, 50, 100 lbs
(more can be added if time allows)
will be added onto the pressure
sensor

● Each weight range must properly
detect the correct occupancy
weight

● A reasonable output voltage within
+/- 0.3V must be applied and read
from the ADC pins of the ESP32

● Output voltage must not exceed
3.3V or output below 0.0V

The GHF-10 system will interface
properly within a simulated gym
environment

● Temperatures between 65, 70, and
75 degrees Fahrenheit will be
simulated to ensure reliable
operation across different gym
environments

● The foam pad will likely act as an
added insulator, which may
increase the temperature

● Since the GHF-10 system is
properly insulated, on the other
hand, any rain/snowy conditions
will not need to be tested

The GHF-10 system reliably updates to
the ESP32 and AWS Server accordingly ● The microcontroller must process

occupancy data (output from
Arduino IDE code) within 3
seconds

● Updated availability must transmit
to the central AWS server within 1

second of an occupancy change,
leading to a total response time
from the GHF-10 → ESP32 →
application of 4 seconds +/- 2
seconds

Software for interfacing between the
GHF-10 and ESP32 is accurate ● The system must correctly

determine the user occupancy
based on the 50lbs threshold and
signify a successful occupancy
status accordingly

● Forces below 50lbs will ensure that
occupancy is not detected

● The voltage output must be
correctly read according to 12-bit
resolution with an error margin of
+/- 0.3V

Above is an example interface on the connection between our GHF-10 and ESP32. As
we see, the GHF-10 peripheral is powered by the same 3.3V power supply of the
ESP32. The output of the GHF-10, V2, is connected to IO12, a viable ADC channel
input on the ESP32-WROOM-32D. Finally, we have R1 as 25kOhms in our voltage
divider setup (as measured in our tolerance analysis). We are using a connector on our
board to hook up the non-solderable GHF-10 component found on Digikey to, achieving
the same result as a solderable component.

2.3.2 Microcontroller Subsystem

To interface with our components (namely, process pressure sensor data, handle
communication via the RFID chip, and transmit data to the AWS server), we have
chosen the ESP32-WROOM-32D IC. As mentioned, the IC will interface with all of our
peripherals. It will be able to read in ADC data to process occupancy status from the
GHF-10. It will be able to read in RFID tags via the SPI protocol, thereby allowing the

app to identify the user. Finally, it will handle all data transmission to our AWS IoT Core
setup via the MQTT protocol. From the datasheet of the IC, we have the following
peripheral schematic:

As shown, the pins support a variety of protocols, including Wi-Fi, Bluetooth, SPI, and
I2C, making it ideal to handle connection with our GHF-10, MFRC522, and other power
peripherals. A sample schematic of our current ESP32 setup with the necessary
additions for power (bare minimum circuitry for operation) will be later shown in the
power subsystem. For now, we have detailed requirements & verifications in the
following table:

Requirements Verification

● The ESP32 must require proper
voltage regulation

● Must receive a stable 3.3V power
supply, stepped down from a 5V
USB source by the AMS1117-3.3V

● Voltage must remain within the
ESP32’s safe operation range,
which is from 3.0 - 3.6V. Since
none of our peripherals will exceed
3.3V, we will put this value at 3.4V
to be safe

● Output of voltage regulator must
be confirmed with a multimeter to
be 3.3 +/- 0.1V to be safe

● Voltage fluctuations under load will
be measured using an oscilloscope

● High computation loads will be
placed to ensure voltage remains
stable

● In the event of a short circuit,
power must be cut off immediately
to 0.0V to prevent damage to other
components

● The ESP32 must be able to
communicate securely with the
AWS server

● The ESP32 must connect and
maintain a stable connection to a
designated Wi-Fi network, and
print statements using its built-in
WiFi.status() function will be tested
in a loop of 500ms intervals

● RSSI signal strength and packet
loss data will be monitored

● In the event of a network disruption
(which can be simulated by
manually shutting on/off a personal
hotspot), will be tested 5 times,
and each time, automatic
reconnection must be met

● Using AWS built-in services,
compare sent and received hash
values for data integrity

● Measure round-trip latency using
timestamps to ensure 1 second
communication

● The ESP32 must interact with the
GHF-10 using ADC

● Measure voltage output across
varying levels of 0 to 110 lbs, and
ensure that output is within 0 -
3.3V

● To validate, there will be no
tolerance accepted above 3.3V for
higher lbs of force. As long as we
have ~2.5 V of output at 50 lbs,
any tolerance below 3.3V for 110
lbs of max force is fine (as we just
detect occupancy, not exact
weight)

● Voltage readings using a
multimeter should match the
ESP32’s analogRead() within +/-

0.3V

● The ESP32 must correctly
exchange data with the MFRC522
via SPI protocol

● The ESP32 should accurately read
RFID tags within 25 +/- 10 mm
(rated for a max of 50mm).

● Testing RFID tags at different
distances from 5mm, 10mm,
25mm, 50mm, and a success rate
of ~25 scans at each interval

● Attempt a failed read with an
unsupported key fob type (for
example, my apartment key fob) at
5 times, and must re-attempt
scanning each time

2.3.3 RFID Subsystem

The RFID subsystem is responsible for allowing a user to hover over the gym
equipment and being able to “check in” to the machine. The MFRC522 IC is a popular
chip used alongside the ESP32 interfaced with the SPI protocol to provide RFID
capability. Many commercial gyms give their members key fobs to check in, making it
ideal if this concept were brought to market. Since we do not have access to one of
these key fobs, however, we will use an i-Card that has RFID capability. Below is both
the standard application scheme [3] and the schematic we have designed for the
MFRC522 to interface with the ESP32:

As shown, we have hooked up the MFRC522 using the SPI interface. The NRSTPD
chip allows for reset requests to the chip, and the IRQ allows an interrupt request

(signalling the microcontroller each time an event occurs). The datasheet also includes
an antenna circuit (see pins TX1 and TX2), which is responsible for transmitting and
receiving the RF signals that communicate with the RFID tags. Finally, a crystal
oscillator with a 27.12MHz frequency using the ECS-271.2-10-37-CKM-TR is
responsible for providing the clock signal for the MFRC522. This 27.12MHz frequency is
a reference that generates the 13.56MHz carrier frequency used in the RFID
communication. The clock signal precisely times all of the internal operations and
processing of the MFRC522 with the ESP32.

Requirements Verification

● Ensure that the MFRC522 is
correctly supplied with power

● Ensure power supply is off at the
beginning

● Ensure that DVDD, AVDD, TVDD,
PVDD pins are physically
connected to the positive voltage
rail of the power supply

● Verify that DVSS, AVSS, PVSS,
TVSS are physically connected to
a ground rail

● Using a multimeter, check for short
circuits between the power rails
and ground (there should be 0
shorts)

● Turn on power supply and set it to
the correct voltage for the
MFRC522. Measure voltage at
DVDD, AVDD, TVDD, PVDD.
Ensure voltage is within 2.5V -
3.3V range for these positive rails.
For the ground pins, they should
measure 0V.

● The crystal oscillator must be
correctly connected and oscillating

● Ensure power supply off
● Verify that the 27.12MHz crystal is

physically connected to OSCIN
and OSCOUT. Ensure capacitors
are grounded

● Use an oscilloscope to probe the
OSCIN and OSCOUT pins

● Verify that a stable oscillating
signal at 27.12 +/- 0.5 MHz is
present. This can be measured

using the frequency of the signal.

● The antenna circuit must be
properly connected in the PCB

● Ensure power supply off
● Verify all relevant components are

physically connected to the pins in
the correct configuration

● If available at the ECE 445, use a
network analyzer to measure
impedance and resonant
frequency of the antenna circuit

● If not available, connect the
MFRC522 to the microcontroller,
and attempt to read an RFID tag. If
the tag can be read, the antenna
circuit is functioning as intended.
Repeat this 5 times in a row with a
100% success rate.

2.3.4 Power Subsystem

Our power subsystem is primarily responsible for supplying power to all peripherals on
the board. We utilize the TYPE-C-31-M-12 connector for integrating a standard USB-C
power cord that provides continuous 5V power to the board. 3 primary peripherals need
to be powered: the ESP32 (which runs from 0-3.3V), the MFRC522 (also runs 0-3.3V),
and the GHF-10. The GHF-10’s datasheet specifies that it does not run at a specified
voltage, rather an output V2 that increases with added force. As mentioned in our
tolerance analysis, we design a voltage divider configuration such that the GHF-10 also
runs between 0-3.3V. As a result of this, we had to integrate the AMS1117-3V3 voltage
regulator IC to step down the power to the ESP32 to 5V. The rest of the peripherals will
then run off the ESP32’s VDD pin which outputs 3.3V.

The image shown above is the schematic we have designed for our power subsystem,
along with the necessary connections made to the ESP32. As per our professor’s
recommendation, we switched our choice from a 9V battery to a 5V USB-C connector
because gym environments typically have plenty of outlets near machines and we had
to deal with the power constraints of our PCB components.

The AMS1117-3.3 is a linear voltage regulator, working to dissipate extra voltage as
heat. Paying close attention, we have the Vin as 5V, Vout as 3.3V, and Iout is the
current drawn by the load connected to our 3.3V output. The core principle behind linear
regulators lies behind Ohm’s Law and power dissipation. Our regulator creates a
voltage drop of 1.7V (5V - 3.3V). The power dissipated by the regulator must then be
1.7V * Iout. Since this power is dissipated as heat, linear regulators tend to physically
warm up, however our difference between Vout and Vin is stable enough that the

AMS1117-3.3 can adjust resistance to maintain the stable 3.3V output without
overheating.

Requirements Verification

● The AMS1117-3.3 regulator shall
provide a stable 3.3V +/- 0.1V
output to the ESP32 at an input of
5V +/- 0.25V from the USB-C

● Apply a voltage of 5V +/- 0.25V via
the USB-C connector

● Measure the voltage at the
VCC_3V3 pin of the AMS1117-3.3
using a multimeter

● Using a multimeter and variable
electronic load, increase load to
500mA and verify output voltage is
stable within 3.2V and 3.4V

● The output voltage at the ESP32’s
VDD pin must be 3.3V +/- 0.1V

● Using a multimeter, ensure that the
output voltage at the VDD pin of
the ESP32 (ESP32_3V3) must be
within the specified range

● Ensure that measured voltage is
within 3.2V to 3.4V

● The power subsystem must be
able to withstand continuous input
of 5V without damage

● Connect USB-C power source to
supply continuous 5V

● Under max load at 500mA, monitor
all components to ensure no
overheating (namely, the linear
regulator)

● Ensure no components exceed 80
degrees Celsius under operation

2.4 Hardware Design
2.4.1 Operating Voltage & Regulation
Our goal is to utilize the microcontroller to provide stable 0 - 3.3 V output to the
MFRC522 RFID chip and the GHF-10 pressure sensor. Found in the datasheet [3], we

have the following operating conditions for the ESP32:

These values are in line with the supply voltage conditions listed in the MFRC522’s
datasheet [3]:

Finally, as mentioned, the GHF-10 pressure sensor does not work on a specified
voltage, rather a voltage divider configuration that we will set up to work within 0 - 3.3V.
With this in mind, it is very ideal for us to power both the pressure sensor as well as the
MFRC522 RFID chip at these output values. The MFRC522 typically will run at around
3.3V and the GHF-10’s output voltage should increase as force is applied.

2.5 Software Design
The following two subsections regarding the pressure sensor’s ADC communication and the
RFID’s SPI communication rely on interface protocols that are accessible through the ESP32.
This requires a need to set up and program the microcontroller. Luckily, the UIUC ECE 445
Course Page [13] has a section that details how to program the ESP32 using a USB-to-UART
Bridge. This follows 3.3V logic, which is fine since our project design supports 3.3V power rails.
Additionally, the programming will be done using an Arduino IDE in C/C++ code.

2.5.1 Pressure Sensing ADC Communication

A key component of our PCB Controller is the ability to detect occupancy on a gym
machine, which is handled by our GHF-10 pressure sensor. The GHF-10 pressure
sensor relies on a voltage divider configuration to produce an output V2 which directly
increases as added pressure is placed onto the component. The following diagram
depicts the non-linear relationship between added force and the output V2 based on
resistor values (calculated in our tolerance analysis):

From our tolerance analysis described below, we estimate a ~2.5V output at 50 lbs, our
minimum threshold for detecting human occupancy. As mentioned in the ECE 445 Wiki,
the ESP32 utilizes an Arduino IDE, likely with C/C++ development. The
ESP32-Wroom-32D supports a 12-bit ADC (values from 0-4095). If we output 2.5V, we
convert this using the following formula: (2.5V / 3.3V) * 4095 to get ~3102 as our ADC
value output. This is the raw value we want from the ADC pin to detect successful
occupancy. The following is sample code written, that will be modified as necessary
during testing:

2.5.2 RFID SPI Communication
One of the communication protocols supported by both the MFRC522 and the ESP32
includes the SPI protocol. Our reason for choosing SPI over I2C is that it has much

faster data transfer rates, is a full-duplex protocol, and has a dedicated chip select line.
The following image from the MFRC522 datasheet [3] details the interface we need to
set up by the SPI standard:

By analyzing the byte orders detailed in the datasheet, this means that when writing to a
register of the ESP32, we must construct a first byte in which bit 7 is 0 and bits 6-1
contain the register address. After this, we can transmit the i-Card user ID data. If we
need to read from the register, we must construct a byte where bit 7 is 1, and bits 6-1

contain the register address. We must then clock out the appropriate number of bytes,
and the MFRC522 will send the requested data back ot the ESP32 using the MISO line.

The following image details sample pseudocode that will need to be written to program
onto the ESP32 to interface across the SPI protocol:

2.5.3 AWS App Subsystem
The final software component of our project design involves the setup of an AWS app
using the AWS IoT Core that utilizes the MQTT protocol for the ESP32. Taken from a
sample project by Zoye Bella published in The Engineering Projects [12], this figure
describes a basic overview of the MQTT protocol interface with the ESP32:

The MQTT (Message Queuing Telemetry Transport) is a messaging protocol that is
designed for low-bandwidth applications. Due to the low resource-intensive nature
necessary to simulate our project, it is a perfect way to interface with our AWS IoT Core.
The protocol works by following a client-server model: The MQTT serves as the central
server to manage all messages. The Client, which is our ESP32, will be the device that
publishes these messages (ADC readings, RFID ID detection), to the broker.

Our overall communication flow will be as follows:
ESP32 → AWS IoT Core → AWS Services → Smartphone App

We begin by setting up the AWS IoT Core using Amazon’s built-in AWS IoT Core
Console. Since our program requires minimal resources and architecture, it can be
designed within AWS’ free services. Once this is established, we can write another
program on the ESP32 to connect to the AWS IoT Core via MQTT (as the
ESP32-Wroom-32D supports Wi-Fi). The sensor and ID data will likely be converted into
a simple JSON format and published onto the MQTT, which supports secure connection
to prevent user data from being breached. AWS Services (likely AWS Lambda) would
be used to process and store the data. Using the REST API protocol, we will create an
API gateway to connect to the AWS Lambda, which allows for data fetching from our
mobile app. The mobile app will be a basic functional app, likely in React (a JavaScript
Library).

2.6 Commercial Component Selection
2.6.1 Physical Design

The physical design of our simulated gym environment is simple enough, such that a
majority of components will not be necessary nor will take away a majority of our
budget. As seen in the physical design diagram, major components include a PCB

board, a foam pad, as well as a chair. The cost of our custom PCB has already been
referenced in our cost analysis, and will not require any additional commercial
components to purchase. A multi-purpose foam pad will cost ~$9.98 from Home Depot
in Champaign, IL. The i-Card as well as a smartphone needed to interact with our
application will both be free as we both own them. Finally, as mentioned in our software
design section, utilizing the AWS IoT Core service for our purposes does not require
enough usage or architecture to go beyond the free version of the service.

2.7 Tolerance Analysis
2.7.1 Pressure Sensor Force

When utilizing a pressure sensing module embedded within common points of contact
in a gym machine, it is critical to be able to determine whether the equipment is truly
being occupied. It is therefore important to consider the accuracy and reliability of the
GHF-10 to ensure that it does not pick up random weight fluctuations and throw a false
positive. As listed in our high-level requirements, our accuracy threshold is +/- 5lbs,
leaving us little room for error when detecting miscellaneous environmental factors or
other movement patterns that may throw our sensor off.

In response to this, we analyze the feasibility of this component, by evaluating the
sensor response to applied weight and movement fluctuations using mathematical
analysis:

We model the force applied on the sensor as:

 𝐹
𝑡𝑜𝑡𝑎𝑙

= 𝐹
𝑢𝑠𝑒𝑟

+ 𝐹
𝑚𝑎𝑐ℎ𝑖𝑛𝑒

+ 𝐹
𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛

where:

● is the force exerted by the gym-goer, 𝐹
𝑢𝑠𝑒𝑟

● accounts for the resting weight of the equipment/padding onto the sensor 𝐹
𝑚𝑎𝑐ℎ𝑖𝑛𝑒

that may affect sensor readings,
● represents noise due to minor weight shifts, mechanical vibrations, 𝐹

𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛

and temporary pressure variations.

The pressure sensor must differentiate between actual occupancy and these
fluctuations. The sensor outputs a voltage proportional to the applied force:

 𝑉
𝑜𝑢𝑡

= 𝑘𝐹
𝑡𝑜𝑡𝑎𝑙

where is a sensitivity constant specific to the sensor. 𝑘

Given the specifications of the GHF-10 pressure sensor, the output readings could
fluctuate with repeatability and hysteresis of ±2%, which translates to a weight
fluctuation threshold of approximately 2-3 lbs. So we need to ensure a ±5 lbs accuracy
requirement so that 𝐹

𝑓𝑙𝑢𝑐𝑡𝑢𝑎𝑡𝑖𝑜𝑛| | < 5

We implement signal filtering techniques such as:

● Low-pass filtering to smooth transient noise. [5]
● Kalman filtering to predict and correct erratic fluctuations. [7]

2.7.2 Pressure Sensor Voltage Divider

The figure above is an excerpt of the datasheet from the GHF-10 [1], detailing the circuit
configuration necessary for the force sensor to work properly. As we know, a voltage
divider is a circuit that produces the output voltage (V2), a fraction of the input voltage
(+Vr). We need to set correct values for the resistors to keep our output voltage in line
with the ADC pins of the ESP32 as well as the input voltage in line with our 3.3V power.
As we can see from the diagram, as force is applied to the sensor, our resistance Rs
decreases. If Rs decreases, the denominator of our fraction decreases and our overall
value of V2 increases. This means that we are looking for the rate of change of the
output voltage V2 connected to the ADC pin of our ESP32 microcontroller. We pay
close attention to our non-linear relationship between force and +Vr, which is key to
ensure we are interpreting our data properly.

We begin by establishing our given information. Our threshold for weight input should
be above 50+ lbs, which accounts for the fluctuating weight threshold, pressure applied
by the gym pad, and a realistic human gym member’s minimum bodyweight. We want to

supply the ESP32’s ADC pin within a reasonable range of 0-3.3V, being careful not to
exceed those voltage requirements. The GHF-10 is rated for a maximum of 110 lbs, in
which case the curve will flatten to protect against any unreasonably excessive voltage
output.

With this in mind, let’s assume we desire ~2.5V output at 50 lbs, enough to differentiate
a user’s occupancy. At +Vr = 3.3V and choosing Rs = 20kOhms (within the 1 kOhm to
100 kOhms limit set by the datasheet), we get:
5V = 3.3V * R1 / (20000 + R1)
5 * (20000 + R1) = 3.3 * R1
5 * 20000 + 2.5 * R1 = 3.3 * R1
R1 = 50000 / 0.8 = 25000 = 25kOhms.
This means that we can set our R1 to equal 25kOhms to get around 2.5V at 50lbs of
force.

2.8 Cost Analysis

The total cost for the PCB’s parts comes out to $33.55. Adding a 5% rough guideline as
shipping cost and a 9% sales tax for Champaign County, IL, our total comes out to $38.40. At a
budget of $50/member and 2 members at $100, this leaves plenty of room for more budget
dedicated towards getting spare components as well as any other expenses that may come up.
To estimate this value, let us use a moderate budget of 25% of our cost that requires
re-ordering, which brings our total from $38.40 to $48. According to the admissions department
at ECE Illinois, the average starting salary for an electrical engineer alumn is $87,769, which
corresponds to ~$40/hr. A $40/hr salary * 2.5 (overhead costs for graduate work) * 150 hours is
around $15,000 per team member. For 2 team members, this comes out to $30,000 total.
Adding this to our parts total of $48, we get a total cost of ~$30,048.

Description Manufacturer Part # Quantity Cost (Total)

ESP32
Microcontroller

Espressif
Systems

ESP32-WROOM
-32D

1 Free (from 445
Lab)

RC522 RFID NXP USA Inc. MFRC52202HN
1,115

1 $7.91

Voltage
Regulator

EVVO AMS1117-3.3 1 $0.63

Crystal
Oscillator

ECS ECS-271-2-10-3
7-CKW-TR

1 $0.40

Schottky Diode Diodes 1N5819HW-7-F 1 $0.25

Incorporated

USB-C Korean Hroparts
Elec

TYPE-C-31-M-1
2

1 $0.87

0.1 uF 0805
Capacitor

YAGEO CC0805KRX7R
9BB104

3 $0.24

10 uF 0805
Capacitor

Murata
Electronics

GRM21BR61C1
06KE15K

4 $0.60

15 pF 0805
Capacitor

KYOCERA AVX 600F150JT250X
T4K

1 $1.38

22 pF 0805
Capacitor

KYOCERA AVX 600F220FT250X
T

2 $4.68

1 nF 0805
Capacitor

KEMET C0805C102KDR
ACAUTO

1 $0.46

180 pF 0805
Capacitor

KYOCERA AVX 600F181FT250X
T

2 $6.82

680 pF 0805
Capacitor

YAGEO CC0805KRX7R
9BB681

2 $0.20

470 nH 0805
Inductor

Samsung
Electro-Mechani
cs

CIGT201210UH
R47MNE

2 $0.30

1.6 uH 0805
Inductor

Murata
Electronics

DFE201210U-1
R5M=P2

1 $0.25

10kOhms 0805
Resistor

Susumu RR1220P-103-D 1 $0.10

5kOhms 0805
Resistor

Vishay Dale
Thin Film

PNM0805E5001
BST5

3 $6.54

1kOhms 0805
Resistor

YAGEO RC0805FR-071
KL

1 $0.10

1.5kOhms 0805
Resistor

Susumu RG2012P-152-B
-T5

1 $0.10

10 Ohms 0805
Resistor

YAGEO RC0805FR-071
0RL

2 $0.22

2.9 Schedule

The following is a schedule that is split up based on weeks and rough deadlines of assignments
due during the week or shortly following the week. This is to ensure that there is proper division
of labor and that assignments are completed, especially with proper advance to ensure enough
time is left over for any debugging. Note that because we are a 2-person team, each individual
is expected to help out on every assignment if necessary. The role of the “Primary Contributor”
simply means that the individual is responsible for the completion of the assignment. We
designed our team contract agreement and schedule this way because it is the method our
team has worked best since the first few weeks of the course. Some tasks may overlap across
dates due to assignment deadlines being later in the week.

Week Assignment Primary Contributor

Week of Mar. 3rd - Mar. 10th Design Document
Teamwork Evaluation
Breadboard Demo
PCB Round 2 Order
Component Ordering

Aryan
Aryan and Kushal
Kushal
Aryan
Aryan and Kushal

Week of Mar. 10th - Mar. 17th Breadboard Demo
PCB Round 2 Order
Finalize Component Order

Kushal
Aryan
Aryan and Kushal

Week of Mar. 24th - Mar. 31 PCB Round 2 Soldering
PCB Round 2 Debugging
PCB Revisions for Round 3
Component Re-orders

Kushal
Aryan
Aryan
Aryan and Kushal

Week of Mar. 31 - Apr. 7 PCB Round 3 Order
Individual Progress Reports
Component Re-orders
PCB Round 2 Debugging
Software Setup

Aryan
Aryan and Kushal
Aryan and Kushal
Aryan
Kushal

Week of Apr. 14 - Apr. 21 PCB Round 3 Debugging
Software Setup
Finalizing Design and Test
Team Contract Assessment

Aryan
Kushal
Aryan and Kushal
Aryan and Kushal

Week of Apr. 21 - Apr. 28 Mock Demo
Prep Final Demo
Prep Mock Presentation

Aryan and Kushal
Aryan and Kushal
Aryan and Kushal

Week of Apr. 28 - May 5 Final Demo
Mock Presentation
Final Paper

Aryan and Kushal
Aryan and Kushal
Aryan

Lab Checkout
Lab Notebook

Aryan and Kushal
Aryan and Kushal

2.10 Risk Analysis

 The nature of our design presents a low-risk to the user, both for our intended
application as well as our simulated scenario for testing. When it comes to our physical
simulation, we need to first establish proper safety with our PCB. We need to ensure
safe power delivery to all our components and ensure all our peripherals stay within
their power ratings. This involves rigorous testing in both our breadboard design as well
as final PCB design with varying levels of power. Should any of our sensors fail or
overheat, the testing must be concluded immediately and power should be cut off. Aside
from this, there is little risk to the user. The foam pad that will be utilized will adequately
protect the user from any damage to body parts. The gym user will simply be able to
interact with the “gym equipment” as they normally would in any other scenario. If other
situations arise during testing that pose a threat to any user of our device, we will be
sure to mitigate these errors as best we can.

3. Ethics & Safety

● User Data Privacy and Security

According to the IEEE Code of Ethics Section 1.1 [10], the intent of engineers
should be to “hold paramount the safety, health, and welfare of the public”. By
collecting and transmitting user data between the ESP32 microcontroller, AWS
server, and mobile app, it is vital to encrypt this information using standard
AES-256 encryption. Our goal will be to store as little personally identifiable
information as needed, all of which will be securely encrypted.

● Physical Safety of Equipment and Users

According to the ACM Code 1.2 [11], the goal of an engineer should be to “avoid
harm… negative consequences, especially when those consequences are
significant and unjust… include unjustified physical or mental injury, unjustified
destruction…”. With this in mind, we understand how the custom PCB composed
of pressure sensors and IMU modules must not only interfere with the intended

use of the gym equipment but also not pose any risk to the gym-goers. We will
ensure that each electrical component is securely enclosed to mitigate exposure
to electrical or flammable hazards. Our PCB operates at a low voltage from 0 -
3.3V, which already reduces risks of any electric shock or fire hazards. This will
severely minimize any risk of harm to either the gym goers themselves, the
equipment, or the gym establishment.

● Support each other in maintaining Ethical Standards

According to the IEEE Code of Ethics 7.8.III.10 [10], we must support our team
members in following this code of ethics and reporting violations without fear of
retaliation. This will ensure transparency and accountability. We will include this
in our team contract to ensure we all agree on it.

4. References
[1] Gentech International Ltd., GHF10-500N Force Sensor Datasheet, Accessed: Feb. 13, 2025.
[Online]. Available:
https://www.uneotech.com/uploads/product_download/tw/GHF10-500N%20ENG.pdf

[2] TDK InvenSense, ICM-20948 Datasheet, Ver. 1.3, Jun. 2016. Accessed: Feb. 13, 2025.
[Online]. Available:
https://invensense.tdk.com/wp-content/uploads/2016/06/DS-000189-ICM-20948-v1.3.pdf

[3] NXP Semiconductors, MFRC522 Standard Communication Datasheet, Accessed: Feb. 13,
2025. [Online]. Available: https://www.handsontec.com/dataspecs/RC522.pdf

[4] Espressif Systems, ESP32 Series Datasheet, Accessed: Feb. 13, 2025. [Online]. Available:
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf

[5] Electronics Tutorials, Active Low Pass Filter, Accessed: Feb. 13, 2025. [Online]. Available:
https://www.electronics-tutorials.ws/filter/filter_2.html

[6] Amazon Web Services, Building an AWS IoT Core Device Using AWS Serverless and an
ESP32, Accessed: Feb. 13, 2025. [Online]. Available:
https://aws.amazon.com/blogs/compute/building-an-aws-iot-core-device-using-aws-serverless-a
nd-an-esp32/

[7] T. Lacey, Kalman Filter Tutorial. Available:
https://web.mit.edu/kirtley/kirtley/binlustuff/literature/control/Kalman%20filter.pdf. Accessed: Feb.
13, 2025.

https://www.uneotech.com/uploads/product_download/tw/GHF10-500N%20ENG.pdf
https://www.uneotech.com/uploads/product_download/tw/GHF10-500N%20ENG.pdf
https://invensense.tdk.com/wp-content/uploads/2016/06/DS-000189-ICM-20948-v1.3.pdf
https://invensense.tdk.com/wp-content/uploads/2016/06/DS-000189-ICM-20948-v1.3.pdf
https://www.handsontec.com/dataspecs/RC522.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.electronics-tutorials.ws/filter/filter_2.html
https://www.electronics-tutorials.ws/filter/filter_2.html
https://aws.amazon.com/blogs/compute/building-an-aws-iot-core-device-using-aws-serverless-and-an-esp32/
https://aws.amazon.com/blogs/compute/building-an-aws-iot-core-device-using-aws-serverless-and-an-esp32/
https://aws.amazon.com/blogs/compute/building-an-aws-iot-core-device-using-aws-serverless-and-an-esp32/
https://web.mit.edu/kirtley/kirtley/binlustuff/literature/control/Kalman%20filter.pdf
https://web.mit.edu/kirtley/kirtley/binlustuff/literature/control/Kalman%20filter.pdf

[8] ElectronicWings, RFID-RC522 Interfacing with ESP32, Accessed: Feb. 13, 2025. [Online].
Available: https://www.electronicwings.com/esp32/rfid-rc522-interfacing-with-esp32

[9] SparkFun, SparkFun 9DOF IMU ICM-20948 Breakout Hookup Guide, Accessed: Feb. 13,
2025. [Online]. Available:
https://learn.sparkfun.com/tutorials/sparkfun-9dof-imu-icm-20948-breakout-hookup-guide/all

[10] IEEE, “IEEE Code of Ethics,” IEEE, 2020. [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: 13-Feb-2025].

[11] ACM, “ACM Code of Ethics and Professional Conduct,” ACM, 2018. [Online]. Available:
https://www.acm.org/code-of-ethics. [Accessed: 13-Feb-2025].

[12] Z. Bella, "ESP32 MQTT – Publish and Subscribe with Arduino IDE," The Engineering
Projects, Nov. 2021. [Online]. Available:
https://www.theengineeringprojects.com/2021/11/esp32-mqtt.html. [Accessed: 04-Mar-2025].

[13] "ESP32 Example," ECE 445 Wiki, Grainger College of Engineering, University of Illinois
Urbana-Champaign. Accessed: Mar. 5, 2025. [Online]. Available:
https://courses.grainger.illinois.edu/ece445/wiki/#/esp32_example/index

https://www.electronicwings.com/esp32/rfid-rc522-interfacing-with-esp32
https://learn.sparkfun.com/tutorials/sparkfun-9dof-imu-icm-20948-breakout-hookup-guide/all
https://learn.sparkfun.com/tutorials/sparkfun-9dof-imu-icm-20948-breakout-hookup-guide/all
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.acm.org/code-of-ethics
https://www.acm.org/code-of-ethics
https://www.theengineeringprojects.com/2021/11/esp32-mqtt.html
https://www.theengineeringprojects.com/2021/11/esp32-mqtt.html
https://courses.grainger.illinois.edu/ece445/wiki/#/esp32_example/index
https://courses.grainger.illinois.edu/ece445/wiki/#/esp32_example/index

	
	

	
	
	
	1. Introduction
	1.1 Problem
	1.2 Solution
	
	
	
	1.3 Visual Aid
	The diagram shown above provides a visual guide to our design. Starting from the left, we have an example of a gym machine commonly found in commercial gyms. This piece of gym equipment contains pads, bars, or other areas a user typically applies pressure onto while utilizing that machine. Our custom PCB would be placed onto these common contact points, and powered via USB connection into a nearby outlet. The PCB will be able to detect machine occupancy and user identification via protocols, which will be explained in detail later. This data would be continuously sent across packets to an AWS server, which will be queried by an app we design.
	
	
	1.4 High-Level Requirements
	1.Real-Time Equipment Monitoring: The system must accurately detect gym equipment occupancy with at least 95% accuracy (+/- 5 lbs threshold for acceptance), filtering out random weight fluctuations
	2.Efficient Data Transmission and Display: The user must be able to transmit PII (personally identifiable information) via RFID within 1 second of scanning an i-Card. The microcontroller must process occupancy data and user check-ins within 3 seconds and transmit updated availability to the central AWS server within 1 second of an occupancy change.
	3.Queue Management and User Notifications: The system must estimate wait times with a maximum error margin of 20 +/- 3% error margin (set and rep times tend to vary drastically across users for some equipment) by analyzing user-inputted reps and sets.

	
	2. Design
	2.1 Physical Design
	2.2 Block Diagram
	
	2.3 Functional Overview & Block Diagram Requirements
	2.3.1 Pressure Sensing Subsystem
	●The microcontroller must process occupancy data (output from Arduino IDE code) within 3 seconds
	●Updated availability must transmit to the central AWS server within 1 second of an occupancy change, leading to a total response time from the GHF-10 → ESP32 → application of 4 seconds +/- 2 seconds
	●The system must correctly determine the user occupancy based on the 50lbs threshold and signify a successful occupancy status accordingly
	●Forces below 50lbs will ensure that occupancy is not detected
	●The voltage output must be correctly read according to 12-bit resolution with an error margin of +/- 0.3V
	2.3.2 Microcontroller Subsystem
	2.3.3 RFID Subsystem
	2.3.4 Power Subsystem

	2.4 Hardware Design
	2.5 Software Design
	2.6 Commercial Component Selection
	2.7 Tolerance Analysis
	2.8 Cost Analysis
	
	2.9 Schedule
	2.10 Risk Analysis

	
	3. Ethics & Safety

