
ECE 445

SENIOR DESIGN LABORATORY

DESIGN DOCUMENT

AMADEUS

Augmented Modular AI Dialogue and Exchange User System

Team No.33

Qiran Pang (qpang2@illinois.edu)

Chengyuan Peng (cpeng14@illinois.edu)

Ryan Fu (ryfu2@illinois.edu)

TA: Jason Zhang

Professor: Cunjiang Yu

October 2, 2024

1. Introduction

Problem:

People have envisioned engaging in natural, conversational interactions with robots for many

years to fulfill emotional and lifestyle needs. However, most current interactive AI systems are either too

bulky or rely heavily on smartphones, detracting from the organic nature of such interactions. A more

tangible, interactive medium—such as a child talking to a familiar toy or a headset with built-in

AI—would offer a more immersive experience, which corresponds to an increasing market need[1].

Embedding a trained AI model in each toy or device would be cost-prohibitive since it would require

powerful and expensive embedded computers. To address this, we propose leveraging cloud-based AI

models, such as ChatGPT or similar character-driven AI, in our embedded system, which can process data

remotely and send responses back to the device in real time.

Solution:

We aim to develop an AI-based audio interactive interface, housed on a custom-designed PCB.

This system will capture audio from the user, transmit it via Wi-Fi to a cloud-based AI model for

processing, and play the AI’s response back to the user. The ESP32 microcontroller, equipped with Wi-Fi

and audio input/output capabilities, will serve as the core of our system.

High-Level Requirements:

● Response time: The AI model should receive audio input from the user within 5 seconds,

process it, and send a response back to the PCB within 5 seconds (response time may vary

depending on the chosen AI model and internet speed).

● Voice Clarity: The AI-generated audio must be clear and audible to the user, with a

Signal-to-Noise Ratio (SNR) larger than 20 dB.

● Multi-language support: The system will support voice input in three different languages:

Chinese, English, and Japanese.

Additional features:

● Indoor and outdoor modes: In outdoor mode, audio input will be processed only when a button

is pressed, and the system will apply noise reduction to improve voice clarity.

● Headphone/Bluetooth integration: This feature will allow users to interact with the device using

wireless headphones or earbuds.

● Text Display: The PCB will include a small display to show transcribed audio, offering a visual

representation of conversations for users.

2. Design

Block Design:

Subsystem Overview & requirements:

Subsystem 1: AI Web Client

Overview:

Our language model will be hosted on a cloud-based server. The local MCU will transmit audio to

the server via a WiFi module. We are collaborating with a local start-up that will provide some AI

models[2] for us. However, we also have the option to train our own AI model to create additional

characters using their interface or connect with other available AI models online such as ChatGPT.

Interaction:

The AI web client mainly interacts with the WiFi module of the ESP32 board to receive and send

audio and text signals.

Requirement: Verification:

- The AI should respond with an average

latency of no more than 10 seconds for a

10-second audio input, ensuring the user

receives the reply promptly.

1. Send various 10-second audio inputs to

the AI web client.

2. Measure the time from when the audio is

sent to the AI until the response is

received.

3. Conduct at least 10 tests, calculate the

average response time, and ensure it

meets the 10-second limit.

- AI models should support language inputs

in English, Chinese, and Japanese.

1. Perform tests with audio inputs in

English, Chinese, and Japanese.

2. Confirm that the AI accurately

understands the input audio in different

languages and responds accurately.

Subsystem 2: ESP32 with Wifi Capability

Overview:

The ESP32 with Wi-Fi capability serves as the core processing unit for the entire system. It

receives audio input from the microphone via the ADC, transmits the audio to the cloud-based AI model

via Wi-Fi, receives the processed audio response from the AI model, and then sends the output to the

audio codec for playback. This subsystem is also responsible for interfacing with the Bluetooth module

for Wi-Fi configuration and managing communications with the text display for visual output.

Interaction:

The ESP32 is the core of the system so it needs to interact with all other subsystems: audio I/O

system by receiving and sending audio signal through I2C and I2S, AI web client through WiFi, LCB

display to display text through I2C, Bluetooth module to receive WiFi configuration, debug module to be

debugged through UART, and power supply system to receive 3.3 V power.

Requirement: Verification:

- The ESP32 must establish a Wi-Fi

connection within 10 seconds of

receiving valid credentials and maintain

a stable connection with >99% uptime

during operation.

1. Input valid Wi-Fi credentials into the

ESP32.

2. Measure the time from when the

credentials are sent to when the ESP32

successfully connects.

3. Repeat this test 10 times to ensure

consistency. The average time must be ≤

10 seconds.

- The ESP32 must be able to transmit and

receive audio data at a minimum bitrate

of 64 kbps to ensure acceptable audio

quality.

1. Run the system continuously for at least

24 hours while connected to Wi-Fi.

2. Monitor and log any connection drops

during this period.

3. Calculate the total uptime and ensure it

exceeds 99%.

- The ESP32 must transmit and receive

audio data at a minimum bitrate of 64

kbps to ensure acceptable audio quality.

1. Measure the actual bitrate during audio

transmission using Wi-Fi.

2. Performmultiple tests with varying audio

inputs.

3. Confirm that the bitrate consistently

meets or exceeds 64 kbps.

Subsystem 3: Power System

Overview:

The system can be powered through either a USB connection or a 5V battery. The 5V supply

directly powers the I/O devices and the programming module. To provide 3.3V power for the

microcontroller and audio processing module, an LDO voltage regulator is used to step down the voltage.

Interaction:

The power supply system interacts with other subsystems by providing Vcc power to other

components, such as the ESP32 core and audio I/O processor.

Requirement: Verification:

- The power system must be able to use a

5V power supply source and power all

the modules in our system with their

1. Connect the 5V power supply to the

system.

2. Measure the output voltage provided to

each module (ESP32, Bluetooth, audio

respective power requirements (5V or

3.3V).

I/O, etc.).

3. Confirm that the appropriate modules

receive 5V or 3.3V as per their power

specifications.

Subsystem4: Bluetooth Communication

Overview:

A Bluetooth transceiver module will be connected to the ESP32 processor to receive user input

for configuring the internet connection. The user will transmit the internet passcode to the Bluetooth

transceiver, which will then relay this information to the microcontroller to establish the connection.

Interaction:

The Bluetooth module interacts only with the ESP32 microcontroller to configure the Wifi for

network connection.

Requirement: Verification:

- The Bluetooth module must successfully

receive credentials and send it to the CPU

within 5 seconds after the user sends it

out through Bluetooth.

1. Pair the Bluetooth module with a device

2. Send internet credentials via Bluetooth.

3. Measure the time taken for the

credentials to be received by the ESP32

CPU by setting a timer.

4. Repeat the test at least 10 times and

confirm that the average time is ≤ 5

seconds.

Subsystem5: Audio I/O & Processing

Overview:

The Audio I/O & Processing subsystem is responsible for capturing the user’s voice through the

microphone, converting the analog audio signals into digital form using an ADC, processing these signals,

and then sending the digital audio to the ESP32 for transmission. Once the AI response is received, it is

converted from digital to analog form using a DAC or Audio Codec, and the output is played through a

speaker.

Interaction:

The Audio I/O & Processing subsystem interacts on one side with the user by receiving audio

from the microphone and playing audio through the speaker and interacts with the ESP32 microcontroller

through I2C and I2S to communicate and send signals. In addition, it also receives power from the power

supply module.

Requirement: Verification:

- The microphone must have a sensitivity of

at least -42 dBV and a frequency

response range of 20 Hz to 20 kHz to

capture a full range of human speech

clearly.

1. Measure the microphone sensitivity using

a calibrated sound source and verify it

meets or exceeds -42 dBV.

2. Use a signal generator to input audio

frequencies across the range of 20 Hz to

20 kHz.

3. Record the output and verify that the

microphone captures the full range of

frequencies with consistent performance.

- The audio processing circuit must

maintain an SNR of at least 20 dB to

ensure clear audio input and output.

1. Input a known audio signal into the

system andmeasure the signal-to-noise

ratio (SNR) at the output.

2. Ensure that the measured SNR is at least

20 dB during normal operation.

3. Perform this test under different

environmental conditions (quiet and

noisy environments) to confirm consistent

performance.

Subsystem6: Text Display

Overview:

If we have more time after finishing the baseline, an additional feature of our project will be a text

display LCD. After the audio input / output are converted into texts, the LCD screen attached to the

microprocessor will display the text output. It will ideally display both the input from user and output

from AI on the LCD screen so users can make sure their audio is identified correctly while reading the

response from AI when they did not hear the audio clearly.

Interaction:

Through I2C, the LCD text display interacts with the ESP32 microcontrollers by receiving a text

to be displayed on the screen for the user to see,

Requirement: Verification:

- The LCD resolution must be at least

128x64 pixels so the user can see the text

1. Verify the resolution of the LCD by

checking the datasheet and

specifications provided by the

manufacturer.

2. Display a predefined test pattern on the

screen and confirm that the resolution is

at least 128x64 pixels.

- The LCD should display the text output

within 2 seconds of receiving data,

ensuring synchronization with audio

playback.

1. Input text data into the system and start a

timer when the data is sent to the LCD.

2. Measure the time it takes for the text to

appear on the LCD screen.

3. Perform at least 10 tests to confirm that

the text is consistently displayed within 2

seconds.

4. Verify that the LCD text display is

synchronized with the corresponding

audio playback.

Subsystem7: Debug Module

Overview:

The debug module will consist of a debugging serial port and a programmer. The serial port will

be temporarily integrated into the PCB for debugging the output from the ESP32 processor through

UART. Additionally, a programmer will be connected to the MCU for programming purposes through

USB.

Interaction:

The debug module is used by the user to debug and program the ESP32 microcontroller through

UART and USB.

Requirement: Verification:

- The debug module must support UART

communication at 115200 bps, with error

detection and handling to ensure reliable

data transmission.

1. Set the UART communication speed to

115200 bps on both the ESP32 and the

PC.

2. Transmit a series of test data packets

through the UART interface.

3. Verify that the data is received correctly

on the PC without errors using a terminal

emulator.

4. Perform multiple transmission tests

over a long duration to ensure consistent

and reliable communication.

Tolerance Analysis:

A common challenge that embedded system designers frequently encounter is insufficient storage space

of the processor, especially if the system is related to acoustics. The audio files will typically be large

enough to occupy a large portion of the flash memory.

Suppose a 30s audio data is sampled at a rate of 44.1kHz, memory overflow can easily happen:

Along the 30s duration, the total number of samples will be:

30 × 44.1k = 1323

Also, suppose each sample is of type int (4 bytes), the total number of bytes occupied by this sample will

be:

1323 × 4 = 5292 = 5.16 MB

As there will be both audio inputs and outputs that are processed by the MCU, the total size of the two

audio samples will be 5.16 ×2 = 10.32MB. 10MB is an incredibly large size to be processed – even a

modern laptop cache can hardly meet this requirement. Not to mention ESP32 processors are much less

powerful than a complete computer system.

Given that the best ESP processors only have an internal memory of 4MB with half of the storage already

occupied by built-in libraries, we will have very limited space to store the audio inputs and outputs. As

such, we must have a smarter implementation to reduce the sizes of the audio samples. We have come up

with the two following solutions:

1. Instead of storing the entire file in the flash, we could use the flash as a buffer. In particular, we

plan to use the flash as a buffer, only to store 5ms of the audio each time and send it to the cloud.

In that case, the buffer only needs to use about 30b for the audio storage.

2. A 32-bit audio sample is way more than enough to produce an audible audio output, hence we

should not waste our memory on unnecessary data. It is likely that we can compress all int32

audio samples into int8 forms, thus decreasing the data size from 10.32MB to 2.58MB. 2.5MB is

sufficient to be stored into a MCU without any external memory components.

The potential risk of this project is that ESP32’s flash size is 2 - 4 mb depending on the model of the chip,

which is relatively small for storing audio files locally. For example, it takes 600kb to store a 10s wav file,

which infers that if we receive a 1-minute audio file, its size will exceed the storage of the flash.

Consequently, instead of storing the entire file in the flash, we use the flash as a buffer. In particular, we

plan to use the flash as a buffer, only to store 5ms of the audio each time and send it to the cloud. In that

case, the buffer only needs to use about 30b for the audio storage.

3.Cost and Schedule
The total cost of development of our design is $42.677:

Part Number Functionality Quantity Unit Price

ESP32-S3-WROOM-1 ESP32
Microprocessor

2 $3.20

TC1262 - 33 5V - 3.3V LDO 3 $0.69

USB4085 USB-C Receptacle 3 $1.15

INMP441 On-board Microphone 1 $2.1

MAX98357A Digital Audio
Amplifier

1 $6.5

LCD 1602 16 * 2 LCD Display 1 $3.03

OLED 128x64 1.3"
I2C

128 * 64 OLED
Display

1 $7.08

333028 UART Serial Port 1 $5.96

SP-1504 Speaker 1 $2.03

0805_2012_10u 10u SMD Capacitor 15 $0.10

0805_2012_1u 1u SMD Capacitor 10 $0.08185

0805_2012_0.1u 0.1u SMD Capacitor 10 $0.05885

0805_2012_100k 100k SMD Resistor 5 $0.10

0805_2012_10k 10k SMD Resistor 10 $0.10

0805_2012_4.7k 4.7k SMD Resistor 10 $0.10

Schedule

Week Software aspect Hardware aspect Due

9/30 Implement basic
communication code
with AI API

PCB schematic design
and component
research

Design Document -
TR
Proposal Regrade - F

10/7 Prototype: Run
sample code on a

PCB layout design
and overall design

Design Review - T
PCB Review - F

development board review

10/14 Server Development Order PCB parts PCB Order - T
Teamwork evaluation
- W
Last Day for Machine
Shop - F

10/21 Finish communication
with server

PCB testing and
debug

N.A

10/28 Attach the server to
another voice-to text
model (Whisper, for
example)

Audio basic
functionality and PCB
reorder

N.A

11/4 Set up the code for
text display

Audio quality
improvement

Individual Progress
reports - W
Design Doc Regrade -
F

11/11 Add advanced
features such as smart
home control

LCD display
hardware debug

N.A

11/18 Prototype debug,
review

Prototype debug,
review

Mock Demo

11/25 Fall Break Fall Break Fall Break

12/2 Final Demo, debug,
work on final
presentation

Final Demo, debug,
work on final
presentation

Final Demo

12/9 Wrap up, work on
final paper

Wrap up, work on
final paper

Final Presentation

4.Ethics and safety

#User Privacy and Data Security

The AMADEUS project involves the collection and processing of user audio data, which raises privacy

and data security concerns. In accordance with the IEEE Code of Ethics, Section I.5, it is our

responsibility to ensure that the privacy of the user is protected and that sensitive information is not

misused. User data must be securely transmitted and stored, utilizing encryption both during transit

(Wi-Fi) and at rest on cloud servers. Compliance with global data privacy regulations must be maintained.

To avoid breaches, we will anonymize user data when possible and implement secure protocols for all

communications between the ESP32 board and cloud server.

#Bias in AI Models

As the project involves the use of AI, it is important to address the risk of bias in the AI models.

According to the ACM Code of Ethics, Section 1.4, we must ensure fairness in algorithmic processes.

Any AI system should be free of bias regarding race, gender, or other demographic factors. To mitigate

this, we will work with the developers of the AI model to ensure that training data is diverse and

representative. Additionally, continuous monitoring and auditing of AI model performance will be

established to prevent unfair treatment of users.

ce will be implemented, allowing users to review data policies and make informed decisions.

#Hardware Safety

The AMADEUS system involves the use of an ESP32 microcontroller and audio-related hardware

components. According to UL 60950-1 and IEC 62368-1 safety standards for audio-visual and IT

equipment, the PCB must be designed to avoid electrical hazards such as short circuits or overheating.

Additionally, any exposed parts of the system must be properly insulated to protect users from accidental

electrical shocks.

#Power System Safety

The power supply system uses both USB and battery-powered configurations. It is crucial to ensure that

these power sources are properly regulated to avoid potential fire hazards or battery explosions. The IEEE

Code of Ethics, Section I.1, requires us to prioritize public safety and welfare. Therefore, we will conduct

rigorous testing of the power supply circuit, ensure compliance with FCC Part 15 regulations regarding

electromagnetic interference, and adopt safety protocols for battery usage, such as overvoltage and

temperature protection circuits.

5. Citation

[1]Marr, B. (2024, July 2). Generative AI is coming to your home appliances. Forbes.

https://www.forbes.com/sites/bernardmarr/2024/03/29/generative-ai-is-coming-to-your-home-appliances/(

visited on 10/1/2024)

[2] FalcoTK. (n.d.). GitHub - FalcoTK/character-ai: Unofficial API for character.ai, Support chat v2,

support voice module (BETA TES). GitHub. https://github.com/FalcoTK/character-ai

[3] IEEE. “”IEEE Code of Ethics”.” (2016), [Online]. Available:IEEE - IEEE Code of Ethics(visited on

9/17/2024).

https://www.forbes.com/sites/bernardmarr/2024/03/29/generative-ai-is-coming-to-your-home-appliances/
https://www.ieee.org/about/corporate/governance/p7-8.html

