
ECE 445
SENIOR DESIGN LABORATORY

DESIGN DOCUMENT

Card Game Token Play Aid

Team #39
NINKETH LAKSHMANAN (nikethl2@illinois.edu)

JACKSON PETERIK (peterik3@illinois.edu)
NATHAN SHIN (nsshin2@illinois.edu)

TA: Angquan Yu

September 30, 2024

1 Introduction...3
1.1 Problem..3
1.2 Solution..4
1.3 Visual Aid.. 5
1.4 High Level Requirements.. 7

2 Design...8
2.1 Block Diagram... 8
2.2 Subsystem Overview... 8

2.2.1 Microcontroller Subsystem...8
Microcontroller Subsystem Requirements...9

2.2.2 Power Subsystem..9
Power Subsystem Requirements..9

2.2.3 User Interface Subsystem... 10
User Interface Subsystem Requirements... 10

2.2.4 App Subsystem... 11
App Subsystem Requirements... 11

2.5 Tolerance Analysis...12
3 Ethics and Safety...13

3.1 Ethical Concerns.. 13
3.2 Safety Concerns... 13

Reference.. 14

2

1 Introduction

1.1 Problem
Playing trading card games such as Magic: The Gathering (MTG) can be fun, but due to the
intricacy of these games, players find themselves needing to use improvised items such as spare
cards, dice, or paper scraps to represent what is called a “token”. Tokens act as temporary
stand-ins for creatures or other game elements that aren't part of a player's physical deck. The
sheer variety and number of tokens can be difficult to manage during a game.

Methods used to keep track of tokens are often inconvenient, messy, and prone to causing
confusion—especially when players need to track specific game states like power/toughness,
abilities, or counters on each token. Furthermore, as games progress and the number of tokens
increases, managing the game board becomes tedious.

Our personal experience playing MTG has led us to frequently face these challenges. Not only is
managing tokens cumbersome, but it also interrupts the flow of the game. This inspired us to
create a hardware-based solution—a digital token display that streamlines gameplay and reduces
the physical clutter on the table

Tokens are integral to the gameplay in Magic: The Gathering and similar games. Often, they
have different power levels, abilities, and counters, which can change during a game. Tracking
all of this manually can lead to errors, slow gameplay, and detract from the overall experience.

While a mobile app could solve part of this problem by displaying token images, it is not a
perfect solution. Using an app would tie up a player's phone, and since games can last up to an
hour or more, this may be impractical. Phones are often needed for other purposes, such as
checking messages, using timers, or referencing rules. Constantly switching between these
functions during gameplay would disrupt the flow of the game. In a game where the board state
should be visible at all times, picking up your phone for a rule check would mean opponents
would be unable to see what your true board state is. A dedicated hardware solution avoids these
issues by freeing up the player's phone and providing a specialized, easy-to-use interface tailored
for gameplay.

Moreover, hardware allows for faster, more intuitive interactions—such as adding or removing
tokens or updating their statuses in real-time—without the hassle of navigating through an app
during gameplay.

3

1.2 Solution
The Tokenizer is a hardware-based solution designed to streamline token management in trading
card games like Magic: The Gathering by providing a dedicated, digital display for tokens. The
device will feature a card-sized screen that dynamically displays token images and their
associated attributes, such as power/toughness, counters, and abilities. This display allows
players to manage tokens in real-time using simple physical buttons, making it easy to add or
remove tokens, modify their attributes, and track game state changes without disrupting the flow
of gameplay. By using a specialized device instead of improvised methods, the Tokenizer ensures
accurate, organized, and efficient token tracking throughout the game.

The device is designed with practicality and ease of use in mind. It will feature a LCD screen
display, physical buttons for real-time interaction, and a rechargeable battery for long gaming
sessions. Players can manage tokens quickly and intuitively, even as game states become more
complex, with no need to rely on makeshift tokens or smartphone apps that can be cumbersome
and disruptive. The Tokenizer will maintain a clean, clutter-free gaming environment, allowing
players to focus on strategy rather than worrying about managing various makeshift items to
represent tokens.

In addition to the hardware, the Tokenizer will be paired with a companion mobile app, which
enables users to upload token images and data directly to the device via USB-C. The app will
integrate with online databases, like Scryfall, to provide access to official token art and game
data, ensuring that the device stays up-to-date with the latest token types. This seamless
interaction between the app and the device enhances the overall user experience, giving players a
fast, reliable, and aesthetically pleasing way to manage tokens during gameplay, and ensuring
that they never need to compromise on accuracy or convenience again.

4

1.3 Visual Aid

5

Figure 1: Board State With Device (Located at the Top)

Figure 2: Tokenizer General Layout

6

1.4 High Level Requirements
1. Physical Constraints:

○ The screen should be at least 4.2 inches to display tokens clearly.

○ Token images and associated data (e.g., power/toughness, counters) should be
legible from a distance of at least 60 centimeters.

○ The device should not exceed 100mm x 70mm x 10mm in size, making it
compact and portable.

2. Hardware Features:

○ The device should process user inputs (e.g., adding/removing tokens, updating
attributes) with a response time of less than 1 second.

○ The device should provide at least 4 hours of continuous use on a single charge.

○ The device requires enough storage space for at least 10 different token types at
once.

○ Each token type should support up to 16 unique variations, with the ability to
manage up to 255 identical copies of each variation.

3. Data Transferability:

○ The device should support efficient data transfer through a USB-C device,
allowing 10 unique tokens with their attributes to be uploaded within 2 minutes.

○ The mobile app should allow users to search for and select tokens from online
databases in under 30 seconds.

These requirements focus on the overall performance, usability, and functionality of the
Tokenizer, ensuring that it effectively meets the needs of players in managing tokens during
gameplay.

7

2 Design

2.1 Block Diagram

2.2 Subsystem Overview
2.2.1 Microcontroller Subsystem
The microcontroller is the "brain" of the device, handling data processing and communication
between subsystems:

● Microprocessor: This component manages the input from buttons, displays the correct
token images on the screen, and communicates with the mobile app for data transfers. It
will have built-in USB communication capabilities to enable data transfer between the
device and a phone.

● Memory: Extra RAM or flash memory will be used to store multiple token images and
any real-time updates, such as token state changes during gameplay.

● USB-C Communication: The microcontroller will also handle data transmission over the
USB-C port, allowing users to upload token images and data from the app seamlessly.

● Interactions: The microcontroller interacts with most of the components in the User
Interface. Namely, it is responsible for gathering input to the screen, buttons, and power
switch to control the entirety of the device. The contents of the screen will be dictated by
the token data that is stored within the storage of the microcontroller, and the buttons will
be used to change, add, remove, or apply status to the tokens and reflect those updates to
the screen. It will also control when the power is turned on or off.

8

Microcontroller Subsystem Requirements

The way the microcontroller must function is that it must receive data from a phone via a usb-c
device or through a non-volatile storage device (in the case of many tokens being saved) while
also being able to send that data to the screen. An IO expander and/or shift register may be
required for button and switch functionality, but in either case the microcontroller must be able to
control these functionalities. Additionally, to save data, the microcontroller must also have the
ability to send data to a non-volatile storage device.

Although the image of the token does not have to instantaneously appear, it should be relatively
fast, as a slow upload time would defeat the purpose of the design. A reasonable requirement is
that the microcontroller must be able to print to the screen within 1 second. For the button
controls however, the delay must be very minimal, so an approximate ~250 ms is reasonable for
this.

To verify the functionality of the microcontroller, power must be running through the controller
proving it is actually being used, then an arbitrary token should be selected to upload. A simple
stopwatch time can be used to record how long it takes for the microcontroller to print to the
screen. The button requirement is essentially fulfilled as long as inputs do not feel extremely
delayed.

2.2.2 Power Subsystem
This subsystem ensures the device remains powered efficiently during long gaming sessions:

● Battery: A flat LiPO battery will provide sufficient power for several hours of gameplay.
● Battery Management System (BMS): This component manages charging and power

distribution, ensuring the battery remains healthy and efficiently charges via a USB-C
connection. This may end up being two circuits, a battery protection circuit and a
charging circuit.

● Power Regulation: A buck-boost converter and voltage regulator will ensure stable
voltage to all components, even as the battery depletes, preventing any disruptions during
use.

● Interactions: The power subsystem acts in conjunction to all components that require
power, which includes every subsystem except the App Subsystem. The power subsystem
is responsible for allowing the microcontroller, buttons, power switch, and screen to
operate. Although all these components require power, the vast majority of the supply
will be allocated to the microcontroller and the screen.

Power Subsystem Requirements

The power subsystem essentially needs to not only be able to power various components of the
system but also sustain that constant supply of power for a considerable amount of time (at least
for the duration of one Magic the Gathering game). Finally, it must also have a battery that can

9

charge and recharge, giving it an aspect of portability by not being required to be plugged in at
all times.

The power subsystem needs to be able to provide 5.0V or 3.3V of power to each of the
components it is powering, depending on the voltage level that is required for the specific device.
Additionally, the power subsystem needs to be able to be charged via a usb-c cable at 5.0V of
power.

The verification for the power subsystem is quite simple. An observation of the screen displaying
light is enough to know that it is providing power to the screen, regardless of whether the output
on the screen is correct or not. If the screen is able to be changed in any form as represented
through the screen, then it is known that the microcontroller is also working (once again
regardless whether the changes are correct or not).

2.2.3 User Interface Subsystem
The User Interface subsystem is responsible for user interactions and displaying information:

● Buttons: Physical buttons that allow players to interact with the device, such as adding or
removing tokens, updating their attributes, or scrolling through different token displays.

● Switches: A power switch, as well as a switch to enable the editing of all identical tokens
simultaneously.

● Display Screen: A 4.2-inch E-Ink or LCD screen that shows the token images and
associated statuses (such as counters or abilities). E-Ink is considered for its low power
consumption, making it ideal for prolonged use during gameplay. LCD would allow for a
full color image, but would increase power consumption.

● Interactions: The user subsystem works mainly with the logic processing along with the
UI as a medium for transfer. The user interface acts as an output for the microcontroller,
changing based on how the microcontroller functions. Since the usb-c receiver will be
present in the UI, it acts as a median of transfer from the app to the storage of the
microcontroller.

User Interface Subsystem Requirements

The user interface functions as the front end of the entire system that is controlled by the user.
With the subsystem, the user can interact with the interface as well as see the changes on the
screen as a result of those interactions. For this to happen, all components within the subsystem
need to be functional and work together.

As for specific requirements, firstly, the screen needs to take input from the microcontroller to
know which card to display. Then, the buttons must be able to do the add/remove tokens, update
the status of tokens, and scroll/select from tokens that are currently saved, and of course the
screen should update accordingly to button inputs. The power switch needs to be able to turn the

10

entire system on or off, and finally the usb-c port needs to both charge the system and receive
data from the app subsystem.

To verify that this subsystem works, a “test game” can be run where each UI functionality is
used. Starting with the power button, if the screen can turn on and off, then it works. Next is the
uploading, if cards can be noticeably added to the storage, then it is functional. Additionally,
there needs to be an instance where the battery charge depletes, so that the charging functionality
can be verified as working. Finally, each button input needs to be tested to ensure it is doing the
correct thing, which includes adding/removing tokens, updating statuses of tokens, and selecting
through the currently saved tokens.

2.2.4 App Subsystem
The mobile app will interface with online card databases to retrieve high-quality card images and
corresponding game data. Users will be able to select tokens from these databases and upload
them to the device via USB-C.

● UI: The UI will allow users to select images from their phone or search cards online, and
add them to the local device to be sent over.

● USB Serial Communication: The app will send all card data from the phone to the device
over a Serial USB connection.

● API Access: The app will connect with online public databases to get official art for
tokens if wanted, such as Scryfall for Magic.

● Interactions: The app subsystem works mainly with the logic processing and the UI as a
medium for transfer. This subsystem functions as the data source for unique tokens, as the
tokens will be retrieved from an internet database, and then transferred to the device via
usb-c.

App Subsystem Requirements

The app subsystem allows users to search for, select, and upload game tokens to the logic
processing subsystem. This requires the app to retrieve images and game data from online card
databases, enabling users to interact with a dynamic interface where they can search for token
images, upload custom images, and send data to the device via a usb-c connection. To be
functional, the subsystem must establish a reliable connection to online databases, facilitate
efficient file transfers, and provide a user-friendly experience.
Firstly, the user interface must allow for navigation, including the ability to browse or search for
tokens and upload them to the device. The app must also support usb serial communication to
transfer selected images and associated game data from the phone to the device using a usb-c
connection. Then, API access is required to connect to public card databases such as Magic the

11

Gathering, ensuring high-quality official artwork and game data is available for users to import
into the system.

For verification of the subsystem, the UI functionality can be user tested, ensuring that token
search, selection, and upload features work within the app. USB serial communication can be
tested by simulating data transfers between the app and microcontroller, confirming successful
uploads without data corruption. Finally, API access can be validated by connecting the app to
various online databases, retrieving data, and confirming that the correct images and information
are imported into the app.

2.5 Tolerance Analysis
In order for the project to meet all of the subsystem requirements, certain mathematical precision
checks would need to be put in place. Namely, analysis on the battery life to ensure that it can
last for an entire game duration.

Having the battery last 4 hours may be difficult, considering the limited space available for a
battery, and the current draw of a screen. The estimated battery life (in hours) of the device can
be calculated using these equations

,𝑇 = 𝐶
𝐼 𝐼 = 𝑃

𝑉

V = voltage of battery (V), P = total power consumed(mW), I = current(mA), C = battery
capacity(mAh)

A battery of a size that would fit beneath the screen is rated at about 3.7V and 1400mAh, or 5.18
Wh.

In order to approximate the total power consumed, the sum of power used by each device must
be added.

𝑃� = 𝑃₁ + 𝑃₂ + 𝑃₃

= power used by screen, = power used by logic processing, = power used by buttons.𝑃₁ 𝑃₂ 𝑃₃
(All in mW)

and can be calculated via the equations, respectively.𝑃₁ 𝑃₂

,𝑃₁ = 𝑘 · 𝑊 · 𝐻 · 𝑓 𝑃₂ = 𝑉 · 𝐼

k = power drawn per pixel update (mW), W = width of screen in pixels, H = height of screen in
pixels, f = refresh rate (Hz). V = voltage rate(V), I = current drawn (mA)

12

, although part of the equation, would likely be negligible as power drawn from buttons is very𝑃₃
minimal.

An E-ink display on the high end consumes about .5μW of power per pixel update and has a
refresh rate of about 15 Hz, calculating the power usage with the screen size needed, this value is
derived

𝑃₁ = 0. 0005 · 400 · 300 · 15

Which approximates at about 900mW. can be calculated by assuming a typical𝑃₁ 𝑃₂
microcontroller current of 50mA and 5.0V rate.

𝑃₂ = 50 · 5. 0

Which approximates at about 250mW. Going back to the initial equation, we can calculate the𝑃₂
estimated battery life.

𝑇 = 1400
1150

3.7

The equation evaluates to approximately 4.504 hours, which is slightly more than the subsystem
requirement of 4 hours. While these calculations are not tested values, a 100% tolerance is more
than enough to feel safe in saying the project is feasible.

3 Ethics and Safety

3.1 Ethical Concerns
The ethical concerns of this project involve privacy. The user can gather data from any public
database, and this could potentially lead to private information being leaked. Another is that the
app must be sure to not collect any personal information of the user. To address the first issue, we
need to ensure our project can not collect data from databases that are not trustworthy. As for the
second issue, there will simply be no account feature for the app, and as a result personal
information will not be collected.

3.2 Safety Concerns
Many of the safety concerns are the possibility of any part of the system malfunctioning and
possibly electrocuting the user or exploding. To minimize this risk, the system should be well
enclosed, guaranteeing that if a part becomes damaged that it will not cause harm to the user.
Battery charging is managed by a well tested and trusted charging IC, and we are also using a

13

battery with a built-in protection circuitry, to ensure that the battery is safe. The case will be
designed in such a way to prevent movement of components, in order to protect from shorts.

Reference
"ACM Code of Ethics and Professional Conduct." Code of Ethics, Association for Computing
Machinery, n.d., https://www.acm.org/code-of-ethics.

"IEEE Code of Ethics." IEEE, Institute of Electrical and Electronics Engineers, n.d.,
https://www.ieee.org/about/corporate/governance/p7-8.html.

Scryfall. https://scryfall.com/.

14

