
Keyboard DJ Set

ECE 445 Design Document - Fall 2024

Project #45

Manas Gandhi (manaspg2)

Jack Prokop (jprokop2)

Milind Sagaram (milinds2)

TA: Sainath Barbhai

I. Introduction...3

I.I Problem..3

I.II Solution.. 4

I.III Visual Aid... 4

I.IV High-Level Requirements... 5

II. Design... 6

II.I Block Diagram...6

II.II Physical Design.. 6

II.III Subsystem 1: Microcontroller...6

II.IV Subsystem 2: Buttons...7

II.V Subsystem 3: Volume and Tempo Control.. 8

II.VI Subsystem 4: Power... 9

II.VII Subsystem 5: Software... 9

II.VIII Subsystem 6: Laptop...10

III. Requirements & Verification.. 11

II.I Tolerance Analysis...11

IV. Cost and Schedule...11

IV.I Cost Analysis...11

IV.II Schedule...12

V. Ethics and Safety..13

V.I IEEE Code of Ethics..13

V.II Safety... 13

VI. References...15

I. Introduction

I.I Problem

DJ boards have become the “hot topic” of today’s music industry, with the tool giving way to

many of the greatest artists of our generation, including John Summit and Twinsick. However,

despite their popularity, traditional DJ boards pose significant barriers to entry for aspiring DJs.

Three key issues stand out with these boards: the lack of portability, complexity for beginners,

and high costs.

1. Lack of Portability: DJ boards are usually bulky, heavy, and cumbersome to transport.

In fact, DJs typically need full suitcases to be able to carry them around. This poses

difficulties for DJs who wish to practice in outdoor settings or perform at smaller, more

intimate events. The weight and size of these boards make them impractical for travel,

limiting their use to stationary setups like studios or large venues as well.

2. Complexity for Beginners: Standard DJ boards feature an overwhelming array of

controls, including turntables and lots of knobs, sliders, and buttons. This complexity

creates a steep learning curve for those new to DJing.

3. High Cost: Traditional DJ boards are expensive, often priced at $300 or more [1]. For

many individuals who are simply exploring the hobby or wanting to learn the basics, this

price point is prohibitive. The cost of entry is a significant barrier, especially for younger

audiences or those with limited disposable income.

I.II Solution

To overcome these limitations of traditional DJ boards, we want to create a portable,

user-friendly, and affordable DJ board. Our solution aims to make DJing accessible to beginners

and enthusiasts by addressing the core issues of portability, ease of use, and cost:

1. Portability: The DJ board will be lightweight and compact, allowing users to easily

transport it to different locations, whether it's a park, a friend’s house, or a small event.

2. Simplified Interface: Designed with beginners in mind, our DJ board will feature a

minimalistic control scheme. Instead of overwhelming users with too many knobs and

buttons, it will provide just the essential controls.

3. Affordability: By leveraging cost effective hardware and focusing on essential features,

the DJ board will be priced significantly lower than traditional models.

I.III Visual Aid

Figure 1: Visual Aid of DJ Set/Box

In this board, we will have a “DJ box” that contains the PCB with all the buttons and knobs. The

user will be able to turn the knobs, which are displayed at the top of the DJ box. The speakers

will be at the front of the box to output music that is being played, and there are USB ports on

the side to connect up the keyboard and other needed components. The buttons will be placed in

the middle of the knobs to provide easy access. Overall, it is pretty clear from this design how

portable the DJ board will be - it just requires transportation of the DJ Box, a keyboard, and a

laptop, all of which can fit in a backpack instead of a large suitcase.

I.IV High-Level Requirements

To consider our project successful, it must meet the following requirements:

1. Simultaneous Track Playback: Our DJ board must be capable of playing two tracks

simultaneously, allowing users to transition between songs or mix them together. This

feature is essential for replicating the core functionality of traditional DJ equipment,

enabling smooth transitions and creative layering of audio tracks.

2. Precision Tempo Control: The DJ board must support the ability to increase or decrease

the tempo of each track by at least 3 beats per minute (BPM). This level of precision will

give users the flexibility to fine-tune the speed of the music, allowing for smooth

beat-matching.

3. Dynamic Volume Adjustment: The DJ board must allow users to adjust the volume of

each track by at least 10 decibels (dB) in both directions (increase or decrease). This

ensures that users can balance audio levels during live performances or practice sessions.

II. Design

II.I Block Diagram

Figure 2: Keyboard DJ Set Block Diagram

II.II Physical Design

Figure 3: Physical Desing of DJ Set/Box

Above is the physical design for the DJ box that will contain the DJ board. We can see the two

knobs for volume and tempo at the top, the buttons for play/pause and skipping a song. The USB

connection ports are on the side of the box for the keyboard/laptop connections, and the speakers

are in the front to play music. The overall idea of the physical design is to make it look almost

like a boombox or stereo, as this kind of “retro” style appeals to today’s generation.

II.III Subsystem 1: Microcontroller

The microcontroller will be mounted on a custom-designed printed circuit board (PCB), serving

as the "brains" of the system. It plays a central role in managing and controlling all the inputs

and outputs necessary for the system to function. On the input side, the microcontroller will

receive signals from multiple sources. These include commands from the keyboard when the

user presses buttons to select notes or actions, as well as audio signals from the laptop, such as

music files or live streams that need processing. These inputs are crucial in determining the

sound that will be played through the speaker.

On the output side, the microcontroller processes these inputs and sends the resulting audio

signals to the speaker for playback. It ensures the quality and timing of the audio output are

precise, maintaining the overall performance of the system. The software running on the

microcontroller includes essential algorithms for audio processing, such as converting sound

signals into digital formats or generating .wav files. It also manages port I/O, facilitating

communication between the keyboard, speaker, and other components. Overall, the

microcontroller is vital for running the software, executing audio processing tasks, and delivering

the final sound output in a seamless and efficient manner.

Components:

Component Part Number Quantity Unit Cost

Microcontroller ESP32-S3 module 1 $3.48

Resistor RMCF0805JG10K0 8 $0.10

Capacitor CL21B105KBFNNNG 4 $0.10

II.IV Subsystem 2: Buttons

The buttons will be part of a keyboard interface, allowing the user to perform various operations

on a song, such as skipping tracks, pausing, or adjusting playback. Each time a button is pressed,

it sends an input signal indicating the desired action. These inputs represent the user’s commands

and are essential for controlling how the audio behaves. The keyboard essentially provides a

direct way for the user to interact with the system, ensuring they can easily manage song

playback or other operations as needed.

The buttons circuit has a pull up resistor connected to a switch in parallel with a capacitor, both

going to ground. The voltage across the switch (same as the voltage across the capacitor) is input

into the microcontroller. When the switch is open, the capacitor gets charged up and holds the

bus voltage, in our case 3.3 V, corresponding to a digital high (1). When this happens, the current

going through both the resistor and capacitor are 0. When the switch is pressed (when the switch

is closed), the capacitor discharges, and all of the current that goes through the pull up resistor

goes through the 0 resistance switch path. When this happens, the voltage across the switch (and

therefore the capacitor) is 0, corresponding to a digital low (0).

Once the input is received from the keyboard, it is transmitted to the microcontroller, which acts

as the central processor. The microcontroller runs the software and audio processing algorithms

that interpret these inputs and execute the corresponding actions. For example, when a skip

button is pressed, the microcontroller processes the command and skips the current song to the

next one in the playlist. Other operations, like rewinding, pausing, or adjusting volume, are

similarly handled. The microcontroller ensures that all inputs are correctly processed, and the

system responds promptly to the user's commands.

Components:

Components Part Number Quantity Unit Cost

Keyboard Rii RK907 1 $9.99

II.V Subsystem 3: Volume and Tempo Control

To control the tempo and volume of the audio, we will incorporate potentiometers into the

design. These are adjustable dials that allow the user to fine-tune these aspects based on their

preferences. The position of the dial will determine the level of volume or the speed of the

tempo, giving the user direct control over these parameters in real-time.

The output from each potentiometer is sent as a signal to the microcontroller, which interprets

the input and adjusts the audio accordingly. Whether the user is increasing the volume or slowing

down the tempo, the microcontroller processes this information and modifies the audio file

before transmitting it to the speaker. This ensures that the system responds accurately to the

user's adjustments, providing a seamless listening experience.

Components:

Component Part Number Quantity Unit Cost

Potentiometer P160KN2-0QA25B10K 2 $1.83

II.VI Subsystem 4: Power

The power subsystem is composed of two key components: a battery and a voltage regulator.

Together, these elements ensure that each part of the system receives the appropriate power it

needs for smooth operation. The battery serves as the main power source, and will be 9V. It will

handle the charging and discharging to maintain reliable power output.

The voltage regulator plays a crucial role in distributing the correct voltage to different

subsystems. For instance, the microcontroller requires a 3.3V power rail to function properly, so

the power subsystem must supply exactly 3.3V to it. The rest of our components only require

3.3V, but if other components in the system require different voltage levels, such as 5V, the

power subsystem must provide the correct voltage for those components as well. This ensures

that each subsystem operates efficiently with the power it requires.

Components:

Components Part Number Quantity Unit Cost

9V Battery 3046-9V-ND 1 $4.45

Voltage Regulator AZ1117CD-3.3TRG1 1 $0.44

II.VII Subsystem 5: Software

The software subsystem is divided into two essential components: drivers and audio processing

algorithms. The drivers are responsible for controlling the input and output ports of the

microcontroller. They ensure that the microcontroller's pins are correctly configured to receive

input signals, such as those from the keyboard or potentiometers, and to send output signals to

devices like the speaker. This allows for smooth communication between the microcontroller and

the hardware components, ensuring the system operates as intended.

The audio processing algorithms handle various functions related to manipulating the audio files

(.wav files). These algorithms are designed to perform tasks such as speeding up the song,

skipping tracks, adjusting the volume, and executing other audio-related operations. By

integrating these algorithms, the software subsystem ensures that the microcontroller can process

user inputs and modify the audio playback accordingly, delivering a seamless and responsive

audio experience.

II.VIII Subsystem 6: Laptop

The laptop subsystem is solely responsible for hosting the music files, and act as a hard drive.

This will store all the songs the user has to select from, and the user will be able to select the

song that they want to be played from the DJ board. The laptop (hard drive) will send the music

files to the software, which will handle the rest of audio editing.

III. Requirements and Verification

II.II Requirements & Verification

II.II.I Microcontroller

Requirements Verification

I. Must be able to handle Keyboard,

Potentiometer, and Button Inputs

II. Must send information from PCB

components to software

I. The microcontroller will receive the

correct voltage from the components,

which we can measure within the

microcontroller software. In order to

verify these voltage measurements, we

have added specific reference points

that route to ground and different

signals. When turning the

potentiometer dial, for example, we

will place one probe of the multimeter

on the ground test reference and the

other on the reference point

representing the voltage across the

potentiometer. As the knob is turned,

we should see this voltage change. For

the buttons, we will place a multimeter

probe on the ground reference point

and the other on the reference point

corresponding to the voltage across

the button. We will ensure that the

voltages when the button is depressed

is the opposite from when it is not. For

the keyboard, there should be no

signal through the USB port when no

buttons are being pressed. When they

are pressed, however, there should be

a signal corresponding to the button

pressed, so we will measure this

voltage to see that there are changes

using the ground reference and data

reference points on the board.

II. Software will go to the appropriate

state when respective components are

activated. To do this, we will have

three output test points to verify that

components are working: one for the

keyboard, one for the potentiometer,

and one for the button. When a

keyboard button is depressed the

software will indicate that by setting

the voltage of the keyboard

microcontroller output test point high.

For the button, it will do the same with

the button microcontroller output test

point. Finally, for the potentiometer,

when the dial is moved, the voltage at

the potentiometer microcontroller

output test point will be set high. By

using this, we will be able to tell that

the software is able to pick up on

physical tampering with the

components.

II.II.III Volume and Tempo Control

Requirements Verification

I. When the potentiometers are adjusted,

the DJ board must respond

appropriately, by adjusting the volume

and tempo accordingly

I. The system must increase and

decrease the volume by 10 decibels

(dB), measured by a decibel meter

II. The system must increase and

decrease the tempo by 3 beats per

minute (bpm), measured by a

metronome

II.II.IV Power

Requirements Verification

Battery:

I. Supply +9V ± 5% Voltage with

500mA current draw

II. Must last for up to 2 hours

Linear Regulator:

I. Voltage must be regulated to +3.3 V ±

5% at 500mA draw

Battery:

I. Use an oscilloscope and multimeter to

verify a consistent voltage at the

specified level

II. We will operate the DJ Box for 2

hours and measure the voltage

provided with a multimeter and

oscilloscope during operating time

Linear Regulator:

I. Voltage must be regulated to +3.3 V ±

5% at 500mA draw

II.II.V Software

Requirements Verification

I. Must be able to adjust the tempo of the

song with a latency of less than .5

seconds

I. We will timestamp the input tempo

change and execution of the

tempo-adjusting software and verify

the latency over a serial terminal on a

laptop connected to the

microcontroller.

II. Alternatively, we can use a metronome

to detect the live tempo of a song and

measure the delay of the tempo

change.

II.II Tolerance Analysis

II.II.I Microcontroller (ESP32-S3 Module)

The ESP32-S3 operates at 3.3V with a maximum current of around 500 mA. To ensure proper

functionality, we need to make sure the power supply is constantly delivering 3.3V ± 5%. As

such, as the power supply’s voltage tolerance is ±5% of 3.3V = 3.135V to 3.465V. This tolerance

is okay because the microcontroller does not need a specific to power itself, but rather just needs

a high enough voltage to supply it power consistently so that it works properly.

II.II.II Resistors (RMCF0805JG10K0)

These resistors will be used for pull-up/down functions and setting reference voltages.

A 10kΩ resistor with a tolerance of ±5% means the actual resistance could vary between 9.5kΩ

and 10.5kΩ. This will be fine for the design, as the functionality of pull-up/down of the resistor

will not be affected, as the high voltage and low voltage will still have a clear difference.

The resistors can tolerate this change in resistance because they are primarily used as pull up

resistors for the potentiometer and for the capacitor. For the pull-up resistors, those are simply to

provide the circuit a basis for what a high voltage looks like. So a tolerance of just 5% is okay,

because we still have a basis for high voltage and low voltage. Additionally, for the capacitors,

the resistors are used for current control. This ensures that there is not a current overload in the

capacitor so that it can charge appropriately. As such, we can tolerate a 5% change in value, as

we are still preventing current overload. Additionally, a 5% tolerance is industry standard[5].

II.II.III Capacitors (CL21B105KBFNNNG)

The capacitors will be used for the switch circuits. With a nominal value of 1µF and ±10%

tolerance, the capacitance will range between 0.90µF and 1.10µF. This tolerance for the

capacitor is okay because over infinite time in the buttons circuit (explained above), it will still

reach the high voltage (3.3 V), as that is a property of capacitance. As such, if the capacitor is

fully charged, it will be high, and when it is discharged, it will have a value of 0 V, and its value

will be low. So a 10% tolerance, which is fairly common for capacitors in the industry, is okay

for our system.

II.II.V Potentiometers (P160KN2-0QA25B10K)

With a 10kΩ potentiometer, the tolerance will be ±5%, meaning the range is from 9.5kΩ to

10.5kΩ. This range will not critically affect the system, as the volume and tempo will only

change slightly, to an unnoticeable amount. This tolerance is okay because the potentiometer

output is used for tempo and volume control. The way that the tempo/volume control works is

based on the change in voltage that is inputted into the microcontroller, where it takes the

difference between the current voltage and the new voltage. So as long as we monitor how much

the tempo and volume are changing, there is no issue.

II.II.VI Power System (5 V Battery and Voltage Regulator AZ1117CD-3.3TRG1)

The 5 V battery supplies power and the voltage regulator steps it down to 3.3V for the

microcontroller and other components. These components will require the most tolerance, as

they tend to vary in output. A typical 5 V battery will range from 5.2 V to around 4.8 V when

depleted. The voltage regulator should be able to provide a steady 3.3 V output across this input

range. The AZ1117 voltage regulator has a dropout voltage of about 1.15V [2], so it requires at

least 4.45 V input to maintain 3.3V output, which is lower than the 4.8 to 5.2 V range.

II.II.VIII Software Tolerance Analysis

Another perspective to examine, tolerance wise, is the software, and the tolerance we need to be

able to accomplish our goals with the software. Our software will adjust the tempo of a .wav file

sampled at 44.1 kHz on an ESP32-S3 microcontroller. This must be completed within 0.5

seconds from the time the tempo adjustment request is initiated. The software will be run on an

ESP32-S3 microcontroller, which has a 240 MHz clock speed, 384 KB ROM, and 512 KB

SRAM. To quantify the analysis, we need to first define the parameters associated with the

microcontroller and other data that the software will interact with.

Key Parameters for ESP32-S3

I. Clock Speed: 240 MHz (0.24 GHz)

II. Memory Constraints: 512 KB SRAM and 384 KB ROM

III. WAV File Parameters:

III.I Sampling Rate: 44.1 kHz (44,100 samples per second).

III.II Bit Depth: 16 bits (2 bytes) per sample.

IV. Tempo Adjustment Requirement: The system must be able to change the tempo of the

audio and process it in real-time with a response time of less than 0.5 seconds.

We need to first consider the processing and memory part of the software. In terms of the

processing, we can measure this by the complexity of the algorithm. The complexity of an

FFT-based phase vocoder is O(n*log(n)), where n is the number of samples processed per frame.

The FFT phase vocoder is how we process audio data. In terms of memory, we only have 512

KB SRAM in the microprocessor. This limits the number of samples that can be stored and

processed in RAM at one time, and also impacts how large each audio processing frame can be.

We also have 384 KB ROM that we can use to store program code and static data.

Given that each sample in the .wav file is 2 bytes (16-bit audio), the available 512 KB SRAM

can hold:

(512 × 1024)/2 = 262144 samples

At a sampling rate of 44.1 kHz, this gives us:

262144 / 44100 ≈ 5.944 seconds of audio that we can store at a time

This means that the ESP32-S3 can hold about 6 seconds of uncompressed audio in memory at

once, allowing room for buffering and overlap processing.

Now let’s focus on the latency and processing speed. The key parameters to consider for this are:

I. Frame Size (F): the number of samples processed in one frame

II. Algorithm Time Complexity (C(n)): The complexity of the time-stretching algorithm. For

the phase vocoder, it's O(n*log(n)), as we calculated before.

III. Processing Speed (S): The ESP32-S3 runs at a speed of 240 MHz.

IV. Memory Bandwidth (B): The speed at which the ESP32-S3 can access and process memory.

V. I/O Latency (LIO): The time delay caused by reading audio from external flash memory and

writing it back to the audio output device.

Let’s first break down the processing time needed per frame, which we can call Tprocess. The

processing time will be based on the time complexity and clock speed, giving us:

Tprocess = C(n) × S

where n is the number of samples per frame. This is thus the tolerance for the processing time

needed per frame. In terms of memory and I/O latency, the latency is based on the speed at which

data can be read from or written to memory. For tolerance, we want to minimize this latency. For

example, with real-time response time, the total time to process one frame (processing time + I/O

latency) must allow for real-time tempo changes within 0.5 seconds. So:

Ttotal = Tprocess + LIO and

n × Ttotal ≤ 0.5 seconds

So if we put all this together, we can get the total time taken per frame, to check our tolerance.

Our processing time will be, as mentioned before, will be based on algorithmic complexity and

processing speed of our microcontroller.

Tprocess = 240 × 1,061,024*log2 (1024) = 240 × 1,061,024 × 10 ≈ 4.26 × 10−5
seconds = 42.6 μs

Our I/O latency per frame can be calculated assuming we have an I/O bandwidth of 20 MB/s. We

also know that each frame has 1024 samples, and we have 2 bytes of sampling depth, so we get a

data size of 2048 (2 KB) per frame. Hence:

LIO = 2048 bytes/(20 × 106(bytes/second)) ≈ 1.024 × 10−4
seconds = 102.4 μs

Putting this all together, we can get the total time per frame:

Ttotal = Tprocess + LIO = (4.26 × 10−5) + (1.024 × 10−4) ≈ 1.45 × 10−4
seconds = 145 μs

So based on all this, we can figure out that the frames that we can process within the 0.5 seconds

we have are:

FPS = 0.5 seconds /Ttotal = 0.5 seconds / 1.45×10−4
seconds/frame ≈ 3448 frames

Each frame contains 1024 samples, so the system can process:

Samples = FPS × samples = 3448 × 1024 ≈ 3,529,152 samples

Given that our sample rate is 44.1 kHz, the total time of audio processed is:

Tnet = Samples / sample rate = 3,529,152 / 44,100 ≈ 80 seconds worth of audio data processed in

0.5 seconds.

This means that within 0.5 seconds, our system can only process 80 seconds worth of audio data

from the .wav file, so we need to make sure the software has enough time to process all the audio

files accordingly to different changes.

IV. Cost and Schedule

IV.I Cost Analysis

IV.I.I Labor Cost:

We estimate that each group member will put 10 hours per week into the project in order to get it

done. This will be over the next 7 weeks, so each member will put in 70 hours, and in total, our

group will put in 210 hours in order to complete the project. A typical entry-level engineer

makes around $100,000 a year in salary, which comes out to roughly $50 per hour. The labor

cost of this project will be $50 per hour * 3 people * 70 hours per person * 2.5 overhead factor =

$26,250 in labor costs. A summary is included below:

Name Hourly Rate Hours Total Total x 2.5

Milind Sagaram 50 70 $3,500 $8750

Manas Gandhi 50 70 $3,500 $8750

Jack Prokop 50 70 $3,500 $8750

Total 150 210 $10,500 $26,250

IV.I.II Parts Cost:

We estimate the cost of our project to be $35.22, which falls well short of the $150 our group

will be given. Additionally, many of our parts will be sourced from the Electronic Services Shop

at the ECEB, which will be free of cost to us. These parts include the microcontroller, resistors,

capacitors, voltage regulators, and other components. With this, we will have north of $115 to

spend on other equipment, research and development, or other costs. A summary is included

below:

Component Part Number Quantity Unit Cost

Microcontroller ESP32-S3-WROOM-1-N16 1 $3.48

Resistor RMCF0805JG10K0 8 $0.10

Capacitor CL21B105KBFNNNG 4 $0.10

Keyboard Rii RK907 1 $9.99

Potentiometer P160KN2-0QA25B10K 2 $1.83

5V Battery 3046-9V-ND 1 $4.45

Voltage Regulator AZ1117CD-3.3TRG1 1 $0.44

Push Buttons 2223-TS02-66-70-BK-160-

LCR-D

2 $0.12

In total, the cost of the project will be $26,285.46 with labor and materials costs included.

IV.II Schedule

Project Component Estimated Completion Date Group Member Responsible

Design Review 10/8 Manas

Preliminary PCB Design

Review

10/11 Milind

PCB Final Design

Completion

10/18 Milind

PCB Components Soldered 11/1 Milind

ESP-32 Drivers Completion 11/1 Jack

Audio Processing Algorithms

Completion

11/15 Manas

Integration and Full Test

Completion

11/21 Jack

V. Ethics and Safety

V.I IEEE & ACM Code of Ethics

V.I.I Privacy and Data Security (ACM Code 1.6) [3]:

Issue: The software might need to interact with personal files on a user's device, including music

libraries. Our design must prevent unauthorized access to the user's music or other personal files.

Solution: The proposed software will prioritize the protection of user privacy and data security.

While the software may require access to personal music files, we will implement measures to

prevent unauthorized access or disclosure. This includes obtaining explicit user consent for data

collection and storage, and adhering to industry-standard data security practices. Such practices

might involve encryption, secure data transmission protocols, and regular security audits.

V.I.II Intellectual Property (ACM Code 1.5) [4]:

Issue: Users could potentially use the software to play/mix copyrighted music without

authorization, violating intellectual property laws.

Solution: We will include disclaimers encouraging users to comply with copyright regulations

and offer placed to legally obtained music files that can be used.

V.I.III Honesty and Integrity (IEEE Code 7.8.I) [2]:

Issue: Ethical guidelines also mandate transparency in communication. We must avoid

misleading claims about the functionality or features of the DJ set.

Solution: All documentation, including advertising or promotional materials, will clearly

represent the capabilities of the system.

V.II Safety

Our project does not pose any major security risks, beyond soldering and power supply

management.

V.II.I Power Supply and Electrical Safety

The DJ board will be powered by a low-voltage 9V battery to avoid the use of high-voltage

power supplies, which pose a significant risk of electric shock or fire. We will make sure to only

use manufacturer-approved batteries, store them in cool and dry environments when not in use,

and inspect them for damage before ever plugging them in. By following these safety

restrictions, we will ensure that we have no issues with electrical safety

V.II.I Soldering

When soldering, we will make sure that we have personal protective equipment including safety

glasses and soldering iron stands. We will also make sure that we have completed the required

training before engaging in any activity that includes high heat, sharp blades, or other health

hazards.

VI. References

[1] Amazon.com Inc. (n.d.). Dj Board [Amazon.com]. Retrieved from

https://www.amazon.com/dj-board/s?k=dj+board

[2] DiDiodes Incorporated. (n.d.). document number: DS36736 Rev. 7 - 3 [SNIPPET] AZ1117

1A LOW DROPOUT LINEAR REGULATOR [Data sheet].

https://www.diodes.com/assets/Datasheets/products_inactive_data/AZ1117.pdf

[3] Association for Computing Machinery. (n.d.). ACM Code of Ethics and Professional

Conduct. ACM. https://ethics.acm.org/

[4] Institute of Electrical and Electronics Engineers. (n.d.). IEEE Code of Ethics. IEEE.

https://www.ieee.org/about/corporate/governance/p7-8.html

[5] Wilderness Labs. (n.d.). Resistor Tolerance and Preferred Values. Wilderness Labs Developer

Portal. Retrieved November 7, 2024, from

https://developer.wildernesslabs.co/Hardware/Tutorials/Electronics/Part4/Resistor_Tolerance

https://www.amazon.com/dj-board/s?k=dj+board
https://www.amazon.com/dj-board/s?k=dj+board
https://www.diodes.com/assets/Datasheets/products_inactive_data/AZ1117.pdf
https://ethics.acm.org/
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://developer.wildernesslabs.co/Hardware/Tutorials/Electronics/Part4/Resistor_Tolerance

