Household Water Monitoring System
ECE 445 Design Document - Fall 2024

Daniel Baker, Jack Walberer, Advait Renduchintala
Professor: Kejie Fang
TA: Pusong Li

Contents
1__Introductionl 2
(L1 _Probleml 2
M2 Solufionl . .« « « v v e e e 2
(L3 Visual Aidl 3
(1.4 High-Level Requirements| 3
4
2.1 Physical Design| 4
2.2 Block Diagram| 6
[2.3 Subsystem Block Descriptions, Requirements, and Verifications|. 7
[2.3.1 Dashboard System - Front-End| 7
[2.3.2 Dashboard System - APl Endpoint|{ 9
[2.3.3 Dashboard System - Database| 10
[2.3.4 Monitoring System - Microcontroller Subsystem| 11
[2.3.5 Monitoring System - Power Subsystem| 13
[2.3.6 Monitoring System - LCD Display Subsystem| 13
[2.3.7 Dashboard System - Ultrasonic Sensing Subsystem| 14
[2.4 Tolerance Analysis| 15
3__Cost and Schedulel 17
[3.1 Cost Analysis| 17
3.2 Schedulel 18
[4 Ethics and Safety]| 18
B Ciiations 19

1 Introduction

1.1 Problem

The problem we want to tackle involves the lack of transparency and control over water usage
in apartment settings. During some months’ utility bills, our cost for water consumption is
extremely high, and we're not sure why this is the case. This problem drove our curiosity
as this seemed like a general issue for many renters. Apartments typically charge tenants
for utilities, which include water consumption, but tenants are often unaware of where their
water usage is occurring and how much water each part of their apartment is using. This
lack of visibility often leads to confusion when utility bills are unexpectedly high. Without
detailed information, it becomes difficult to identify and manage specific areas of overuse,
which can be particularly frustrating for tenants trying to reduce their water consumption.

Furthermore, water overuse is not just a financial concern, as it’s also an environmen-
tal issue. Excessive water consumption depletes natural resources, increases strain on local
water supplies, and contributes to environmental degradation. In a broader sense, water
conservation is very important for sustainability and preserving ecosystems. Reducing un-
necessary water use can help reduce the effects of water shortages and ensure that natural
water resources are available for future generations.

Our goal is to design a device to address both of these issues by providing detailed insights
into where water is being used within an apartment. By developing a device that incorporates
each individual faucet, we can accurately measure and track water consumption in real-time,
allowing renters to pinpoint specific sources of water usage. Hopefully, this data will allow
users to make informed decisions about their water consumption habits, helping them to not
only save money on utility bills but also contribute to environmental sustainability through
responsible water usage.

1.2 Solution

Our product is a smart device designed to be easily attached to the end of faucets around
the house, allowing users to monitor water usage at each faucet in real-time. The device uses
ultrasonic sensors to track the amount of water dispensed from each faucet. As soon as the
faucet is turned on, the device begins measuring the flow of water, and this data is displayed
on the attached LCD screen. The screen provides count of the total volume of water that has
been used since the faucet was activated. This enables users to have immediate feedback on
their water consumption every time they use the sink, which promotes more mindful water
usage.

Our system is also scalable, allowing multiple devices to be installed on various faucets
throughout our apartment. All these devices are connected to a centralized dashboard,
which is accessible via a website. The dashboard provides a detailed breakdown of water
consumption for each faucet, including both specific and aggregated data over a given time
period (such as a month). For example, users can see how much water was used by the kitchen
faucet compared to the bathroom sink, allowing them to identify high-usage areas. The
dashboard will also display facts like the kitchen sink accounted for 50% of total household
water usage, with 100 gallons used in a month.

1.3 Visual Aid

Dashboard System

Water Usage
Dashboard N
Total Consumption:
16 Gallons

PCB,

Microcontroller Subsystem
HTTP P

Ultrasonic Sensors

i Faucet Pipe

......................................

5V Power Supply

...................................

LCD Display

Figure 1: Visual Aid of the Household Water Monitoring System

1.4 High-Level Requirements

1. Ultrasonic Sensing and Microcontroller Subsystems can accurately measure and cal-
culate flow rate and total water usage, determine flow with less than a 10% difference
of the real amount of water dispensed. We will measure the real amount of water
dispensed using a measurement cup.

2. The Front-End, API, Database, and Microcontroller Subsytems must provide conistent
and available water usage data. The webpage must load (fetch water usage data from
database) and display the dashboard within 1 second for 90% of requests assuming a
standard internet connection (10 Mbps). The database and dashboard data must be
consistent with the microcontroller data displayed on the LCD screen.

3. The Household Water Monitoring System must be resilient to network interruptions
and power fluctuations, ensuring continued operation and data integrity across all sub-
systems. If network connectivity is lost, the Microcontroller Subsystem will continue
collecting water usage data and store it in the Flash Memory. Once reconnected,
the Microcontroller Subsystem must automatically synchronize the stored data with
the Database Subsystem, no matter the time of day. This differs from the automatic
daily synchronization of water usage data from the Monitoring System. Additionally,
the Front-End Dashboard should display an alert indicating any data gaps caused by
outages, ensuring users are aware of any temporary data inconsistency. This will be
verified through stress testing, simulating both network and power interruptions.

2 Design

2.1 Physical Design

The physical design of the household water monitoring system focuses on the monitoring
device, which is designed for easy attachment to household pipes. The device will be secured
using two semicircle clamps positioned on either side of the pipe and held together with zip
ties, as shown in figure 2.

Pipe Clamps,
secured by zip ties

Q PCB, LCD Screen Compartment
yam\

—_

Ultrasonic Sensor Inserts 150
.0 In

Figure 2: Top view of the Household Water Monitoring System

To optimize the accuracy of ultrasonic sensor measurements, the design is asymmetrical.
Three sides of the device will be positioned close to the pipe to maintain a tight fit and avoid

4

unnecessary air gaps between the sensors and the pipe. The fourth side of the device will
protrude outward, making space for the PCB (Printed Circuit Board) and the LCD screen,
as depicted in figures 2 and 3.

As shown in figure 3, the ultrasonic sensors will be mounted at approximately a 45-degree
angle relative to the pipe. Inserts will secure the disk-shaped sensors in place, ensuring
stability and accuracy in the sensor measurements during water flow detection. This angled
configuration helps in improving the precision of time-of-flight measurements between the
Sensors.

Pipe Clamps

<if

S\

Ultrasonic Sensor Inserts

Figure 3: Side view of the Household Water Monitoring System

2.2 Block Diagram

Water Usage Dashboard System |

Front-End Database Subsystem

Dashboard AWS Database

DynamoDB
A

Git Hub
Pages

JavaScript

Get Water Usage Data

[Respons

API Endpoint I
AWS Gateway
Get Datab: dj
\lsaga Dat AWS = —
LAMBDA |~

[Response . Water Usage Data.

|

IRnpons-

[AEpp R

POST Request SPI Transfer

Water Usage Dat:

er Subsystem Ultrasonic Sensing Subsystem

Cosine W:

Ultrasonic Wave

Ultrasonic Sensor

[Ultrasonic Sensor |

A

AN
Water Usage Data Cosine Wave Output
33v
Power Subsystem
Wall Outlet
3.3V
LD117 Voltage
v | Barrel Connector
AC Current =

| Input Power

Figure 4: Block Diagram of the Household Water Monitoring System

2.3 Subsystem Block Descriptions, Requirements, and Verifica-
tions

2.3.1 Dashboard System - Front-End

This subsystem consists of a web-based dashboard hosted on GitHub Pages, designed to dis-
play water usage data collected from various household monitoring devices. The dashboard
provides a user-friendly interface that allows users to view detailed statistics of their water
consumption over time.

The dashboard will populate upon refresh of the page, where it will request water usage
data from backend services. The dashboard will initiate an HTTP GET request, where
AWS Lambda will serve as the intermediary service to fulfill the request.

After AWS Lambda gathers the water usage monitoring data from the database, it will
respond with a POST Request to the web-based dashboard. The web page will update its
table to reflect this new information of water usage per device.

Table 1: Front-End Subsystem - Requirements and Verification.

Requirement

Verification

e The webpage must load and
display the dashboard within 1
second for 90% of requests on a
standard internet connection (10
Mbps)

e Open the dashboard and initiate a data fetch
from the APIL.

e Use browser developer tools (e.g., Chrome Dev-
Tools) to measure page load time and verify it is
1000ms or below

e Repeat test across various devices such as lap-
tops, desktops, and mobile phones.

e When the user loads or initiates
a refresh of the page, the Front-
End Dashboard must perform an
HTTP GET request to a URL
given by AWS Lambda to indi-
cate its need for updated water
usage data.

e Open the dashboard and initiate a data fetch
using HTTP GET Request to AWS Lambda URL.
e Cross-check the GET request on AWS Lambda’s
developer tools and verify the endpoint was hit,
and the GET request is of the correct format.

e The dashboard must update
daily, given that AWS Lambda
is forwarding POST Requests of
water usage data that was given
from the Database Subsystem.

e Verify API Endpoint and Database Subsystems
are operating correctly through our requirement
and verification tables for those respective subsys-
tems.

e Check a POST request is hitting AWS Lambda’s
endpoint for the dashboard. e Verify the JSON
body within the POST Request is correctly trans-
ferred to the web page’s HTML document element
to ensure consistency.

e Verify the dashboard displays the water usage
that is consistent with the HTML document ele-
ment for the water usage data.

e The frontend must render prop-
erly on mobile devices with a
screen width of at least 320px.

e Use browser developer tools to simulate mobile
screens and verify proper display on different res-
olutions.

e Test on actual mobile devices (e.g., smartphones,
tablets) with varying screen sizes. e Verify the
JSON body within the POST Request is correctly
transferred to the web page’s HTML document el-
ement to ensure consistency.

e Ensure that all content is accessible and the
dashboard layout adapts to smaller screens with-
out horizontal scrolling.

2.3.2 Dashboard System - API Endpoint

The API Endpoint Subsystem serves as the core communication hub between the frontend
dashboard, the microcontroller (ESP32), and the database (DynamoDB). The core compo-
nent of this subsystem is AWS Lambda, which processes incoming requests and interacts
with the database, ensuring efficient data transfer between the components of the water
monitoring system.

To begin with, when the system records water usage data, the ESP32 microcontroller
calculates the water flow based on the ultrasonic sensors’ input (this is done using C or
C++). The microcontroller then sends the data to the API Endpoint Subsystem using
a POST request. This request is directed to an API Gateway to ensure that the correct
Lambda function is triggered. The API Gateway is configured to handle RESTful HTTP
requests (GET and POST) from both the ESP32 and the frontend. Once the POST request
is received, the AWS Lambda function is invoked. Lambda serves as a serverless backend,
meaning it runs code only when an API request is made, ensuring cost-efficiency and scala-
bility. The POST request includes data such as the device ID and water usage. The Lambda
function processes this data and stores it in AWS DynamoDB, a NoSQL database optimized
for high-speed data access and scalability. The data is stored in a structured format, typ-
ically with a primary key, we will be using DevicelD, and a timestamp for tracking water
usage over time. Similarly, when the frontend dashboard or the ESP32 requests usage data
via a GET request, the API Gateway routes the request to another Lambda function, which
queries DynamoDB for the relevant water usage data. Lambda retrieves the data, formats it
as JSON, and returns it through the API Gateway to the requesting client (either the fron-
tend or the microcontroller), which then displays the information to the user. This system
architecture ensures that all communication between the components is handled efficiently,
with AWS Lambda acting as the middleman for processing and relaying data, ensuring a
seamless flow of information between the monitoring devices, database, and dashboard.

Table 2: API Endpoint Subsystem - Requirements and Verification.

Requirement

Verification

e The API Endpoint Subsystem
must handle GET & POST re-
quests from the ESP32 microcon-
troller within a maximum latency
of 200 milliseconds under normal
operation.

e Set up a GET & POST request from the ESP32
to AWS Lambda using a known payload.

e Use a network traffic monitoring tool (e.g., Wire-
shark) or measure timestamps in the code to cal-
culate the time from the request being sent to
Lambda’s response.

e Record the latency and ensure it is less than or
equal to 200-300 milliseconds for 95% of requests.

e The Lambda function must pro-
cess and store each POST re-
quest payload in DynamoDB with
a success rate of 99% or higher.

e Send 100 POST requests from the ESP32 with
a known payload to AWS Lambda.

e Verify each entry in DynamoDB to ensure all
data was correctly stored.

e Ensure at least 99% of the requests are success-
fully stored in DynamoDB.

e The API Endpoint Subsystem
must return data to the ESP32
or frontend in JSON format with
correct data structure (DevicelD,
Timestamp, WaterUsed).

e Send a GET request to Lambda.

e Capture the response and check the data for-
mat.

e Ensure that the response contains the correct
JSON structure: {”DevicelD”: ”ID”, ”Times-
tamp”: "timestamp ”, ” WaterUsed”: ”value” }.

e The API Endpoint Subsystem
must return a status code of 200
for all successful requests and ap-
propriate error codes (400, 500)
for failed requests.

e Send a mix of valid and invalid GET and POST
requests to AWS Lambda.

e Monitor the returned status codes.

e Ensure that successful requests return status
code 200 and invalid requests return appropriate
error codes such as 400 or 500

2.3.3 Dashboard System - Database

The Database Subsystem for the water monitoring system is responsible for storing and
retrieving water usage data from our household. The primary technology used for this
subsystem is AWS DynamoDB, a highly scalable, low-latency NoSQL database. DynamoDB
is ideal for handling the frequent write and read operations that are generated by the water
monitoring devices and the dashboard, making it suitable for this application.

Each time the ESP32 microcontroller calculates water usage data, it sends a POST re-
quest to the API Endpoint Subsystem, which processes the data and stores it in DynamoDB.
The database is designed with a primary key structure, where each entry has a unique De-
viceID and a Timestamp as the sort key. This allows efficient tracking of water usage over
time for each device, making it easy to retrieve historical usage data for a specific faucet.
The database also stores additional data like the user-defined names of the devices (e.g.,
”Kitchen Faucet”, ”Bathroom Sink”), allowing for better tracking in the user dashboard.

10

Data retrieval is performed using GET requests from both the ESP32 (to display usage on
the LCD) and the frontend dashboard. DynamoDB will query to retrieve data based on spe-
cific time ranges or devices, allowing the frontend to display both individual and aggregated
water usage. The system is designed to handle large volumes of data with minimal latency,

ensuring the dashboard provides near-real-time updates of water consumption.

Table 3: Database Subsystem - Requirements and Verification.

Requirement

Verification

e The database must be able to
handle at least 1000 writes per
hour without data loss or corrup-
tion.

e Simulate 1000 POST requests within an hour
using Postman. e Verify that all records are cor-
rectly stored in DynamoDB by querying for the
total count. e Ensure that no data is lost or cor-
rupted after the test.

e The database must support
querying based on DevicelD and
Timestamp with correct filtering.

e Store water usage data with different DevicelD
values and timestamps.

e Send a GET request that queries DynamoDB for
data from a specific device and time range.

e Verify that the query returns the correct set of
data, filtered by DevicelD and time range.

e The database must ensure data
availability with an uptime of
99.9% or higher.

e Use AWS CloudWatch to observe uptime over a
period of one month.
e Verify that the database remains available 99.9%

of the time.
e Review logs for any downtime events and confirm
they are within acceptable limits.

2.3.4 Monitoring System - Microcontroller Subsystem

The microcontroller subsystem in this project utilizes the ESP32, a 3.3V system that serves
as the central control unit for data collection, signal processing, and communication within
the monitoring subsystem of the household water usage monitoring system.

The ESP32’s built-in 2.4 GHz Wi-Fi capability will be used to send HTTP POST requests
to AWS Lambda’s endpoint. This POST Request will have a JSON body containing update
water usage data for this specific monitoring device.

The ESP32’s built-in 4 MB flash storage will be used to store the water usage data in order to
always display the current usage to the device’s LCD screen. This storage will also be useful
in maintaining data consistency with the DynamoDB database in the case of network failure.

The ESP32’s Digital-to-Analog Converter (DAC) will generate sine wave signals to drive

the ultrasonic sensing system. Since the sensors are both transmitters and receivers, the
ESP32’s Analog-to-Digital Converter (ADC) will listen for signal reception. The ESP32 will

11

do onboard signal processing to the raw ADC data in order to filter out noise and accurately
calculate transmission time between sensors through the water pipe. This will involve tech-

niques such as threshold detection and Fast Fourier Transform.

The transmission time found through signal processing will be directly proportional to the

flow rate of water. We can use it to find the flow rate using the equation below:

v =[c?* AT]/[2 * L * cos(f)].

Taking the integral over time of this flow rate will show us the total water usage.

Table 4: Microcontroller Subsystem - Requirements and Verification.

Requirement

Verification

e The ESP32 must generate a sine
wave using the DAC to drive the
ultrasonic sensing system.

e Obtain an ESP32 breakout board and program
the DAC to generate a sine wave.

e Measure the DAC output using an oscilloscope
to ensure it generates a sine wave with the correct
frequency.

e The ESP32 must process the
signals from the ultrasonic sen-
sors and calculate transmission
time between the sensors.

e Using a signal generator, mock an ultrasonic sen-
sor receive signal

e Test the ADC input to verify the reception of
the signal from the generator

e Confirm the signal processing by checking the
processed data for noise reduction and accurate
threshold detection.

e Use a logic analyzer to verify the ESP32 calcu-
lates the correct transmission time by comparing
it to expected values from controlled test cases.

e The ESP32 must store water us-
age data in its 4 MB flash memory
and ensure continuous data avail-
ability to the 2.4GHz wireless sys-
tem and LCD screen.

e Simulate water usage data gathering by hard-
coding water usage into the flash memory.

e Confirm that the stored data can be correctly
retrieved and displayed on the LCD screen.

e Confirm that the stored data can be correctly
transformed to a JSON body within a POST Re-
quest to be sent by the wireless system.

e The ESP32 must send HTTP
POST requests to AWS Lambda

with the water usage data.

e Simulate a POST Request with a JSON body of
hardcoded water usage data

e Confirm on AWS Lambda that the endpoint is
being hit with the same JSON body

e Simulate network failure (not receiving OK re-
sponse, or receiving 400/500 response), and verify

ESP32 resents POST Request

12

2.3.5 Monitoring System - Power Subsystem

The Power Subsystem is designed to provide reliable and efficient power distribution to all
components within the a Monitoring Device of household water monitoring system.

The Power Subsystem receives a 5V input from a USB power source to be used by the
LCD screen and MCP6001 Op-Amp. It will also utilize the LD1117-3.3V linear voltage
regulator to additonally provide a 3.3V supply for the ESP32 Microcontroller.

The Power Subsystem will include a jumper-selectable voltage for signal input/output for
the ultrasonic sensing system. While the datasheet uses 3.3V for its example signal, we know
that a 5V signal amplified by the MCP6001 Op-Amp could be more effective when deriving
transmission time, ultimately leading to a more accurate flow measurement. Thus, we will
incorporate jumpers on each of the signal paths to the ultrasonic sensors, shorting the one
that we select.

Table 5: Power Subsystem - Requirements and Verification.

Requirement Verification

e The Power Subsystem must | @ Measure the 5V input voltage and the output
provide stable 3.3V and 5V power | voltage of the LD1117-3.3V linear regulator using
supplies. a multimeter to verify steady 5V and 3.3V outputs.

e The jumper-selectable signals | @ For the 3.3V signal path, measure the output of
for the ultrasonic sensors must | the ADC of the ESP32 using an oscilloscope. e
each provide reliable 3.3V and 5V | For the 5V signal path, measure the output of the
input/output signals. MCP6001 Op-Amp using an oscilloscope. e Verify
the switching between signal path configurations
through shorting jumpers by measuring the signal
at the input of the ultrasonic sensors using an os-
cilloscope.

2.3.6 Monitoring System - LCD Display Subsystem

The LCD Subsystem in the water monitoring device is responsible for displaying water usage
data. This subsystem uses a simple LCD screen that allows users to see how much water has
been used since the faucet was activated. It reads data through the SPI (Serial Peripheral
Interface) protocol, which is used for communication between the ESP32 microcontroller and
the LCD.

The SPI protocol is a fast, synchronous serial communication method that allows reliable
data transfer between the microcontroller and the LCD screen. It operates in a master-slave
configuration, where the ESP32 acts as the master and the LCD as the slave. The SPI bus
uses four lines: MOSI (Master Out Slave In), MISO (Master In Slave Out), SCLK (Serial
Clock), and CS (Chip Select). The microcontroller sends water usage data through the

13

MOSI line, synchronized by the SCLK, and the data is received and displayed on the LCD
screen in real time.

Since the LCD only needs to display numerical data, the simplicity of SPI ensures that
our LCD Subsystem can operate smoothly and display accurate water usage readings.

Table 6: LCD Display Subsystem - Requirements and Verification.

Requirement Verification

e The LCD must correctly dis- | @ Send a series of known values (100 test cases) to
play water usage values in a clear, | the LCD using SPI. @ Manually verify the accuracy
readable format with no data cor- | of the displayed values on the LCD. e Ensure that
ruption for at least 99% of up- | at least 99% of the values are displayed correctly
dates. without errors.

e The LCD must interface cor- | @ Connect the ESP32 to the LCD using the 4-wire
rectly with the ESP32 over a | SPI configuration. eSend data from the ESP32
4-wire SPI configuration (MOSI, | to the LCD and verify that the data is correctly
MISO, SCLK, CS). displayed. e Ensure that the communication works
without issues through the 4-wire interface.

2.3.7 Dashboard System - Ultrasonic Sensing Subsystem

There will be two ultrasonic sensors, each of them will be able to send and receive signals.
The sensors will be placed on opposite sides of the faucet at an angle of 45 degrees to the
faucet, while facing each other.

The ESP 32 will send a signal from its DAC, a sine function with frequency 1 MHZ
and magnitude 3.3V, to the sensors. This signal will then be amplified by an op amp. The
ultrasonic sensors can take input voltages up to 50Vpp so the closer the voltage is to that
the more accurate the measurements can be. The input voltage will not be that high, but
the op amp should get it above 5V. After receiving signals from the DAC, the sensor the
received it will send the wave through the faucet and received by the ADC pin. Then using
a different DAC, but the same signal, and a different ADC pin, another trial will be run,
but the signal will be sent in the opposite direction. In both these trials, the time that the
waves is travelling for will be measured. These measurements will be used to calculate the
time difference in the upstream travel time and downstream travel time. Using the time
difference we can calculate the velocity of the flow, and then the flow rate.

Components of this subsystem include just the ultrasonic sensors and whatever casing
they will held in on the faucet. We do not yet know how the sensors will be connected to
the board, but once we have the sensors we will know if we need header pins or if we can
solder directly on the PCB.

14

Table 7: Ultrasonic Sensing Subsystem - Requirements and Verification.

Requirement

Verification

e Receive a sinusoidal signal of
the proper magnutide from the
DAC of the ESP 32

e Using the breakout ESP 32, we will send a
signal to the sensors while they are not connected
to the facuet.

e Measure the sensor output using an oscilloscope
to ensure it generates a sine wave with the and
expected travel time based on the speed of sound
in air

e Send a signal from one ultra-
sonic sensor to the other through
a medium

e Using a signal generator or ESP32 send a voltage
and measure the reciever voltage on an oscilloscope
e Place a the sensors on either side of the sink,
with no water flow to make sure the waves can
pass through the material

e Must have a mechanism that
holds the devices at an angle of
45 degress to the faucet, and con-
firm they are lined up

e Use a protractor to confirm the angle is correct
e Send a test signal, with no water flow, through
the pipe to make sure they are lined up

e The Ultrasonic sensors will be
able to send and recieve signals
in both directs, and send the out-
put to the ESP32 for time calcu-
lations to happen

e Make sure signals can be sent in both directions
by connecting one input pin to DAC1 and the other
sensors to DAC2 and then one output pin to ACD1
and one to ADC2

e Send a signal from DACI, recieve at ADC1, then
wait a second and send one from DAC2 to AD2,
make sure each of the ADC pins recieved a signal
using the oscilloscope

2.4 Tolerance Analysis

Our project needs to measure amount of water coming out of a faucet. The main reason this
measurement would be off is timing. Two signals are sent across the ultrasonic sensors from
the DACs to the ADCs. The timing of these signals will give us the information we need to
calculate flow rate of the water. When a signal is sent from the DAC and received at the
ADC there will be some internal delay. The ESP32 runs at 80MHz. Using some calculations
below, here is the maximum amount of clock cycles that the timer can be off by to ensure a
measurement that is within 20 percent of the true value.

The approximate time it takes for a sine wave to cross the faucet is found by taking the
speed of sound through various mediums times the distance of the medium. The faucet this
product will be build for has .25in aluminum as a pipe encircling a .5in diameter spout for
water. Since the sensors are at 45 degrees, the distance of travel through the faucet is root
2 times these values times the velocity of sound in the medium. For the calculations the
distances were changed meters. 6320 m/s is the speed of sound in aluminum, and 1482 m/s

15

is the speed of sound in water. We need the flow rate of water up stream. Flow velocity can
be found by
Q=vA

where Q is flow rate, v is velocity and A is cross sectional area. Based on the average faucet
producing 2 gallons per minute (GpM) and the cross sectional area of the water spout to be
pi*(.25in*.25in). In SI units this is-

1.26 % 107*m?®/s = v % 1.266 * 10~*m?

Then, v = 0.995 m/s. So the velocity of the signal in water up stream is 1482 - .995 or about
1481 m/s.

(V2 % .00635m * (1/6320m/s)) + (V2 % .0127m * (1/1481m/s)) = t1

To get the time down stream we can just add the v flow to the velocity in water. So we get
1483 m/s.

(V2 % .00635m * (1/6320m/s)) + (V2 % .0127m (1/1483m/s)) = ¢2
Take the difference of these terms.
t1 = 1.35482 % 107°

t2 =1.35319 %« 107°

The time difference is on the scale of 10™8, andthatisthesametimescaleo fourclockcycle, whichis80M H z, sc
3clockcycles, theerrorwouldbeveryhigh. Becauseinthiscase, thetimedi f ferenceis1.6x10~8seconds, andthe
10~ 8seconds.So(1.6 — 1.25)/((1.6 + 1.25) * .5) = 25

This error is simple too high, so we will add an external device that can have a faster
clock cycle allowing us to gather accurate data.

16

3 Cost and Schedule

3.1 Cost Analysis

Part Manufacturer Quantity Price Total Cost
CONN PWR JACK 2X5.5MM SOLDER Same Sky 1 $1.02 $1.02
UpBright 5V AC/DC Adapter UpBright 1 $13.09 $13.99
IC REG LINEAR 3.3V 800MA SOT223 STMicroelectronis 1 $0.44 $0.44
IC OPAMP GP 1 CIRCUITSOT23-5 Mircochip Technaology 2 $0.70 $1.40
1 MHZ FLOW METER TRANSDUCER Unictron Technology Corporation 2 $26.30 $52.60
CONNRCPTUSB2.0 TYPEA 4POS R/A Same Sky 1 %$1.14 $1.14
IC RFTXRX+MCU BLE 48QFN Espressif Systems 1 $1.88 $1.88
AWS DynamoDB - Free Trial (25GB Free) AWS 1 $0 $0.00
AWS Lambda -Free Trial {1 million free queries/month) ~ AWS 1 $0 $0.00
AWS AP| Gateway-Free Trial (1 million free queries/mantt AWS 1 $0 $0.00
GitHub Pages - Free Version GitHub 1 %0 $0.00
128x32 Graphical OLED Module CrystalFontz 1 $3.76 $3.76
LD117 Voltage Regulator STMicroelectronis 4 $0.80 $3.20

$79.43

Figure 5: Bill of Materials (Links Uploaded with Spreadsheet)

For Labor, we expect the costs to be ($45/hr) * (2.5) * (60 hours) = $6,750 per team member.
The total costs in our bill of materials is $79.43 + Sales Tax (10%) + Shipping (5%), so our
total cost for parts will be $91.23 with tax and shipping. After incorporating the costs of
labor as well for 3 teammates, we believe the total cost will be $20,341.23.

17

3.2 Schedule

Week Task Person
Order parts for breadboarding Everyone
Set up AWS basics Advait
Week of 10/7 Begin PCB design for design + PCB review Daniel + Jack
Computation forwave thatwe want to transmit through
transducers Jack
Construct Front End Advait + Daniel
Week of 10/14 Breadboard ESP32 and begin integration with WIFI Jack + Advait
Submit PCB first round order with optional components Daniel + Jack
Breadboard ESP32 and begin integration with WIFI Advait
Week of 10/21 CAD mounts and device encasing Daniel + Jack
PCB revisions & Pass Audit!! Daniel
3d print mounts draft Advait
Solder PCB with ordered parts Daniel
Week of 10/28 Test transducers working with the device mounts Jack +Advait
Integrate Databse and API protocols with PCB Advait + Daniel
Modify device encasing/mounts Advait
Weekof 11/4 Revise finalized design Everyone
Test accuracy of water flow detection Jack
Week of 11/11 EI'ISL!TE alltest ca_sesfor st?ftware work (including edge) Daniel + Advait
Modify computations to align better accuracy Jack
|Week of11/18 Tweaking minor bugs (if any) and practicing presentation All of us I
Week of 12/2 Final Presentation AllofUs

Figure 6: Schedule

4 Ethics and Safety

Our project raises important ethical and safety concerns that we have addressed compre-
hensively to ensure the protection of users and the environment. First, one of the primary
safety risks involves the potential for electrocution, as the device operates near water. To
take account of this, the electronics will be housed away from the water source, ensuring
no water can enter the sensitive areas. We will also use Ground Fault Circuit Interrupter
(GFCI) outlets to further protect users from electrical hazards. Additionally, the system will
be designed to operate at low voltage, reducing the severity of any potential electric shocks.

Data privacy and confidentiality are also critical ethical considerations since the system
collects water usage data from households. To protect user privacy, we will implement secure
data encryption for all data transmissions, along with robust access control mechanisms such
as multi-factor authentication. These measures ensure that user data remains confidential
and protected from unauthorized access or misuse.

Environmental sustainability is another key concern, given the potential ecological impact
of electronic devices. To address this, we will use materials that minimize the presence
of harmful substances like lead. The device casing and components will also be designed
with recyclable materials to ensure environmentally responsible disposal at the end of the
product’s life cycle.

18

Ethical considerations regarding the collection and use of data will be managed by pro-
viding users with clear information about what data is collected and how it is used. In sum,
our project’s design incorporates strong safeguards to ensure user safety, protect privacy, and
promote sustainability, demonstrating a commitment to ethical responsibility throughout the
system’s development and deployment.

5 Citations

e "ACM Code of Ethics and Professional Conduct.” Association for Computing Machin-
ery, https://www.acm.org/code-of-ethics. Accessed 3 Oct. 2024.

e "IEEE Code of Ethics.” Institute of FElectrical and Electronics Engineers, https://
www.ieee.org/about/corporate/governance/p7-8.html. Accessed 3 Oct. 2024.

e "Programming with the Low-Level APL.” Amazon DynamoDB Developer Guide, Ama-
zon, https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.
LowLevelAPI.html. Accessed 3 Oct. 2024.

e Synnes, Endre. "ESP32 and Ultrasonic Sensor Tutorial.” YouTube, 19 June 2020,
https://www.youtube.com/watch?v=TzbImff5K00.

e Synnes, Endre. "ESP32 Data Logging with AWS.” YouTube, 9 Apr. 2021, https:
//www.youtube. com/watch?v=x5TcGHUahN8.

e "Amazon CloudWatch.” Amazon Web Services, https://aws.amazon.com/cloudwatch/.
Accessed 3 Oct. 2024.

e "Postman API Client.” Postman, https://www.postman.com/product/apiclient/.
Accessed 3 Oct. 2024.

e ”S3 Data Import Validation.” Amazon DynamoDB Developer Guide, Amazon, https:
//docs.aws.amazon.com/amazondynamodb/latest/developerguide/S3Datalmport.
Validation.htm. Accessed 3 Oct. 2024.

o Wireshark User’s Guide. Wireshark Foundation, https://www.wireshark.org/docs/
wsughtml/. Accessed 3 Oct. 2024.

e "Amazon DynamoDB and AWS Lambda.” Amazon Web Services, https://aws.amazon.
com/dynamodb/ and https://aws.amazon.com/lambda. Accessed 3 Oct. 2024.

e "ESP32 LCD API Reference.” Espressif Systems Documentation, Espressif, https://
docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripaerals/
lcd.html. Accessed 3 Oct. 2024.

e "The Basics of Ultrasonic Sensors.” SameSky Devices, 3 Oct. 2024, https://www.sameskydevices.com
basics-of-ultrasonic-sensors#: = Ultrasonic%20sensors%20emit %20a%20chirp, to%20bounce %200t %2
Accessed 3 Oct. 2024.

19

https://www.acm.org/code-of-ethics
https://www.ieee.org/about/corporate/governance/p7-8.html
https://www.ieee.org/about/corporate/governance/p7-8.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.LowLevelAPI.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Programming.LowLevelAPI.html
https://www.youtube.com/watch?v=TzbImff5KO0
https://www.youtube.com/watch?v=x5TcGHUahN8
https://www.youtube.com/watch?v=x5TcGHUahN8
https://aws.amazon.com/cloudwatch/
https://www.postman.com/product/apiclient/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/S3DataImport.Validation.htm
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/S3DataImport.Validation.htm
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/S3DataImport.Validation.htm
https://www.wireshark.org/docs/wsughtml/
https://www.wireshark.org/docs/wsughtml/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/lambda
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripherals/lcd.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripherals/lcd.html
https://docs.espressif.com/projects/esp-idf/en/stable/esp32/api-reference/peripherals/lcd.html
https://www.sameskydevices.com/blog/the-basics-of-ultrasonic-sensors#:~:text=Ultrasonic%20sensors%20emit%20a%20chirp,to%20bounce%20off%20an%20object
https://www.sameskydevices.com/blog/the-basics-of-ultrasonic-sensors#:~:text=Ultrasonic%20sensors%20emit%20a%20chirp,to%20bounce%20off%20an%20object

e "How Ultrasonic Sensors Work — Science in 5.” YouTube, uploaded by World Health
Organization, 3 Feb. 2020, https://www.youtube.com/watch?v=JRKIR4YgMHw. Ac-
cessed 3 Oct. 2024.

20

https://www.youtube.com/watch?v=JRKlR4YgMHw

	Introduction
	Problem
	Solution
	Visual Aid
	High-Level Requirements

	Design
	Physical Design
	Block Diagram
	Subsystem Block Descriptions, Requirements, and Verifications
	Dashboard System - Front-End
	Dashboard System - API Endpoint
	Dashboard System - Database
	Monitoring System - Microcontroller Subsystem
	Monitoring System - Power Subsystem
	Monitoring System - LCD Display Subsystem
	Dashboard System - Ultrasonic Sensing Subsystem

	Tolerance Analysis

	Cost and Schedule
	Cost Analysis
	Schedule

	Ethics and Safety
	Citations

