
ECE 445
Fall 2024

October 3, 2024

Design Document - Early Response Drone
for First Responders

Kevin Gerard, Lohit Muralidharan, Aditya Patel
Team #11

TA: Manvi Jha

Table of Contents

1 Introduction 2
1.1 Problem 2
1.2 Solution 2
1.3 Visual Aid 3
1.4 High-level Requirements 4

2 Design 5
2.1 Functional Overview & Block Diagram Requirements 5

2.1.1 Block Diagram 5
2.1.2 System State Machine 5
2.1.3 Drone Control Subsystem Requirements 7
2.1.4 Drone Sensing Subsystem Requirements 8
2.1.5 Network Stack Requirements 10
2.1.6 Application Level Requirements 12

2.2 Physical Design 13
2.2.1 Physical Design Overview 13
2.2.2 COG vs. COL 13
2.2.3 Physical Control 14

2.3 Hardware Analysis 15
2.3.1 Operating Voltage & Regulation 15
2.3.1 Drone Power Subsystem 17

2.4 Software Analysis 18
2.4.1 SIM7600 Cellular Network Communication 18
2.4.2 Sensors Processing 20
2.4.3 Motion Control 23
2.4.4 Firebase Cloud Storage 25
2.4.5 Application Level 27

2.5 Tolerance Analysis 28
3 Testing and Demonstration 30
4 Cost and Schedule 31

4.1 Cost Analysis 31
4.2 Schedule 37

5 Ethics and Safety 40
6 Works Cited 43

1

1 Introduction

1.1 Problem

Every week, UIUC students receive emails from the Illini-Alert system regarding crimes that are
committed, fires that are occuring, and other dangerous situations to be aware of. With the latest
reported median response time of first responders to a 911 call being over 6 minutes in
Champaign County [1], the situation to which emergency personnel are responding can
drastically change from the initial details that were provided. This problem is even worse in rural
areas where, for example, the average response time for Emergency Medical Services (EMS) is
over 14 minutes [2]. To best be able to manage the event, first responders need as much accurate
information as they can possibly receive. This way, the situation can be handled in a timely
manner and the safety of everyone involved is prioritized. Thus, having eyes on the area before
arriving can provide emergency response personnel with valuable information about potential
hazards, individuals involved, and the severity of the event.

Over the past decade, the use of drones by first responders has significantly increased. For
example, the city of Fremont, California’s police and fire departments primarily use drones for
reconnaissance, documenting crime scenes, and helping with search and rescue operations [12].
However, the use of drones as an early response technology, and in a sense acting as the first
responder, is not yet a widely explored concept. Theoretically, this type of drone will reduce
response times, improve the safety of all involved individuals, increase efficiency and
prioritization, and massively aid understaffed departments [15].

1.2 Solution

Our solution is to construct a cost-effective drone that first responders can deploy and
immediately fly to the location of an emergency event. While en route, they could use the
drone’s on board camera and computer vision capabilities to assess the situation at hand. There
are multiple scenarios in which this drone could be particularly beneficial, such as:

- Police: monitor crime scenes and track suspicious individuals; provide aerial surveillance
for events with a high density of people (such as sports games, concerts, or protests) to
ensure everyone’s safety

- Fire: monitor the spread of fire at the location; obtain information on what kind of fire it
is (electrical, chemical) and any potential hazards

- Medical: assess the type and number of injuries suffered, and locations of patients

2

Our drone system consists of 4 different elements: a cloud storage, a backend, a frontend, and the
drone itself. In order to create a baseline early response drone, we need to be able to control the
drone as well as receive information from the drone such as capture frames, altitude, roll, pitch,
and yaw. The capture frames and data will be visually displayed in the frontend. However, this
data bundle will first be stashed onto a cloud storage, and when the backend is ready to receive
the data, it will retrieve it. If time permits, we want to perform machine learning processing
using object tracking and detection models on the backend software. The other data transmission
that occurs is the sending of command signals from the frontend to the drone itself. In other
words, whenever there is a keyboard click, we can visually see the key click which is uploaded
to the cloud storage.

Note: while we do currently plan to use cloud storage via Firebase, as referenced above, we are
currently researching possible ways to implement our design without the need for cloud storage.
In this design, the drone’s cellular chip will directly communicate with our C++ backend for
data transmission.

1.3 Visual Aid

Figure 1: Primary components of the design

The fundamental components of our drone system are pictured above in Figure 1. The drone
itself will either be constructed from foam board and will house the core electronics, such as the
Printed Circuit Board (PCB), camera, cellular chip, servos, battery, and motor. After powering on
the drone, the user will be able to connect to it by interacting with the intuitive User Interface
(UI) run on the frontend software on their computer. The backend software will establish a
connection between the frontend and embedded software running on the drone and transmit data
between two through the cloud storage. Once this is completed, the user will be able to view the
feed from the drone’s onboard camera, various sensor data, and other critical flight information
on the UI. Flight controls, such as yaw, pitch, roll, and throttle, can be inputted via keystrokes on
the computer, and this data will then be transmitted through the network nodes to the drone over
4G cellular connectivity. Upon receiving the data, the drone’s primary control loop will process it
and act accordingly.

3

1.4 High-level Requirements

1. Maintain and Facilitate Cellular Data Transfers: Our drone will have the ability to receive
commands from the front end. In terms of transmission, we will be able to transmit
sensor data at a rate of one update per second, whereas the frames we hope to send 2-3
per second but set the minimum to be 1 frame per second.

2. Nodal Software System: Our design must comprise 3-4 primary nodes that efficiently
intercommunicate to properly transmit and receive various data. These nodes include a
C++ backend, a TypeScript frontend, the embedded drone software, and (optional)
Firebase cloud storage as a medium between the drone and backend.

3. Preemptive Warning: For the safety of the drone operator and nearby individuals, the
drone will monitor crucial parameters such as altitude, velocity, and battery levels to
provide real-time alerts to the user via the frontend UI.

4. Minimal Hardware Response Time: The electronics and other hardware components on
the drone must be able to appropriately respond to a given command from the user within
3 seconds with ideal cellular connectivity.

5. Efficient and Stable Power Distribution: The drone’s power distribution system will
convert the 12V battery supply to regulated 5V and 3.3V outputs for all components,
ensuring that motors, sensors, servos, microcontroller, and camera operate within ±5% of
required voltage. It will prevent voltage drops under high load (up to 5A for motors) and
maintain stability during critical operations, including data transmission and flight
control, with surge protection to safeguard sensitive electronics.

4

2 Design

2.1 Functional Overview & Block Diagram Requirements

2.1.1 Block Diagram

Figure 2: High-level block diagram for the overall drone system

2.1.2 System State Machine

The primary embedded control software for the drone will follow a simple state machine, as can
be seen in the figure below. The state machine will encompass 5 states: START; Ready to Fly
(RTF); FLIGHT; ERROR; SHUTDOWN. These states will all accomplish unique tasks to ensure
safe operation of the drone, reliable uptime of data transmission, and proper interaction with
various hardware components. Primary inputs to the state machine include data from the drone's
onboard sensors and flight control inputs from the user, which will then be used to determine the
appropriate state.

5

6

Figure 3: State machine for the embedded control loop

A breakdown of the states is as follows:
- START: Upon receiving power from the batteries and running the control software, the

program will begin in the START state. This state is used to do preliminary checks on the
hardware components and also open connectivity with the cloud/backend software. First,
the drone’s onboard sensors, such as the Inertial Measurement Unit (IMU), barometer,
and camera, are initialized and verified to be responding. Communication between the
drone and the cloud/backend using a cellular connection is then established and checked
for stability. Basic write commands to the servos are sent to confirm functionality. If any
of these steps should fail, the program transitions to the ERROR state. Otherwise, it will
transition to Ready to Fly (RTF).

- RTF: The RTF state serves as an idle state for the program to wait in until the user wants
to fly the drone. In this state, the program will begin to transmit the sensor data and
camera feed to the user via cellular connectivity. Additionally, the readings from the
sensors are checked for validity, ensuring the modules are operating correctly. If any of
these steps should fail, or if user inputs cannot be retrieved, the program transitions to the
ERROR state. Otherwise, the program checks if the user has inputted a keystroke for
flight controls. If an input is available, the program transitions to the FLIGHT state. If
not, it will loop back to RTF.

- FLIGHT: The FLIGHT state is the primary state the drone will be in during takeoff,
flight, and landing. The program will continue to monitor sensor data to ensure hardware
validity and communication stability, and transmit sensor data to the user. Furthermore,
command inputs from the user are retrieved and processed to control the servos and
motors. If there is a loss of communication between the drone and cloud/backend, or if
the sensor data is erroneous, then the drone will disable its motor, deploy a parachute, and
transition to the ERROR state. Otherwise, the program checks to see if the user has sent a
command to shut down the drone, in which case the program transitions to the
SHUTDOWN state and ends its execution. If not, the program loops back to FLIGHT.

- ERROR: The ERROR state is designed to safely, but quickly, end the operation of the
drone if there is a software or hardware malfunction. In this state, the program will
attempt to notify the user of the error and send diagnostics information. It will then
transition to the SHUTDOWN state and end its execution.

- SHUTDOWN: In the SHUTDOWN state, the program will end its execution. This, in
turn, will half the operation of all hardware components.

2.1.3 Drone Control Subsystem Requirements

The drone has various control subsystems such as the servo/motor controls and sensor/cellular
modules. There are specific scenarios where we believe that the drone should have a fail-safe

7

which is described in the table below using these modules. These fail-safe procedures mainly
occur when there are certain connection issues that could possibly occur.

Requirements Verification

If the drone fails to send a GET Request to the
Firebase Storage for requesting Commands,
the drone deploys the parachute and stops

motor if midair

1. Drone will send Get Request to a
non-existent application

2. The Get Request will fail due to not
being able to connect to this
non-existent application

3. Motor should stop rotating and servo
should deploy parachute

If application disconnects, the drone deploys
the parachute and stops motor if midair

1. Application disconnects and shuts
down by the user

2. Firebase sends message to drone
saying the application disconnected

3. Drone stops motor from running and
parachute deploys

Table 1: R-V table for the Drone Control Subsystem

2.1.4 Drone Sensing Subsystem Requirements

The Drone Sensing Subsystem encompasses the primary group of sensors on the drone. This
includes the MPU-6050 IMU used for obtaining accelerometric and gyroscopic data, BMP280
barometric sensor used for estimating the drone’s altitude from pressure readings, and OV7670
image sensor for capturing video frames. The outputs of these sensors will primarily be used to
provide the drone operator with critical drone information during flight. Refer to section 2.4.2 for
more information on the interaction with these sensors.

Requirements Verification

MPU-6050 IMU
1. The MPU-6050 must be able to read

gyroscope data in 3-axes (X, Y, Z)
with an accuracy of 10%.

2. The sensor must provide acceleration
data for velocity calculations with a
full-scale range of ±2g and accuracy
of 10%.

MPU-6050 IMU
1. Ensure the sensor is initialized to a

reference point (X, Y, Z = 0, 0, 0).
Execute a test program to read data
from the IMU while moving the drone
to predetermined locations. Compare
the IMU readings to real displacement
measured with a ruler.

8

3. The sensor should output angular
velocity in 3-axes (X, Y, Z) at a range
of ±360°/s with an accuracy of 10%.

4. The sensor must provide data at an
output data rate (ODR) of at least 1
kHz for both accelerometer and
gyroscope.

2. Ensure the sensor is initialized to a
reference point (0 acceleration, 0
velocity). Execute a test program to
read data from the IMU while placing
a drone in a moving car at a constant
speed. Compare the velocity values
from the IMU calculations to the
speed of the car.

3. Ensure the sensor is initialized to a
reference point (angular velocity of X,
Y, Z = 0, 0, 0). Execute a test program
to read sensor data from the IMU
while tilting the drone to a certain
predetermined position in a fixed
amount of time. Compare the angular
velocity values from the IMU to the
real values measured with angles from
a protractor

4. Execute a test program to record data
from the IMU over a set period of 10
seconds. Measure the ODR by
dividing the total number of samples
by the measurement time.

BMP280 Barometer
1. The BMP280 must measure

atmospheric pressure with an accuracy
of 10% for altitude readings.

2. The sensor should accurately measure
temperature with a resolution of
0.01°C and accuracy of 10%.

3. The BMP280 must provide an ODR of
at least 1 Hz.

BMP280
1. Execute a test program to measure the

pressure readings from the BMP280
while the drone is at ground level and
atop a tall apartment building. Use a
reference barometer to measure
atmospheric pressure and compare it
to the BMP280 output.

2. Place the BMP280 in a
temperature-controlled chamber, such
as a fridge, then in a room-temperature
room. Execute a test program to log
temperature readings from the
BMP280. Use a calibrated
thermometer as a reference and
compare the data.

9

3. Execute a test program to record data
from the BMP280 over a set period of
10 seconds. Measure the ODR by
dividing the total number of samples
by the measurement time.

OV7670 Image Sensor
1. The OV7670 must support a

resolution of 640x480 Video Graphics
Array (VGA) pixels and full RGB.

2. The camera should provide a frame
rate of at least 6 frames per second
(FPS).

OV7670 Image Sensor
1. Configure the OV7670 for VGA

resolution. Execute a test program to
capture a single image frame of nearby
surroundings. Verify the pixel
dimensions in the output image using
a third-party software, ensure color
quality is satisfactory, and image
clarity is acceptable.

2. Ensure the camera is properly
calibrated to capture steady image
frames for video. Execute a test
program to capture a video for a fixed
amount of time. Count the number of
frames received and calculate the FPS.

Table 2: R-V table for the Drone Sensing Subsystem

2.1.5 Network Stack Requirements

The network stack comprises mainly of the SIM7600’s ability to transfer and retrieve data. This
also includes the OV7670’s frame generation and transfer capabilities including the frame rate
maintenance. This system is primarily used for communication between the end user and the
drone, and will check for any anomalies in this communication to respond correspondingly.

Requirements Verification

The drone must be able to connect to the
database and retrieve data.

1. Ensure the drone is powered on and
connected to the internet. Verify the
internet connection by pinging a
known server and checking for a
response.

2. Send a query to the database to
retrieve a specific data entry. Record

10

the response received from the
database and confirm it matches the
expected data.

3. Modify the data entry in the database
and send another query to retrieve the
updated data. Record the response and
confirm it reflects the updated data.

4. Disconnect the drone from the internet
and attempt to send a query to the
database. Confirm that the query fails
and an appropriate error message is
received.

The drone must maintain a stable and reliable
internet connection, and deploy parachute in
case network connection is disrupted

1. Test the drone’s internet connection in
various locations. Measure the signal
strength and quality using network
diagnostic tools.

2. Monitor the connection stability over
an extended period. Record any
instances of connection drops or
interruptions.

3. Perform a speed test to measure
upload and download speeds. Confirm
that the speeds meet the required
thresholds for the application.

4. To check for the disrupted connection,
make a method that is called in loop
and checks the connection, and if not
detected, trigger the servo for
deployment.

The drone must stream video and sensor data
in real-time without significant latency

1. Set up the drone to stream video and
sensor data to a server. Monitor the
video stream for latency or buffering
issues.

2. Measure the end-to-end latency of the
video stream. Confirm that the latency
is within acceptable limits for
real-time streaming.

3. Compare the transmitted data with the

11

actual sensor readings. Confirm that
the data matches the sensor readings
within an acceptable margin of error.

4. Test the video stream under different
network conditions. Record the
performance and identify any issues
that arise under varying conditions.

Table 3: R-V table for the Network Stack

2.1.6 Application Level Requirements

The application consists of a frontend and a backend. The backend is what is used to interface
with a firebase storage. This is a key detail to ensure connection between the drone and the
frontend portion of the application. This is due to the fact that whatever the data the backend
retrieves will be processed and sent to the frontend, which is the sensor data. This is the same
vice versa where the data the backend sends originated from the frontend which are the drone
commands.

Requirements Verification

The application must be able to retrieve the
sensor data to view in the application

1. First view the sensor data through
logging in the arduino terminal

2. View whether Firebase retrieves the
sensor data or not

3. Check if a byte was read from the
database in the C++ backend

4. Ensure the data is viewable within the
frontend application

The drone must be able to retrieve commands
from the application

1. First type a command key while the
frontend application is running

2. View the log message in the C++
backend if 1 byte was read

3. View if the byte was received in the
Firebase database

4. Check if the drone receives and clears
the command

Table 4: R-V table for the Application Level

12

2.2 Physical Design

2.2.1 Physical Design Overview

Our design is going to be a V-tail winged drone with a camera mount below the drone. This will
require a total of 2 servos for the wings, 2 servos for the V-tail, 2 servos for the camera, 1 servo
for parachute, and 1 motor for creating thrust for the drone. In terms of the wing, we plan to
create a larger wing area than most drones for easier controllability for users during flight. It is
also important to note that we will be utilizing foam board for the entirety of the drone. Foam
board is extremely lightweight and replaceable compared to its alternatives such as LW-PLA 3d
printing material and carbon fiber. This is mainly due to the fact that foam board is extremely
easy to cut with tools like box cutters compared to carbon fiber and plastic. In the next couple
sections, we will describe how to control the drone and how to generate lift.

2.2.2 COG vs. COL

A key detail for flying winged drones is the concept of center of gravity vs center of lift. Center
of gravity is the balancing point of the total weight of the aircraft, and the center of lift is the
center point of the lifting forces acting upon the wing of the aircraft. An image below depicts the
2 centers in play where the orange center represents the center of gravity and the blue center
represents center of lift.

Figure 4: Effects of moments on flight behaviors

13

In general, for typical aircrafts, one needs to make their center of gravity slightly forward to the
center of lift. If the center of gravity is too close to the center of lift, the aircraft may be neutrally
or negatively stable. This will make the drone much harder to control. To change the center of
gravity, we will modify the placement of our 12V Lipo drone battery pack. This will give us full
control of where the center of gravity is located because we cannot control where the center of
lift is located without modifying the wing structure overall.

2.2.3 Physical Control

For steering the direction of the drone, we utilize flaps and aileron. As mentioned earlier in
excerpt 2.2.1, our drone is a V-tail drone. Therefore, we have a total of 2 flaps and 2 ailerons.
Each wing has a single aileron and each tail in the V-tail has a single flap. These control the roll,
pitch, and yaw of the drone mid flight due to knockbacks caused by airflow. For example, if the
left aileron is angled at -45 degrees and the right aileron is angled at 45 degrees, the plane will
roll clockwise. If the left aileron is angled at 45 degrees and the right aileron is angled at -45
degrees, the plane will roll counter clockwise. Similarly, the tails control yaw and pitch. When
both flaps are up, the plane will pitch downwards. If both flaps are down, the plane will pitch
upwards. If the flaps are opposite of one another, this will alter the yaw in a similar fashion to the
ailerons with roll.

In order to control the flaps and aileron of the drone, we utilize servos to control the flaps on the
drone. Below shows an image that depicts this idea:

Figure 5: Example implementation of an aileron with a servo

14

Essentially, we utilize a servo that is connected to a rod, and the rod is connected to a piece
connected to the aileron/flap. It is important to mention that the servos will be mounted directly
on the wing for controlling the ailerons, and mounted within the fuselage of the drone for the
flaps.

2.3 Hardware Analysis

2.3.1 Operating Voltage & Regulation

We need to provide specific voltages to the different components of the design. According to the
ESP-32 S3 WROOM datasheet, the recommended operating conditions are as follows:

Figure 6: ESP-32 S3 WROOM power statistics

Here, the Power Supply voltage is set to a min of 3V, whereas the max is 3.6V. By default, the
Serial Peripheral Interface (SPI) flash on the module operates at a maximum clock frequency of
80 MHz and does not support the auto suspend feature. Now, the current requirements for the
maximum frequency we can attain with the current configuration is as follows:

15

Figure 7: ESP-32 S3 WROOM operating frequency and current statistics

Now, we will be using a 3.3V for the microcontroller because it is a standard voltage level for
many components and peripherals, making it easier to interface with the peripherals. The 3.3V is
downgraded from a 5V supply (Output of the Electronic Speed Controller (ESC)) through a
voltage regulator. Next, the MPU6050 has specific power requirements that are as such
according to the datasheet:

Figure 8: Operating voltage of the MPU-6050

The operating voltage we will be using for this sensor is 3.3, which is derived from the same
input channel to the ESP. The next component is BMP280, which is utilized for pressure sensing
accepts the following voltages:

16

Figure 9: Power statistics for the BMP280

Here, we are once again using 3.3V for the input to this sensor due to the nature of reusability of
the voltage regulator. Next, the ESC requires a 12V supply to power the motor and control the
speed of the drone, which then translates into the 5V used by the regulator. The OV7670 camera
module is utilized to capture VGA frames to send through the SIM7600. The camera requires
3.3V as the operating voltage, which can be supplied through the regulator. Now there are
multiple iterations of this camera module, where some require 3V whereas others require 3.3V.
Servos can generally work with a huge range of voltages, and for our specific use case, we will
be using 5V servos that can directly draw power from the ESC. Lastly, the SIM7600A requires
the standard 3.3V power supply, which can be derived from the regulator.

2.3.1 Drone Power Subsystem

For our entire subsystem, we will be utilizing a 12V lipo battery. However, various components
only support up to 3.3V and 5V as mentioned above in the excerpt 2.3.1. Therefore, we need
methods to drop the voltage down to these values such that we can power the rest of the system.
In order to do so, we first step the voltage from 12V to 5V and 5V to 3.3V. In terms of the 12V to
5V conversion, we will be utilizing an ESC to produce this voltage. A 12V battery will connect
from one end, and we can produce a 5 volt output. This is neat because we will also require the
ESC for controlling brushless motor speeds. This 5V supply generated by the ESC is also good
enough to power our pcb board. Given the 5V supply, we can also step it down to 3.3V using a
voltage regulator. The voltage regulator creates and maintains a constant voltage.

17

Figure 10: Flowchart of drone power subsystem

2.4 Software Analysis

2.4.1 SIM7600 Cellular Network Communication

The SIM7600 module is a versatile and powerful cellular module that supports 4G LTE
connectivity, making it an ideal choice for applications requiring reliable and high-speed internet
access. This module is capable of achieving upload speeds of up to 5 Mbps, which is sufficient
for streaming video and transmitting sensor data in real-time. The SIM7600 supports various
communication protocols, including HTTP, which allows it to send data to a server over the
internet. It is commonly used in IoT devices, drones, and other applications where stable and fast
internet connectivity is crucial.

To integrate the SIM7600 module with the ESP32 S3 WROOM, one must first establish a
connection between the two devices. This involves connecting the appropriate pins on the
SIM7600 to the corresponding pins on the ESP32. The SIM7600 module typically communicates
with the microcontroller via UART, so the TX and RX pins of the SIM7600 should be connected
to the RX and TX pins of the ESP32, respectively. Additionally, the module requires a stable
power supply, which can be provided through the VCC and GND pins. Once the hardware
connections are established, the next step is to configure the SIM7600 module to connect to the
internet and transmit data using the Hypertext Transfer Protocol (HTTP) protocol. This is
achieved by sending a series of AT commands to the module. The AT commands are used to

18

configure the network settings, establish a connection to the cellular network, and send HTTP
requests. Here is a general outline of the AT commands used in this process:

1. Initialize the module: `AT`
2. Set the APN (Access Point Name): `AT+CGDCONT=1,"IP","tmobile_apn"`
3. Enable the network registration: `AT+CREG?`
4. Check the signal quality: `AT+CSQ`
5. Activate the PDP context: `AT+CGACT=1,1`
6. Start the HTTP service: `AT+HTTPINIT`
7. Set the HTTP parameters: `AT+HTTPPARA="URL","http://your_server_address"`
8. Send the HTTP POST request: `AT+HTTPACTION=1`
9. Read the HTTP response: `AT+HTTPREAD`
10. Terminate the HTTP service: `AT+HTTPTERM`

Alternatively, the HTTP params can be set as such for the firebase database:
sendATCommand(AT+HTTPPARA=\"URL\",\"https://your-database.firebaseio.com/path/to/data
.json\"");
sendATCommand("AT+HTTPPARA=\"CONTENT\",\"application/json\"");

String jsonData = "{\"name\":\"value\"}";
sendATCommand("AT+HTTPDATA=" + String(jsonData.length()) + ",10000");
sendATCommand(jsonData);

In the context of the drone project, the SIM7600 module is used to transmit camera and sensor
data to a server. The camera captures video at a resolution of 640x480 pixels with a frame rate of
5 frames per second. The data is compressed using Joint Photographic Experts Group (JPEG)
compression, resulting in a manageable data rate that is well within the upload capacity of the
SIM7600 module. Additionally, sensor data is transmitted alongside the video stream,
contributing a small amount to the overall data rate.

The total data rate for the camera and sensor data, including protocol overhead, is calculated to
be 3.87 Mbps. This is comfortably within the 5 Mbps upload limit of the SIM7600 on an LTE
network, ensuring that the system can operate without hitting bandwidth limitations. This setup
allows the drone to stream video and transmit sensor data in real-time. The last thing we add to
this is the Global Positioning System (GPS) location retrieval, which is retrievable to the
backend through a POST:

1. Enable GPS: `AT+CGPS=1,1`
2. Check GPS status: `AT+CGPSSTATUS?`
3. Retrieve GPS location: `AT+CGPSINFO`

19

Figure 11. Example pinout of SIM7600A-H

2.4.2 Sensors Processing

MPU-6050 IMU:
The MPU-6050 is an extremely popular IMU used in embedded applications. It is capable of
tracking up to six degrees of movement through a 3-axis gyroscope, measuring ‘X,’ Y,’ and ‘Z’
positions, and a 3-axis accelerometer, measuring ‘X,’ Y,’ and ‘Z’ angular velocities. The
MPU-6050’s low cost, small form factor, and easy-to-use interface makes it a widely used choice
in drones, robotics, and other mobile devices.

Integrating the MPU-6050 with the ESP32-S3 WROOM-1 microcontroller is quite
straightforward, as there are Arduino-compatible libraries for directly interfacing with the
module. For communication, the IMU uses an Inter-Integrated Circuit (I2C) protocol to transmit
and receive data from the microcontroller. The pseudocode for basic MPU-6050 drivers are as
follows:

1. Include the MPU6050 library header file
2. Initialize I2C communication between the MPU-6050 and the ESP32 (SCL and SCA pins)
3. Initialize the MPU6050 and ensure its memory address range is allocated

20

4. Call a single function to real data from the gyroscope and accelerometer. The six return values
are stored as 16-bit integers
5. Convert the raw sensor data into readable values with correct units
6. Add a small time delay and loop from step 4

For the purposes of our drone, the six points of data returned from the IMU will be useful in
providing the operator with flight critical information. From the accelerometer data, we can
obtain tri-directional linear velocities that will convey the direction the drone is flying. The
gyroscopic data can be converted into roll, pitch, and yaw measurements for increased positional
awareness.

Figure 12: Example pinout of MPU-6050 with ESP32 Devkit

BMP280 Barometer:
The BMP280 is a high-precision and extremely power efficient barometric pressure sensor
commonly used in various devices such as drones, GPS systems, and outdoor equipment. The
module is able to supply the user with barometric pressure and temperature sensor data. Since it
is designed to supply very accurate sensor readings, its usage in the Early Response Drone will
largely be for estimating altitude from pressure.

Similar to the MPU-6050, the BMP280’s wide usage amongst embedded developers means that
there are numerous code libraries available for interacting with the module. Furthermore, the
BMP280 communicates with the ESP32 microcontroller via an I2C protocol for data
transmission. The pseudocode for interfacing with the BMP280 is found below:

1. Include the BMP280 header file

21

2. Initialize I2C communication between the BMP280 and the ESP32 (SCL and SCA pins)
3. Initialize the BMP280 and ensure its memory address range is allocated
4. Set sensor sampling rate and filter coefficient
5. Call function to retrieve temperature data in Celsius and pressure data in Pascals.
6. Use pressure reading and call function to estimate altitude from sea level
7. Add a small time delay and loop from step 5

Figure 13: Example pinout of BME280 with ESP32 Devkit

OV7670:
The OV7670 is a low voltage Complementary Metal-Oxide-Semiconductor (CMOS) image
sensor that provides the full functionality of a single-chip VGA camera and image processor in a
small footprint package. It provides full-frame, sub-sampled or windowed 8-bit images in a wide
range of formats. All required image processing functions, including exposure control, gamma,
white balance, color saturation, hue control and more, are also programmable. The additional
step we took is compression of the JPEG through the JPEG encoder.

Initialize camera with SIOC_PIN, SIOD_PIN, VSYNC_PIN, HREF_PIN,

PCLK_PIN

Initialize JPEG encoder with quality level 75

Setup:

Begin Serial communication

22

Begin I2C communication with SIOC_PIN, SIOD_PIN

Initialize camera

Set camera resolution to VGA

Set camera color space to RGB

Loop:

Capture image from camera

If image capture successful:

Compress image using JPEG encoder

If compression successful:

Print "Image compressed successfully"

// Add code to transmit or store the compressed image

Else:

Print "Failed to compress image"

Else:

Print "Failed to capture image"

Delay 1 second

Figure 14: Camera module configuration

2.4.3 Motion Control

Servos play a key role in the flight control system of the drone, providing precise control and
stable flight performance for the drone. The drone's roll, pitch, and yaw attitudes are all
controlled and adjusted by the servo. Encoder and feedback mechanism integrated in for accurate

23

control of position and angle. The servo's quick reaction time enables the drone to fly steadily
and turn precisely. The steps to define and use servos are as follows:

1. Include the Library: `#include <ESP32Servo.h>`
2. Initialize Servos:

Servo servo1;

Servo servo2;

void setup() {

servo1.attach(18); // Attach servo1 to GPIO 18

servo2.attach(19); // Attach servo2 to GPIO 19

}

3. Control Logic:

void setServoAngle(Servo &servo, int angle) {

servo.write(angle); // Set servo to the specified angle

}

void loop() {

// Example: Set servos to specific angles

setServoAngle(servo1, 90); // Set servo1 to 90 degrees

setServoAngle(servo2, 45); // Set servo2 to 45 degrees

delay(1000); // Wait for 1 second

}

Now, for our use case, the easiest way to control all the servos is to retrieve the HTTP data sent
by the server, and change the angles to achieve desired flight control (for example a right turn
command would indicate a certain configuration of wing pattern whereas a left would require the
exact opposite).

24

Figure 15. Example pinout of servo with ESP32 Devkit

2.4.4 Firebase Cloud Storage

Before diving into the usage of Firebase Cloud Storage, we will go into exactly what Firebase is.
Firebase is a cloud computing service bought by Google which contains various toolchains such
as Storage, specifically for files and images, Realtime Database for storing and syncing realtime,
Firestore which not only allows for real time updates but also automatic scaling of database and
powerful queries library to perform the updates. For our purposes, we will utilize Firestore and
the regular Storage. As slightly mentioned within the SIM7600 and Application Level excerpt,
we can modify our storage using the 4 types of HTTP requests: GET, POST, PUT, and
DELETE.

Below shows an example of how Firestore looks internally. As we can see, we have a 3 column
setting where we can either start a collection, add a document, and add a field.

Figure 16: Firestore sensor data collection

For our purposes, we will have 2 collections: Sensor Data and Commands. Sensor Data will
receive a continuous stream of “documents” from the drone which will be stored on Firestore.
Each document will contain a JavaScript Object Notation (JSON)-like data which is a pressure
measurement from the BMP280, Roll, Pitch, Yaw, and Linear Acceleration measurement from
the MPU6050, and finally GPS location from SIM7600. This data will then be retrieved and
cleared by an application. We will also be storing commands received from the application by
Firebase which is shown in the example below:

25

Figure 17: Firestore commands for data collection

Similar to the Sensor Data collection, the Command collection will be retrieved and deleted by
the drone for processing. The main issue with Firestore is that storing images as Base-64 is
compute intensive. This is a problem when sending frames from the drone to store onto Firebase.
However, this is where storage comes in which is another service provided by Firebase.

Figure 18: Firebase storage for frames

26

Storage, as shown in the image above, is specifically used for seamlessly storing files and
providing an identification for these files as URLs. We can easily collect these frames one at a
time for displaying on our application by also performing HTTP requests.

Note: We mentioned how the application explicitly connects with the Firebase, however in the
next section, we will discuss what the application exactly is.

Note: Firebase is a medium that we are currently trying to remove. If we are able to remove
Firebase, we will directly send the document data to the Application from the Drone without
Firebase. This is not mentioned in the 2.4.5 Application Level.

2.4.5 Application Level

As mentioned in the previous section, we discussed that the application will retrieve Sensor Data
and send Commands. The application comprises two subparts: Boost C++ Backend and
TypeScript Frontend.

Boost C++ Backend:
Boost is an industry standard networking library that supports multiple protocols such as HTTP,
TCP, and Websockets. We will be utilizing HTTP Requests to retrieve data from the Firestore
and Storage. Retrieving the frames and the sensor data will open multiple doors to ML
processing. For example, we can run object tracking algorithms on the frames we receive.
Afterwards, we will send the data, unprocessed or processed, to our TypeScript Frontend.

TypeScript Frontend:
The TypeScript frontend acts as a command control for the drone. Essentially, the frontend will
provide all of the necessary information/visuals to give an understanding of what the drone is
actually doing to the pilot. For example, we will have unit-circle-like charts to display roll, pitch,
and yaw, and a visual for the altitude reading. We will also provide a real-time video feed on the
command control as well as a google map to show location of the drone.

27

Figure 19: Current frontend application UI

2.5 Tolerance Analysis

Looking at our entire design, we anticipate that the drone’s cellular capabilities will be the most
difficult to implement and pose the greatest risk to our plan. The cellular module we plan to use,
the SIM7600, theoretically should support 4G connectivity and up to 5 Mbps upload speeds. This
would be enough to stream video at a frame rate higher than we expect to achieve; however,
there is not much information available on the usage of this chip in a drone setting.

Camera Data Calculation:
Resolution: 640x480 pixels
Color Depth: 24 bits per pixel (3 bytes per pixel for RGB)
Frame Rate: 5 FPS (as specified)

Raw Frame Size:
Pixels per frame = 640×480 = 307,200 pixels
Raw size per frame = 307,200 × 3 (bytes per pixel) = 921,600 bytes
Using the 10:1 compression ratio (JPEG Compression (Lossy)), the compressed frame size is:
921,600 / 10 = 92,160 bytes per frame

At 5 frames per second, the camera data rate will be:
Data rate for camera = 92,160 bytes per frame×5 frames per second = 460,800 bytes per second =
460.8kB/s

Data rate for sensors = 50 bytes per second

The total data rate for the camera and sensor data is:

28

460,800 bytes per second+50 bytes per second = 460,850 bytes per second

The protocol overhead is:
Overhead = 460,850×0.05 = 23,042.5 bytes per second ≈ 23,043 bytes per second
So, the total data rate is 0.483893MB/s × 8 = 3.87Mbps

The SIM7600 module supports LTE upload speeds of up to 5 Mbps. With the total data rate
calculated as 3.87 Mbps, we are well within the limits of the SIM7600's upload capacity on a 4G
LTE network.

This is within the 5 Mbps upload limit of the SIM7600 on an Long Term Evolution (LTE)
network, so the system should work under these conditions without hitting bandwidth
limitations.

29

3 Testing and Demonstration

For the purposes of testing our project, we will spend a sizable amount of time unit testing each
of the individual components involved in the drone’s physical hardware, as well as electrical and
software subsystems. To the best of our ability, we will ensure reliability, stability, safety, and
robustness of our drone before flying it in the air. When we are confident that our complete drone
system is ready for in-air testing, we will first need to register our drone with the Federal
Aviation Administration, since we anticipate our drone will weigh more than the unlicensed limit
of 0.55 lbs. This process is straightforward, but requires an additional $5 registration fee.

Upon registering our drone, we will then be able to fly and test our drone in-air. However, many
high-traffic outdoor areas on campus, such as quads, do not allow the usage of drones. We have
identified some local fields that should serve as ideal locations for testing our drone, since there
is little to no civilian presence; however, we must first confirm with the university or local
government that these spaces are free for drone use. For the Final Demonstration, we will be able
to show the drone’s bespoke software suite and basic electronics indoors, without flying the
drone. We will then either supply a pre-recorded video of the drone’s in-flight performance,
characteristics, and features, or perform an in-person exhibition of our drone flying in the air if a
suitable location is close enough.

30

4 Cost and Schedule

4.1 Cost Analysis

PCB Part Link Amount Cost per Part Total Cost

2.2nF capacitor https://item.szlcsc.c
om/15869.html

5 $0.001 $0.005

10uF capacitor https://item.szlcsc.c
om/362304.html

8 $0.017 $0.136

100nF capacitor https://item.szlcsc.c
om/362304.html

1 $0.002 $0.002

10nF capacitor https://item.szlcsc.c
om/362304.html

1 $0.002 $0.002

LESD5D5.0CT1G https://lcsc.com/pro
duct-detail/TVS_ES
D5Z5V0C_C12921

1.html

3 $0.02 $0.06

1N5819HW-7-F https://item.szlcsc.c
om/13409.html

1 $0.028 $0.028

CON22X1 2 $0 $0

XL-1608SURC-06 https://item.szlcsc.c
om/221679.html

1 $0.003 $0.003

L8050QLT1G https://www.diodes.
com/assets/Package
-Files/SOT23.pdf

2 $0.012 $0.024

BSS138_C713688 https://www.diodes.
com/assets/Package
-Files/SOT23.pdf

2 $0.023 $0.046

10kΩ resistor https://www.mouser
.in/datasheet/2/447/
PYu_RT_1_to_0_01
_RoHS_L_11-1669

912.pdf

7 $0.001 $0.007

1kΩ resistor https://www.mouser
.in/datasheet/2/447/

1 $0.001 $0.001

31

PYu_RT_1_to_0_01
_RoHS_L_11-1669

912.pdf

4.7kΩ resistor https://www.mouser
.in/datasheet/2/447/
PYu_RT_1_to_0_01
_RoHS_L_11-1669

912.pdf

1 $0.001 $0.001

5.1kΩ resistor https://item.szlcsc.c
om/323315.html

1 $0.001 $0.001

47.5kΩ resistor https://item.szlcsc.c
om/323315.html

1 $0.001 $0.001

22.1kΩ resistor https://item.szlcsc.c
om/323315.html

2 $0.001 $0.002

PTS645SH50SMTR
92LFS

https://item.szlcsc.c
om/279067.html

2 $0.123 $0.246

SK6812MINI-HS https://img.jlc.com/
pdf/applyPasteCom
ponent/2021-11-17/
554769A/a77f6abd5
80f4801839c6cef98
018a08/SK6812MI

NI-HS.pdf

1 $0.103 $0.103

SGM2212-3.3XKC
3G/TR_C3294699

https://item.szlcsc.c
om/410724.html

1 $0.661 $0.661

CP2102N-A02-GQ
FN28

https://item.szlcsc.c
om/245064.html

1 $2.464 $2.464

BMP280 https://atta.szlcsc.co
m/upload/public/pdf
/source/20200702/C
83291_F39E84AB7
DFC569A4C7554F

8659640A1.pdf

1 $3.141 $3.141

MPU6050 https://www.lcsc.co
m/product-detail/Att
itude-Sensors_TDK
-InvenSense-MPU-
6050_C24112.html

1 $7.28 $7.28

32

U-F-M5DS-W-3 https://item.szlcsc.c
om/157120.html

1 $0.087 $0.087

ESP32-S3-WROO
M-1-N4R8

https://www.mouser
.cn/datasheet/2/891/
Espressif_ESP32_S
3_WROOM_1_1U_
Preliminary-253017

1.pdf

1 $4.24 $4.24

Table 5: Bill of materials for components on the PCB

External Parts Link Amount Cost per Part Total Cost

SIM7600 https://www.aliexpr
ess.us/item/3256806
596464964.html?sp
m=a2g0o.productlis
t.main.59.44f0spbW
spbW99&algo_pvid
=11478075-80d6-45
9c-96f0-061d85809
414&algo_exp_id=
11478075-80d6-459
c-96f0-061d858094
14-29&pdp_npi=4

%40dis%21USD%2
163.00%2131.50%2
1%21%2163.00%21
31.50%21%402101f
9341728006940775
7053e8ead%211200
0038282768379%2
1sea%21US%210%
21ABX&curPageLo
gUid=r1tX8CwKK
EGJ&utparam-url=s
cene%3Asearch%7
Cquery_from%3A

1 $31.50 $31.50

Servo 4 pack https://www.amazon
.com/Micro-Servos-
Helicopter-Airplane
-Controls/dp/B07M
LR1498/ref=sr_1_6
?crid=PUEGKW6F
VXXS&dib=eyJ2Ij
oiMSJ9.POZxW8ict

2 $7.99 $16

33

f28-1c0EFTfUjj_M
oyYfzzsuC5MMwj
T6rbZ6G91lio_kdzj
sWDqFwzZbVMuH
W53QXTXvd5kfqb
GZ_4d_9icku_pdEr
98YMVePwnvhxa5
2B90b00LyTQ8Tn
L-DZklUO3KZNFF
lB7HpCQR8_ca0jra
mEaUlm04ka3fsdF
BRvF3x9cGyVNL1
z3-DReahCVnicuvS
O0enQeTQE23sQL
zZxcF60amqaSQhC
uLd5Yd-mbc3bFI3
DGxrgHIPl17nmkR
WNLWt1hY3yUiX
9Mt_HGD_nZ_mD
TluwG90UBf28.8t6
nO3l5BkW67_XO

UMF2VkWKubaXn
Jqess4rTP0Tey4&di
b_tag=se&keyword
s=servos&qid=1728
005772&sprefix=se
rvo%2Caps%2C229

&sr=8-6

Brushless
Motor/ESC Combo

https://www.amazon
.com/abcGoodefg-B
rushless-Propeller-

Quadcopter-Helicop
ter/dp/B08DY19WF
1/ref=pd_bxgy_d_s
ccl_2/145-9217241-
3264016?pd_rd_w=
iN3rT&content-id=
amzn1.sym.3858a3
94-39a9-4946-90e6-
86a3153d2546&pf_
rd_p=3858a394-39a
9-4946-90e6-86a31
53d2546&pf_rd_r=
BSCCQM55J3P06J
D9JV76&pd_rd_wg
=EgFSP&pd_rd_r=
4d7fbff9-802b-43c1

1 $22.99 $22.99

34

-9fb4-221ec2b3491
9&pd_rd_i=B08DY

19WF1&psc=1

OV7670 https://www.amazon
.com/HiLetgo-OV7
670-640x480-0-3M
ega-Arduino/dp/B0
7S66Y3ZQ/ref=sr_
1_1?crid=Y2KEXE
YXO2R6&dib=eyJ
2IjoiMSJ9.3d2Qqhh
wm1oAQVdz5II2g
BVP-XYfhrvZEC6
77kD3bbwEFy2YO
NZiRuwTUQjFNbl
08UPuqGT5L5I6Vs
ulczqWKGTnCUU
wYj1o-3UVTVpYu
_oEgGP37GiyEUx2
_h5676mzxe0BoTv
O4Es1pPm6jFQgE
C4cJi1zVX9m_FhV
sdx5mhvEApf25G
QhW_-ph-m4RSPs
yeb3d2ex9CuOV5v
18oT8hBLQkfGqzL
_ewcm856F55qU_2
kFLugIlDzabTiDw
Md60f6e0TKjxniA
FFMLfSBwO8FnvJ
_bqL6xdGy-YurQA
uZk.PsfSB2VMsI9

XMoLS-nyL2aNId5
GToJBwaCgsDUw
RiL4&dib_tag=se&
keywords=OV7670
&qid=1728006821
&s=electronics&spr
efix=ov7670%2Cel
ectronics%2C95&sr
=1-1#customerRevi

ews

1 $8.99 $8.99

12V Lipo battery https://www.amazon
.com/Battery-Dean-
Style-Connector-Par
kzone-Airplane/dp/

1 $16.99 $16.99

35

B077P73SDS/ref=sr
_1_2?crid=2IJUMK
OXHLQG6&dib=e
yJ2IjoiMSJ9.WGM
943GUBs6WFEqw
1HOii7CS4E28O1
YJSkVPXgPEn8fm
5xPVVyad8bka-KO
O1cMxqOvRRews

EiQDMceNtbGWaT
fTedtHZ8G1zDv4C
B7i-9U2VVVFRoS
LHRTxaPwd1AtHH
1faD_sLi7bN2EW
wQ84X9Xqa7XuQ
1wGLOngwwxJTV
w4Rd6daXr94Vxof
o7t2y8i0W96Emw
W8MEYQ4guIuLL
OmRrFr212QEVZ
mtmVOJQYuz-gM
mzO_Yudu88bFlare
W1LK5GDXT0Zb-
lo0akWMAU0MBq
cmvPoCGkBoK2bE
HCuPYQ.oCDOLx
ATZB3dxKqLVCdI
sYe89zpy7zKxcVx
KfC8ag8w&dib_tag
=se&keywords=12
%2BV%2Blipo&qi
d=1728006567&s=t
oys-and-games&spr
efix=12%2Bv%2Bli
po%2Ctoys-and-ga
mes%2C99&sr=1-2

&th=1

12 V Lipo Charger https://www.amazon
.com/SUPULSE-Ba
ttery-Charger-7-4-1
1-1V-B3V2/dp/B09
9K8XFG6/ref=pd_b
xgy_d_sccl_1/145-9
217241-3264016?p
d_rd_w=iN3rT&co
ntent-id=amzn1.sy

m.3858a394-39a9-4

1 $13.99 $13.99

36

946-90e6-86a3153d
2546&pf_rd_p=385
8a394-39a9-4946-9
0e6-86a3153d2546
&pf_rd_r=BSCCQ
M55J3P06JD9JV76
&pd_rd_wg=EgFSP
&pd_rd_r=4d7fbff9
-802b-43c1-9fb4-22
1ec2b34919&pd_rd
_i=B099K8XFG6&

psc=1

Foamboard https://www.dollartr
ee.com/black-foam-
boards-20x30-in/25

957

3 $1.25 $3.75

Table 6: Bill of materials for components not on the PCB

Name Hourly Rate Total Hours Total (x2.5)

Aditya $50 150 $18750

Kevin $50 150 $18750

Lohit $50 150 $18750

Total Labor Cost: $56250

Table 7: Labor costs for all members

The total cost for our complete drone system, including the hardware components and labor, is
approximately: $56368.086.

4.2 Schedule

Week Tasks Responsibility

9/29 1) Complete Design Document and Proposal
Regrade
2) Complete initial design of schematic and
PCB

1) Everyone
2) Lohit

10/6 1) Prepare for Design Review 1) Everyone

37

2) Review schematic with experienced
individuals
3) Begin prototyping drone shell
4) Conduct testing on network stack
(frontend/cloud/backend)

2) Aditya
3) Lohit and Kevin
4) Lohit and Aditya

10/13 1) Complete Team Evaluation I
2) Make revisions to PCB
3) Continue testing on network stack
(SIM7600)
4) Construct drone shell

1) Everyone
2) Lohit
3) Aditya and Kevin
4) Lohit and Kevin

10/20 1) Make revisions to PCB
3) Unit test sensors
3) Unit test servos and rotors
4) Complete frontend UI

1) Lohit
2) Aditya
3) Kevin
4) Lohit and Aditya

10/27 1) Make revisions to PCB
2) Test and verify microcontroller
3) Code primary embedded control loop
4) Assemble and test complete drone hardware

1) Lohit
2) Aditya and Kevin
3) Kevin
4) Lohit

11/3 1) Complete Individual Progress Reports
2) Make revisions to PCB
3) Code sensor modules

1) Everyone
2) Lohit
3) Aditya and Kevin

11/10 1) Perform embedded software debugging
2) Perform test flights and refine flight
characteristics

1) Aditya
2) Lohit and Kevin

11/17 1) Complete Team Contract Fulfillment
2) Organize Mock Demonstration materials
3) Conduct flight controls refinements
4) Conduct general debugging

1) Everyone
2) Kevin and Aditya
3) Lohit
4) Everyone

11/24 (Fall
Break)

Fall Break Fall Break

12/1 1) Prepare Final Paper
2) Prepare Final Presentation
3) Prepare Demonstration

1) Kevin
2) Aditya
3) Lohit

38

12/8 1) Complete Final Paper
3) Checkout lab materials

1) Everyone
3) Aditya

Table 8: Schedule and tasks for all members

39

5 Ethics and Safety

Ethical Issue: The drone’s ability to provide real-time video surveillance and tracking in public
or private spaces raises serious concerns about privacy. Since drones may operate in
environments where individuals have a reasonable expectation of privacy, such as homes or
sensitive locations, the deployment of the drone has to be properly considered.

● IEEE/ACM Code of Ethics: Both the ACM Code of Ethics (section 1.6) [3] and the IEEE
Code of Ethics (section 1) [4] emphasize respecting the privacy and autonomy of
individuals. The project must avoid infringing on people's right to privacy.
Prevention Measures: To avoid privacy violations, the drone should have defined
operational protocols, such as geographic boundaries or “no-fly” zones, to avoid areas
where privacy could be compromised. Additionally, transparent communication with the
public about the drone's use and purpose can help to mitigate privacy concerns.

Ethical Issue: Since the drone collects and transmits sensitive data, including video feeds and
sensor data, there is the potential risk of data breaches or tampering.

● IEEE/ACM Code of Ethics: Section 2.9 of the ACM Code of Ethics [3] stresses the need
to design systems that protect the privacy and security of data. The IEEE Code of Ethics
also advocates for ensuring data security and avoiding harm (section 1) [4].
Prevention Measures: To ensure data security and integrity, encryption protocols should
be applied to the communication channels (e.g., TCP encryption methods). Additionally,
multi-factor authentication (MFA) and strict access controls should be enforced,
especially if cloud storage is used.

Ethical Issue: Drones can pose physical risks, such as collisions with buildings, people, or
wildlife, or interference with other airborne vehicles. Ensuring the physical safety of the public is
a critical consideration in both the design and operation of the drone.

● IEEE/ACM Code of Ethics: The IEEE Code of Ethics emphasizes prioritizing public
safety (section 1) [4]. Similarly, the ACM Code of Ethics (section 1.2) stresses the
responsibility to avoid harm [3].
Prevention Measures: The drone should be equipped with collision avoidance systems
(ECS shutdown on command) and programmed to adhere to established FAA drone
regulations, including maintaining a safe altitude and distance from populated areas [5].
Geofencing technology can also ensure the drone does not operate in restricted or
hazardous areas. Regular maintenance checks and firmware updates should be part of the
operational protocol to avoid malfunctions.

Ethical Issue: Deploying drones in public spaces without the public’s consent or knowledge may
undermine trust and raise concerns about government or institutional overreach. Citizens may

40

feel uncomfortable or surveilled if drones are present in their neighborhoods or public spaces
without clear communication.

● IEEE/ACM Code of Ethics: The ACM Code of Ethics (section 1.7) emphasizes the need
to honor confidentiality and avoid misleading the public [3]. The IEEE Code of Ethics
underscores the importance of transparency and honesty (section 5) [4].
Prevention Measures: To address this, it is important to work with local law enforcement
and municipal agencies to ensure transparency regarding how, when, and where the
drones are deployed. Regular public consultations and open communication channels will
help maintain trust. Additionally, signage or notifications should be placed in areas where
the drone is actively surveying.

Ethical Issue: The project must adhere to relevant federal, state, and local regulations governing
drone usage. This includes obtaining necessary certifications from the Federal Aviation
Administration (FAA) and following safety regulations.

● IEEE/ACM Code of Ethics: Both the ACM and IEEE Codes of Ethics (ACM section 1.5
[3] and IEEE section 7 [4]) stress the importance of abiding by applicable laws and
regulations.
Prevention Measures: In Champaign, Illinois, the drone system must comply with FAA
Part 107 regulations governing the operation of unmanned aerial vehicles (UAVs) [5].
This includes rules about keeping the drone within visual line of sight, avoiding flying
over people without waivers, and operating during daylight hours. Additionally, all
operators should receive proper drone pilot certification. The system should include
built-in compliance features, such as geo-fencing to prevent the drone from flying in
restricted areas (e.g., near airports) [6].

Safety Concern: Mechanical or electronic failures in critical drone components, such as the
propulsion system or servos, could lead to accidents, resulting in potential harm to people,
property, or the drone itself.

● Prevention Measures: Regular maintenance and pre-flight inspections will be mandatory
to ensure all components are functioning properly. The drone will undergo routine
performance checks to detect wear and tear early. Redundant systems should be
implemented for critical functions, and real-time diagnostics will monitor the drone’s
systems during operation. This aligns with the IEEE Code of Ethics, which emphasizes
prioritizing public safety (section 1), and the ACM Code of Ethics (section 1.2), which
stresses the responsibility to avoid harm.

Safety Concern: Drone operation in sensitive environmental areas, such as wildlife preserves or
nature reserves, could disrupt ecosystems or harm wildlife.

● Prevention Measures: The drone will be programmed with geofencing technology to
avoid sensitive environmental areas. Specific operational protocols will be developed in

41

collaboration with environmental agencies to ensure minimal disturbance. Flight altitude
and duration will be adjusted in these areas to reduce any environmental impact. This
complies with the IEEE Code of Ethics (section 1) and ACM Code of Ethics (section
1.2), which focus on avoiding harm.

Safety Concern: Loss of communication between the drone and the backend system could result
in erratic or unsafe behavior, potentially causing accidents or loss of the drone.

● Prevention Measures: The communication system will incorporate failsafe protocols,
such as retaining the current state, predefined location (home point) in case of a signal
loss. Additionally, signal encryption and interference mitigation strategies (e.g.,
frequency hopping) will be used to ensure stable and secure communication. Regular
testing in various conditions will be performed to assess the reliability of the
communication link. This aligns with the ACM Code of Ethics (section 2.9) and IEEE
Code of Ethics (section 1), which advocate for data security and reliability.

Safety Concern: The drone's batteries pose a fire hazard, especially in cases of overheating or
physical damage.

● Prevention Measures: The drone will use certified, high-quality batteries with integrated
thermal management systems to prevent overheating. The battery compartment will be
reinforced to minimize the risk of damage in the event of a collision. Additionally, battery
levels will be monitored continuously during flight, and pre-flight safety checks will
include ensuring batteries are not overcharged or showing signs of wear. This supports
the IEEE Code of Ethics (section 1) regarding public safety and the ACM Code of Ethics
(section 1.2) regarding harm prevention.

42

6 Works Cited

[1] Illinois Department of Public Health, “EMS Median Response Times,” Illinois
Department of Public Health, 2019. [Online]. Available:
https://dph.illinois.gov/topics-services/emergency-preparedness-response/ems/prehospital
-data-program/emsresponsetimes.html. [Accessed: Sept. 12, 2024].

[2] H. K. Mell et. al., “Emergency Medical Services Response Times in Rural, Suburban, and
Urban Areas,” National Library of Medicine, Oct, 2017. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831456/. [Accessed: Sept. 12, 2024].

[3] ACM Code of Ethics and Professional Conduct, Association for Computing Machinery,
2018. [Online]. Available: https://www.acm.org/code-of-ethics. [Accessed: Sept. 17,
2024].

[4] IEEE Code of Ethics, Institute of Electrical and Electronics Engineers, 2020. [Online].
Available: https://www.ieee.org/about/corporate/governance/p7-8.html. [Accessed: Sept.
17, 2024].

[5] Small Unmanned Aircraft Systems (Part 107), Federal Aviation Administration, 2016.
[Online]. Available: https://www.faa.gov/uas/commercial_operators/part_107. [Accessed:
Sept. 17, 2024].

[6] Campus Drone Policy, University of Illinois Urbana-Champaign. [Online]. Available:
https://cam.illinois.edu/policies/drone-policy/. [Accessed: Sept. 17, 2024].

[7] Espressif, “ESP32 Series Datasheet Including,” 2024. Available:
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf.
[Accessed: Oct. 2, 2024].

[8] Free Tutorials, “MPU6050 breakout board details,” YouTube, Oct. 08, 2019.
https://www.youtube.com/watch?v=159I9QYUpNU. [Accessed: Oct. 2, 2024]..

‌[9] “Adafruit Learning System,” Adafruit.com, 2024. https://learn.adafruit.com/assets/93017.
[Accessed: Oct. 2, 2024].

[10] I. Garibi, “Center of Gravity, and Center of Lift,” PowerUp Toys, 2021.
https://poweruptoys.zendesk.com/hc/en-us/articles/204840965-Center-of-Gravity-and-Ce
nter-of-Lift. [Accessed: Oct. 2, 2024].

43

https://dph.illinois.gov/topics-services/emergency-preparedness-response/ems/prehospital-data-program/emsresponsetimes.html
https://dph.illinois.gov/topics-services/emergency-preparedness-response/ems/prehospital-data-program/emsresponsetimes.html
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831456/
https://www.acm.org/code-of-ethics
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.faa.gov/uas/commercial_operators/part_107
https://cam.illinois.edu/policies/drone-policy/
https://www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf
https://www.youtube.com/watch?v=159I9QYUpNU
https://learn.adafruit.com/assets/93017
https://poweruptoys.zendesk.com/hc/en-us/articles/204840965-Center-of-Gravity-and-Center-of-Lift
https://poweruptoys.zendesk.com/hc/en-us/articles/204840965-Center-of-Gravity-and-Center-of-Lift

‌[11] “How to Make Custom ESP32 Board in 3 Hours | Full Tutorial,” www.youtube.com.
https://www.youtube.com/watch?v=S_p0YV-JlfU. [Accessed: Oct. 3, 2024].

[12] “Drone as First Responder (DFR) | City of Fremont, CA Official Website,” Fremont.gov,
2023.
https://www.fremont.gov/government/citywide-initiatives/public-safety-initiatives/drone-
as-first-responders-dfr. [Accessed: Oct. 3, 2024].

‌[13] Steve King Ph.D, S. Major, and M. McCollum, “Drone as First Responder Programs: A
New Paradigm in Policing,” MITRE, Aug. 11, 2023.
https://www.mitre.org/news-insights/publication/drone-first-responder-programs-new-par
adigm-policing. [Accessed: Oct. 3, 2024].

‌[14] “CMOS OV7670 Camera Module,” Components101.
https://components101.com/modules/cmos-ov7670-camera-module-pinout-features-datas
heet. [Accessed: Oct. 3, 2024].

[15] “Drone as First Responder (DFR) - Skydio Public Safety Solutions,” Skydio.com, 2024.
https://www.skydio.com/solutions/public-safety/. [Accessed: Oct. 3, 2024].

‌

‌

44

https://www.youtube.com/watch?v=S_p0YV-JlfU
https://www.fremont.gov/government/citywide-initiatives/public-safety-initiatives/drone-as-first-responders-dfr
https://www.fremont.gov/government/citywide-initiatives/public-safety-initiatives/drone-as-first-responders-dfr
https://www.mitre.org/news-insights/publication/drone-first-responder-programs-new-paradigm-policing
https://www.mitre.org/news-insights/publication/drone-first-responder-programs-new-paradigm-policing
https://www.mitre.org/news-insights/publication/drone-first-responder-programs-new-paradigm-policing
https://components101.com/modules/cmos-ov7670-camera-module-pinout-features-datasheet
https://components101.com/modules/cmos-ov7670-camera-module-pinout-features-datasheet
https://components101.com/modules/cmos-ov7670-camera-module-pinout-features-datasheet
https://www.skydio.com/solutions/public-safety/

