
1

ECE 445
SENIOR DESIGN LABORATORY

Design Document

Any-Screen to Touch-Screen Device

Team No. 1
Sakhiyuvio Farsya Yunalfian

(sfy2@illinois.edu)
Muthu Ganesh Arunachalam
(muthuga2@illinois.edu)

TA: Chi Zhang
Professor: Arne Fliflet

October 3, 2024

2

Table of Contents
1 Introduction...4

1.1 Problem..4
1.2 Solution..4
1.3 Visual Aid.. 5
1.4 High-level Requirements... 5

1.4.1 Accuracy and Responsiveness.. 5
1.4.2 System Integration and Compatibility.. 5
1.4.3 Extended Functionality... 6

2 Design...7
2.1 Block Diagram... 7
2.2 Physical Design..8
2.3 Power Subsystem...8

2.3.1 Hardware Design Overview..8
2.3.2 Functionality & Contribution..10
2.3.3 Interfaces...11
2.3.4 Requirements and Verification..11
2.3.5 Design Decisions.. 12

2.4 Sensing Subsystem.. 13
2.4.1 Hardware Design Overview..13
2.4.2 Functionality & Contribution..14
2.4.3 Interfaces...15
2.4.4 Requirements and Verification..15
2.4.5 Design Decisions.. 16

2.5 Control Subsystem...18
2.5.1 Hardware Design Overview..18
2.5.2 Functionality & Contribution..19
2.5.3 Interfaces...20
2.5.4 Requirements and Verification..20
2.5.5 Design Decisions.. 21

2.6 Software Monitoring Subsystem..22
2.6.1 Software Design Overview... 22
2.6.2 Functionality & Contribution..23
2.6.3 Bluetooth Communication..23
2.6.4 Tech Stack...24
2.6.5 Interfaces...25
2.6.6 Requirements and Verification..25
2.6.7 Design Decisions.. 27

3

2.7 Tolerance Analysis...28
3 Cost and Schedule...32

3.1 Cost Analysis... 32
3.1.1 Parts/Materials.. 32
3.1.2 Estimated Hours of Development...34
3.1.3 External Materials and Resources...34
3.1.4 Total Estimated Cost... 35

3.2 Schedule...36
4 Ethics and Safety...38
5 Citations...39

4

1 Introduction

1.1 Problem
As touchscreens become an important method of user input, the demand for touch-enabled
devices across industries has surged. However, retrofitting existing displays of any size,
especially large ones, with touch capability is prohibitively expensive and technically
challenging. Organizations like schools, businesses, and research departments use non-touch
displays that lack the interactive functionality needed for modern applications, like collaborative
learning, design work, or real-time marking up of digital documents. Upgrading these screens to
support touch functionality would be a large cost and would require specialized hardware.

Although there are devices on the market that can overlay touch functionality on a non-touch
screen, there are several drawbacks. Some of these devices only accept generic free-floating
hand motions as input (instead of taps, clicks, and dragging), limiting user interaction with the
screen. Other devices allow for direct interaction with the screen, but these devices can be
inaccurate, resulting in user frustration. Several products are accurate and allow direct interaction
with the screen, but use technologies like camera imaging which can cause faulty sensing if your
hand is in the way; such sensing technologies can also limit the screen size on which the product
can be used. Given the growing need for interactive interfaces and the lack of versatile products
on the market, developing a cost-effective, scalable solution to this problem is crucial.

1.2 Solution

The proposed solution is a device that can convert any standard screen into a touchscreen using
ultra-wideband (UWB) sensors to track a specially designed pen. This system relies on a network
of UWB sensors placed at the corners of the display, which track the position of the pen in real
time based on Time of Flight (ToF). The pen, equipped with a UWB tag and motion sensors
(gyroscope), communicates its position to the sensors, allowing the device to detect movement
across the screen. The pen communicates all sensor and location data via Bluetooth HID to the
host device. This approach negates the need for expensive capacitive or resistive touch overlays,
instead providing a wireless and modular solution that can be applied to any display size or type.
By incorporating additional features such as buttons, the pen can offer more than basic touch
functionality, enabling features like clicks, dragging, scrolling, and hotkeys. This solution not
only provides an affordable way to retrofit non-touch displays but also expands the possibilities
of user interaction in diverse settings and across multiple operating systems.

5

1.3 Visual Aid

Figure 1: The Any-Screen to Touch-Screen System

1.4 High-level Requirements

1.4.1 Accuracy and Responsiveness
Our project's most crucial success indicator is touch emulation accuracy and responsiveness.
Utilizing the Bluetooth module embedded in the ESP32-S3 microcontroller, we undoubtedly
expect numerous sources of delay like propagation delay, lags, and queuing. We aim to
quantitatively access this through continuous data logging through Python to monitor the time
interval of data transfer and keep it under 250 milliseconds. Aside from system
responsiveness, another crucial requirement is for our location-tracking mechanism to be
accurate. We aim to potentially reach a 5% margin of error regarding the Euclidean distance
of where the pen is touching the screen and what (x, y) coordinates are digitized and
processed. We need to consider factors that may intensify the error, like sensor data fusion with
the gyroscope to account for pen tilt, acceleration, and sensitivity.

1.4.2 System Integration and Compatibility
The next crucial high-level requirement is that our system be compatible with straightforward
integration. Numerous compatibility aspects will be considered: screen size and operating
system. Quantitatively, we will be testing our system from small screens (5 inches) to large
screens (20+ inches). We want to keep our error rate consistent at 5% or less for any type of
screen. Lastly, we want to test our system integration and compatibility with different operating

6

systems like Windows, macOS, or Linux. The OS compatibility will be quantitatively
measured through success rate, aimed at 95%, by comparing location precision error rates
between different OSs.

1.4.3 Extended Functionality
The last high-level requirement is that the device must reliably support discrete touch-based
actions such as tapping, clicking, scrolling, and dragging. Each input type should be detected
and executed correctly at least 99% of the time, with a clear distinction between tapping
(single-touch actions) and dragging (continuous motion) gestures. Scrolling actions must be
executed smoothly, with a minimal jitter rate of less than 2% when moving across the screen.
The system must ensure that scrolling and dragging actions are continuous, with no unintentional
interruptions.

7

2 Design

2.1 Block Diagram

Figure 2: The Any-Screen to Touch-Screen Device Block Diagram

8

2.2 Physical Design
For our pen enclosure, we decided to do a 3D-printed DIY pen enclosure following a simple
mechanical structure shown in Figure 3. We chose a plastic enclosure to avoid signal disruptions
on the UWB communication if metallic enclosures were used instead. Instead of the buttons
present on the body of the enclosure, we will replace it with mounting holes for crucial LEDs,
switches, and buttons to be accessible from external environments for the purpose of debugging
and system initialization.

Figure 3: Pen Plastic Enclosure

2.3 Power Subsystem

2.3.1 Hardware Design Overview

Figure 4: Battery to 3.3V Schematic Design

9

Figure 5: 3.3V to 1.8V Conversion Power Schematic Design

Figure 6: Fuel Gauge Schematic Design

10

The power subsystem utilizes a 3.7V battery, which is stepped down to 3.3V using a buck
converter and then further regulated to 1.8V using a low dropout regulator. A battery fuel gauge
monitors the battery’s state of charge, voltage, current, and temperature, ensuring the device
operates efficiently and alerts the user of battery conditions. The power subsystem is designed to
interact seamlessly with other subsystems by supplying stable voltage and monitoring critical
power metrics.

2.3.2 Functionality & Contribution

The primary function of the power subsystem is to convert the voltage from the 18650 Li-ion
battery (nominally 3.7V) to two stable supply voltages: 3.3V and 1.8V. The subsystem achieves
this through the following key components:

● 3.7V to 3.3V Buck Converter: This component efficiently steps down the battery voltage
to 3.3V, which powers the main microcontroller (ESP32-S3-WROOM-1) and the UWB
module (DWM1000).

● 3.3V to 1.8V Low Dropout Regulator (LDO) [1]: This converts the 3.3V to 1.8V to
power low-voltage components, such as the LSM6DSL IMU.

● BQ27441-G1 Battery Fuel Gauge [11]: The fuel gauge monitors the battery’s state,
providing detailed information such as the remaining charge, battery voltage, and current.
It communicates with the microcontroller via the I²C interface, allowing the system to log
battery data and trigger alerts when necessary (e.g., low battery).

The power subsystem contributes to the reliable operation of the device and ensures reliable,
stable, and efficient power for all other subsystems:

● Supplying stable voltages - The buck converter and LDO ensure that critical components
receive the correct operating voltages, preventing under-voltage or over-voltage
conditions that could harm the device or reduce performance.

● Monitoring battery health: The BQ27441-G1 fuel gauge allows the system to track
battery health in real time, ensuring users are informed when the battery needs
recharging, thereby preventing unexpected power loss.

● Optimizing energy efficiency: By using a buck converter for the 3.3V supply, the system
efficiently manages the power drawn from the battery, extending operational time,
especially for wireless communication components like the ESP32-S3 and UWB module.

● Supporting system shutdown protocols: The battery monitoring subsystem can trigger
shutdowns or low-power modes in the microcontroller, preserving battery life when the
battery reaches a critical low state.

11

2.3.3 Interfaces

Inputs:

● 3.7V Li-ion Battery (input to buck converter and BQ27441-G1):
○ Voltage range: 3.0V (discharged) to 4.2V (fully charged).
○ Input to buck converter: 3.7V.
○ Direct input to BQ27441-G1 for battery monitoring.

● 3.3V Output from Buck Converter:
○ Input to LDO for further regulation to 1.8V.

● Power Switch
○ Turns the device on and off

Outputs:

● 3.3V Output (from buck converter):
○ Powers the ESP32-S3 microcontroller and UWB module (DWM1000).

● 1.8V Output (from LDO):
○ Powers the LSM6DSL IMU.

● Battery Data Output (from BQ27441-G1):
○ Battery SoC, voltage, current, and temperature data sent via I²C to the ESP32-S3

for logging and monitoring.
● Power LED:

○ LED indicator to convey power status of device (ON, OFF, SLEEP)

2.3.4 Requirements and Verification

Requirements Verification Procedure

1. Battery Fuel Gauge Accuracy:
The BQ27441-G1 must measure
the battery's State of Charge
(SoC) with an accuracy of ±2%
and alert the system when the
battery falls below 10% charge.

● Connect the BQ27441-G1 fuel gauge to the ESP32-S3 via
the I²C interface.

● Fully charge the battery and begin discharging it while
monitoring the reported SoC data from the BQ27441-G1.

● Compare the reported SoC values with the actual measured
charge using a separate power monitoring tool.

● Verify that the SoC remains within ±2% of the actual value.
● Ensure the system triggers a low battery alert when the

SoC drops below 10%.
● Document the accuracy over multiple charge/discharge

cycles.

2. Power Supply Integrity: The ● Fully charge the 3.7V battery and power the device under

12

power subsystem must provide
continuous power to the system
under normal usage conditions for
at least 6 hours from a fully
charged battery.

normal usage conditions, including wireless
communication, UWB sensor activity, and continuous
touch emulation.

● Track the operational time using a stopwatch.
● Ensure the system remains operational for at least 6 hours

before the battery reaches critical levels.
● Document the operational time and repeat the test to verify

consistency.

3. Current Draw: The combined
power draw of the system,
including the microcontroller and
sensors, should not exceed the
buck converter’s maximum
current output.

● Set up the power subsystem and initiate peak operation,
including ESP32-S3 Wi-Fi activity, UWB sensor
communication, and IMU sensor activity.

● Use a multimeter to measure the total current consumption
of the system.

● Verify that the total current draw does not exceed 1A at any
point during peak operation.

● Ensure that the power supply provides stable voltage while
supporting the peak load.

● Repeat the measurement under various operating
conditions to ensure power stability.

Table 1: Power Subsystem Requirements & Verification Table

2.3.5 Design Decisions
We decided to use a buck converter for the 3.7V to 3.3V conversion since the buck converter will
increase the current output while dropping the voltage. Buck converters are also more efficient
than linear voltage regulators. However, for the 3.3V to 1.8V conversion, we chose an LDO to
provide power to the IMU sensor, which incurs a much lighter load than devices needing 3.3V.

We wanted to prevent over-discharge of the battery which is why we included a battery fuel
gauge to track the status of the battery. This allows us to alert the user and programmatically
turn off the device when the voltage drops significantly. The included LED indicator is a great
way for the user to see the status of the device without having to access a software interface.

Additionally, we decided not to integrate a battery recharging system since it would have
introduced significant complexity to our device. Not including this system would also prevent
issues like overheating and protect against the effects of overcharging. Additionally, given we
became a two person team, we felt it was necessary to reduce complexity of development in
certain areas in order to make our final product achievable; the focus of our project is on the
sensor hardware and software and not on recharging capabilities.

13

2.4 Sensing Subsystem

2.4.1 Hardware Design Overview

Figure 7: DWM1000 UWB Transceiver Schematic Design

Figure 8: LSM6DSL IMU Sensor Schematic Design

14

In a technical sense, the two key sensing components are the UWB transceivers and the iMU
sensor. We will be utilizing the DWM1000 for our UWB transceiver, modulating our carrier
frequency to communicate with the microcontroller, the ESP32-S3-WROOM-1, at a frequency
channel of around ~4.5 GHz. The communication protocol we will be using is the SPI
communication protocol, which involves four crucial components which are the Chip Select
(CS), Master-In Slave-Out (MISO), Master-Out Slave-In (MOSI), and the SPI Clock (CLK). The
hierarchical structure of this communication protocol will be thoroughly processed in our
firmware, utilizing resourceful libraries like the DW1000Ranging Arduino libraries for the
complete abstraction of the communication design protocol.

We will be utilizing the LSM6DSL IMU sensor for our IMU sensor. The communication
protocol to the microcontroller generally follows the same procedure as the SPI communication
protocol. The main difference between this with the DWM1000 communication protocol is
software interfaces. Specifically, we will be taking advantage of the Adafruit LSM6DS3 and
STMicroelectronics software libraries designed to fulfill the abstraction requirements for
Read/Write of the LSM6DSL IMU sensor, gaining complete data from the accelerometer and
gyroscope embedded in the sensor.

The specific pinout layouts for both sensors are motivated and suggested from the datasheets of
each sensor, which are LSM6DSL IMU Data Sheet [3] and DWM1000 Data Sheet [8].

2.4.2 Functionality & Contribution
At a high level, this subsystem captures important information on touch events between the pen
and the screen using the concept of sensor fusion. Essentially, one UWB transceiver is embedded
on the PCB that will contain the overall location data. The tilt and acceleration detection will use
a gyroscope/IMU sensor, specifically the LSM6DSL IMU Sensor. This gyroscope will contribute
to the exact 3-dimensional position of the pen as it touches the screen, taking into account the
tilting of the pen when finalizing location-tracking data. Lastly, the tap/click detection will be
done with a small button embedded at the tip of the pen. This will be debounced to make sure
that data transfer from the location and motion sensors occurs only when there is direct contact
between the pen and the screen; in this case, through the button being depressed.

The sensing subsystem will provide all pre-processed location data which is extremely crucial to
create a distinctive judgment of the pen’s location concerning the screen for touch-screen
emulation. The pre-processed data will go through a DSP pipeline specifically to decode and
assign the microcontroller to communicate with the host device of touch coordinates and HID
functionalities via Bluetooth.

15

2.4.3 Interfaces
● Inputs:

1. 4.5 GHz RF signal communication between the UWB transceiver embedded on
the pen PCB and the static UWB transceivers on the ends of the screen. Tx-Rx
communication will use concepts like triangulation and time-of-flight (ToF) for
the microcontroller to process the final coordinates of the pen.

2. 3-dimensional angular velocity (rad/s) and linear acceleration (m/s^2) for tilting
mechanism detection.

3. The sensor power source comes at 3.6 V at around 150 mA.
● Outputs:

1. Pre-processed data from the sensors through SPI communication with the
ESP32-S3 microcontroller.

2. The button’s voltage (HIGH/LOW) to indicate contact with the screen.

2.4.4 Requirements and Verification

Requirements Verification Procedure

1. The UWB sensors must provide
useful location information within
1 centimeter of the true pen±

location.

● Assemble the UWB anchors and set them up at
predetermined locations within a controlled
environment. This should be on the top-edge
locations of the host-device screen.

● Position the pen at a pre-configured location
within the tracking area.

● Flash the ESP32-S3-WROOM-1 to allow the
DWM1000 wireless communication.

● Connect to the microcontroller via Bluetooth
and prepare the Python-based data-logging
script.

● Depress the button of the pen on the specific
location in a neutral configuration (no tilt, 1±
mm).

● Measure the difference between the actual pen
location and the post-processed sensor location.

2. The UWB sensors must be able
to transfer and receive signals to
one another at a 4.5 GHz frequency
channel wirelessly.

● Configure DWM1000 firmware and specify the
communication usage of Channel 3 at 4492.8
MHz or ~4.5 GHz.

● Assemble the UWB anchors and set them up at
predetermined locations within a controlled
environment. This should be on the top-edge
locations of the host-device screen.

● Solder 4 light-emitting diodes (LED) each

16

connected to 4 different pins of the DWM1000
● Place 470 Ω between the pins and the LEDs.
● Flash the ESP32-S3-WROOM-1 to allow the

DWM1000 wireless communication.
● The 4 LEDs will blink, providing information on

the DWM1000’s instances of transmitting data,
receiving data, and synchronization between
anchors.

3. The IMU sensor must provide
data on angular velocities (

) and linear acceleration± 0. 2 𝑟𝑎𝑑
𝑠

()± 0. 2 𝑚
𝑠

● Position the pen at a pre-configured location
within the tracking area.

● Flash the ESP32-S3-WROOM-1 to allow the
IMU sensor communication.

● Connect to the microcontroller via Bluetooth
and prepare the Python-based data-logging
script.

● Set the pen to rotate at 1 , and operate both𝑟𝑎𝑑
𝑠

in clockwise and counterclockwise directions.
● Compare the gyroscope data from the

LSM6DSL sensor with the actual angular
velocity manually measured.

● Set the measurement threshold to ensure that
data deviation falls under 0.2 .𝑟𝑎𝑑

𝑠
● Repeat the procedure for the linear acceleration

testing; now, instead of rotating, set the pen to
accelerate at 1 and ensure the deviation falls𝑚

𝑠

under 0.2 .𝑚
𝑠

Table 2: Sensor Subsystem Requirements & Verification Table

2.4.5 Design Decisions
We decided to go with the DWM1000 for the UWB transceiver and the LSM6DSL IMU sensor.
Both sensors have compatibility with SPI and I2C communication protocols. However, after
going through the datasheet, the ESP32-S3-WROOM-1 has more distinctive information on the
SPI protocol. Additionally, the microcontroller has specialized input/output pins for HSPI and
VSPI, which are hardware-based SPI communication. Specifically, they are designed for a fast
communication between the master and slave devices. Although not compulsory, we also
decided to utilize the output signals from the DWM1000 which are the RXOKLED, SFDLED,
RXLED, and TXLED. These signals will be sent to power some LEDs and this part of the
schematic is entirely used for debugging purposes to judge the transmission of data between the
microcontroller and the UWB transceiver.

17

Another important design decision is to pick which frequency channel for the overall UWB
wireless communication. Although the range of frequencies is between 3.5 to 6.5 GHz, the
suggested frequency channel is around 4-5 GHz according to Qorvo UWB Tutorial [9]. This is to
avoid over-attenuation from frequent collisions with walls and for the DWM1000 not to take too
much of the microcontroller’s computing power and resources due to the higher data rate at
higher frequencies.

18

2.5 Control Subsystem

2.5.1 Hardware Design Overview

Figure 9: Pen (Control) Schematic Design

19

The general control design is embedded within the pen enclosure. The computing decisions are
made by the microcontroller, the ESP32-S3-WROOM-1. Both data from the external sensors like
the DWM1000 UWB transceivers and the LSM6DSL IMU sensor are extensively processed by
our microcontroller. Due to the high-rate data transfer communication from the DWM1000, we
are using the specialized General Purpose Input/Output (GPIO) pins of the microcontroller
specifically for a fast SPI communication system as stated in the ESP32-S3-WROOM-1 data
sheet [2]. Aside from the GPIO pins designed for SPI communication, other GPIO pins are
utilized to send external signals to the DWM1000 for reset and interrupt messages; these pins are
the WAKEUP, RESET_ACT_L, INT, and EXT_ON.
The microcontroller’s state will be initially dictated by the two external buttons which are the
RESET_ESP and EN_FLASH. As the name suggests, the sequence of pressing this button
allows the ESP32-S3-WROOM-1 to enter boot mode, which loads the programs designed on an
external host device. To send the programming data and instructions, we are utilizing a
USB-to-UART bridge converter as our microcontroller is concurrently designed for UART data
communication. We are going to embed a USB-C plug onto our PCB and numerous of the
signals projected from the USB-to-UART bridge, the CP2104, will be used to automatically flash
our microcontroller after the initial boot, specifically the USB_READY and USB_SEND signals.

Lastly, the pen button, when depressed, will provide the touch-screen emulation signal to a host
device via the embedded Bluetooth module in real time; located in our firmware design by
utilizing Arduino IDE BLE or Classic Bluetooth modular libraries.

2.5.2 Functionality & Contribution
The first crucial step is denoising; the UWB transceivers will first go through the denoising step
for filtering and smoothing. This would involve software algorithms like the outlier rejection for
pre-processing and simple moving average (SMA) smoothing for random noises. Subsequently,
the control unit is in charge of feature extraction, to only process useful data especially when
performing sensor fusion between the sensors. Lastly, the final coordinates estimation will be
done through a triangulation algorithm of the three UWB transceivers and the tilt offset will be
decoded through IMU’s data. The control subsystem will depend hugely on real-time operation
capabilities like timers and interrupts as well as utilizing FreeRTOS from ESP-IDF for real-time
data processing.

This subsystem is the core of sensor data processing. The ESP32-S3 will receive digitized sensor
signals that are sent via SPI protocol by the UWB transceivers and the IMU sensor. The UWB
transceivers need to be accurate; therefore, the control subsystem includes a DSP pipeline
embedded in the microcontroller to pre-process the signal data for reliable transfer to the host
device by using Bluetooth HID protocol and specifications.

20

2.5.3 Interfaces
● Inputs:

1. Pre-processed data from the sensors via SPI involving UWB and IMU signal data.
2. The button’s node voltage indicates contact with the screen.
3. The sensor power source comes at 3.6 V at around 150 mA.

● Outputs:
1. Post-processed sensor data, Tx transmission to host device via Bluetooth HID

protocol.

2.5.4 Requirements and Verification

Requirements Verification Procedure

1. Must be able to detect screen
coordinates with an accuracy of
99%. The metric varies due to
differing screen sizes, and the
protocol of measuring accuracy
will be done by calculating the
Euclidean distance between
actual and measured
coordinates.

● Assemble the UWB anchors and set them up at
predetermined locations within a controlled
environment. This should be on the top-edge
locations of the host-device screen.

● Place a known grid of reference points (50 points)
for the pen to be located on a device screen.

● Flash the ESP32-S3-WROOM-1 to allow the
DWM1000 wireless communication.

● Connect to the microcontroller via Bluetooth and
prepare the Python-based data-logging script.

● Depress the button of the pen on the specific
location in a neutral configuration (no tilt, 1 mm).±

● Operate the above procedure for all 50 points to
gain a set of data points from the sensor.

● Measure the difference between the actual pen
location and the post-processed sensor location.
Utilize the Euclidean distance measurement to
calculate the error.

● Measure the accuracy,
, where a# 𝑜𝑓 𝐴𝑐𝑐𝑢𝑟𝑎𝑡𝑒 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

50 × 100%
measurement is ‘accurate’ if the measurement is ±
1 cm from the actual pen position.

● Repeat the verification process with different
devices having different screen sizes.

2. To ensure real-time feedback,
complete the required sensor
data processing with a total
communication delay of 60 ms
to the host device.

● Assemble the UWB anchors and set them up at
predetermined locations within a controlled
environment. This should be on the top-edge
locations of the host-device screen.

● Flash the ESP32-S3-WROOM-1 to allow the

21

DWM1000 and LSM6DSL sensor communication.
● Connect to the microcontroller via Bluetooth and

prepare the Python-based data-logging script.
● Depress the button of the pen on the specific

location in a neutral configuration (no tilt,
1 mm).±

● Utilize the time Python module to record the
timestamp for the sensor data to propagate from the
microcontroller to the host device.

● Set the measurement threshold to ensure that the
total transmission delay falls under 60 ms.

3. The system must be able to
only initiate processing needs
when there is direct contact
between the pen and the screen.

● Flash the ESP32-S3-WROOM-1
● Connect to the microcontroller via Bluetooth and

prepare the Python-based data-logging script.
● Print the cumulative data logged by the Python

script; the terminal should return None as there is no
instance of the pen being depressed on the screen.

● Contrarily, Depress the button of the pen on the
specific location in a neutral configuration (no tilt,
1 mm); the terminal should print the data logged±

from the sensor and perform the touch-screen
emulation on this instance.

4. Operate continuously with a
peak power consumption of < ~
450 mW.

● Assemble the pen with the complete power delivery
subsystem.

● Solder the wire connection between the
ESP32-S3-WROOM-1 power source (3.3 V),
ground, and other compulsory electrical components
or signals.

● Ensure the system is on, then utilizing a multimeter,
verify that the powering nodes are ~3.3 V with a
maximum current of ~136 mA.

● Perform this verification when the pen is idle and
when it is actively sending data to the host device.

Table 3: Pen (Control) Subsystem Requirements & Verification Table

2.5.5 Design Decisions
Initially, we chose the generic ESP32-S3 module for our microcontroller and the general
computing device. However, this requires us to create an external design for the Bluetooth
antenna to communicate with other devices via Bluetooth properly. We decided that switching
over to the ESP32-S3-WROOM-1 is a better choice as the microcontroller comes with a
Bluetooth antenna embedded in the module. The specific reason we chose this microcontroller is
due to its high processing capabilities, especially for real-time applications. Concurrently, it

22

comes with both a USB On-the-Go (OTG) module and Bluetooth, which gives us the ability to
translate between one communication protocol or the other with the host device.

For flashing the microcontroller, we decided to take the approach of soldering a USB-C plug on
our pen and anchor designs. The reason is that we have researched thoroughly and found out that
a USB-to-UART serial communication for flashing the ESP32 series is recommended. Hence,
we are utilizing the CP2104 as the bridge converter. The external buttons are mainly used for the
initial boot of the microcontroller. The S8050 transistors are used to manipulate the outputting
signal from the CP2104 to be used for automatic flushing of the microcontroller instead of
continuously relying on the external buttons. This idea was inspired by a UWB-based project on
indoor localization by makerfab [7].

2.6 Software Monitoring Subsystem

2.6.1 Software Design Overview

Figure 10: Software Monitoring Flow Chart

The software subsystem for the Any-Screen Touch-Screen device is designed to provide a
cross-platform solution using the Qt framework, enabling communication between the ESP32-S3
microcontroller and the host computer. It processes user inputs, manages system calibration, and
handles real-time data exchange between the device and the host via Bluetooth GATT and BLE
HID over GATT. The software supports both touch input emulation and sensor data analysis
(UWB and IMU) while offering a graphical interface for users to configure and interact with the
system. The subsystem is designed for seamless operation across multiple operating systems,
including Windows, macOS, and Linux.

23

2.6.2 Functionality & Contribution

The software subsystem plays a vital role in handling data and communication between the
ESP32-S3 microcontroller and the desktop environment. It receives data via Bluetooth for touch
events and for transferring UWB and IMU sensor logs. This data is processed to emulate mouse
movements, clicks, and gestures, with a real-time data logging feature that captures sensor inputs
for accuracy analysis and troubleshooting. A Qt-based GUI enables users to input screen
parameters, such as resolution and size, for calibration. These calibration parameters are then
transmitted to the microcontroller to ensure precise touch tracking.

The software also provides an interface for users to assign custom hotkeys and additional pen
functionalities, such as scrolling, dragging, and clicking, to enhance interaction. A data logging
feature captures location and IMU data from the microcontroller in real-time, which is stored for
system calibration and long-term performance monitoring. Logs are transmitted through the BLE
GATT Custom Data Transfer Service and can be analyzed to analyze the device’s accuracy and
performance.

Designed for cross-platform support, the software runs on Windows, macOS, and Linux,
ensuring adaptability to different desktop environments and screen configurations. The software
subsystem serves as the critical bridge between hardware components, such as UWB sensors and
the ESP32-S3 microcontroller, and the end-user. It transforms raw sensor data into meaningful
actions while maintaining system calibration through a user-friendly interface.

2.6.3 Bluetooth Communication

The software subsystem uses a dual Bluetooth GATT and BLE HID over GATT model for
communication between the microcontroller and the host computer, facilitating both real-time
touch input emulation and sensor data monitoring.

1. GATT Profile (Client-Server Model):
○ GATT Server: ESP32-S3 Microcontroller
○ GATT Client: Desktop application

2. GATT Services:
○ HID Service: Manages all HID-related communication for touch input (e.g.,

mouse movements, clicks).
○ Custom Data Transfer Service: Manages data logging and monitoring from the

ESP32-S3, transmitting UWB and IMU sensor data to the desktop app.
3. GATT Characteristics:

○ HID Report Characteristic: Sends HID input reports (mouse movements, clicks)
to the desktop application.

○ Protocol Mode Characteristic: Switches between Boot Mode and Report Mode for
HID communication.

24

○ Control Point Characteristic: Manages device control, such as resetting the HID
device.

○ Data Log Characteristic: Transmits sensor data and logs to the desktop application
for analysis.

○ Control Characteristic: Allows the desktop app to send control commands back to
the ESP32-S3 (e.g., to start/stop data logging) or to communicate calibration
parameters

2.6.4 Tech Stack

Tech Stack for Cross-Platform Desktop Application:

1. Frontend (User Interface and GUI):
○ Qt Framework (C++/Python): Used to develop the cross-platform desktop

application.
○ QtWidgets/QML: For building the GUI, handling calibration, data logging, and

touch functionalities.
2. Backend (Business Logic and Communication):

○ Qt Bluetooth Module: Provides support for BLE GATT communication,
managing both HID events and data transfer services.

3. Bluetooth HID Communication:
○ Arduino BLE IDE: The firmware for the ESP32-S3 microcontroller will be

developed using the Arduino BLE IDE instead of ESP-IDF. This simplifies the
development process for handling Bluetooth HID and BLE GATT profiles. The
firmware will:

■ Implement HID over GATT to transmit touch input data (e.g., mouse
movements, clicks) from the UWB and IMU sensors.

■ Handle data transfer services to log sensor data and manage touch
accuracy.

○ FreeRTOS will be leveraged to manage real-time data processing on the
ESP32-S3, ensuring efficient sensor data handling with minimal delays.

Programming Languages and Technologies

● Frontend:
○ C++ or Python using the Qt framework for GUI development.
○ QtWidgets or QML for building user interfaces that handle calibration, logging,

and user interaction.
● Backend:

○ C++ or Python for handling business logic, Bluetooth communication, and
real-time data processing.

25

● Firmware:
○ C/C++ using the Arduino BLE IDE for developing the Bluetooth HID and BLE

GATT profiles. FreeRTOS will be used on the microcontroller to manage
real-time sensor data processing.

2.6.5 Interfaces

Inputs:

● Bluetooth HID data from the ESP32-S3 microcontroller (e.g., touch events such as clicks
and cursor movements).

● Sensor data logs via the BLE GATT Custom Data Transfer Service (e.g., UWB location
and IMU data).

● User input for screen resolution, size, and hotkey configurations through the Qt GUI.

Outputs:

● Calibration parameters sent to the microcontroller, ensuring the system is accurately
calibrated based on the screen setup.

● HID input reports to the desktop application, simulating touch interactions and cursor
movements.

● Data logs on touch interactions for accuracy analysis, ensuring long-term performance
validation.

● Control commands sent to the ESP32-S3 to manage logging or reset functionality via the
Custom Data Transfer Service.

2.6.6 Requirements and Verification

Requirements Verification Procedure

1. The software must be able to
handle incoming sensor data

● Set up the device on a display of known
dimensions and screen size.

● Calibrate the system using the GUI to input the
screen size and resolution.

● Flash the ESP32-S3 microcontroller with the
Arduino BLE firmware to ensure it
communicates location data to the software.

● Use a known grid of reference points (for
example, 16 points) on the screen for
calibration.

● Depress the pen on each reference point and log
the actual vs processed location.

26

2. The software must complete data
transmission and processing within
250 milliseconds to ensure
responsive user interaction.

● Set up the device and perform system
calibration.

● Connect the ESP32-S3 to the desktop
application via Bluetooth and log sensor data.

● Use the Python time module to measure the
transmission delay from the microcontroller to
the host device.

● Perform actions like mouse movements or taps
and record timestamps at the moment the
interaction is detected and the moment at which
the interaction is emulated.

● Ensure the time difference is under 250
milliseconds.

● Repeat the procedure across different screen
sizes to ensure consistent performance.

3. The software must support a
graphical user interface (GUI) that
allows users to input screen
resolution, screen size, and hotkey
mappings.

● Launch the GUI on the host device after
installing the software on Windows, macOS, and
Linux systems.

● Verify that users can input screen resolution and
screen size within the GUI.

● Test the hotkey assignment feature by allowing
users to assign specific actions (click, scroll,
drag) to buttons on the pen.

● Ensure the GUI correctly sends this data to the
microcontroller and that assigned actions are
executed correctly.

● Test across different screen sizes and platforms
to ensure consistent performance.

4. The software must log touch
interaction data (e.g., location,
clicks, and movements) for
accuracy analysis.

● Set up the device and ensure the ESP32-S3 is
connected via Bluetooth.

● Perform touch interactions (taps, clicks, drags)
on the screen while the software is running.

● Verify that the software logs interaction data by
reviewing the log files generated by the Custom
Data Transfer Service via BLE GATT.

● Analyze the logged data to ensure it includes
time, location, and type of interaction.

● Ensure the system allows for real-time data
transmission and logs can be retrieved from the
GUI for accuracy analysis.

6. The software must support a
calibration process where the user
maps the pen to multiple points on

● Launch the software on the host device and
initiate the calibration process through the GUI.

● The GUI should display multiple reference

27

the screen for precise touch
accuracy.

points on the screen for calibration.
● Verify that users can map the pen to these points

on the screen.
● Check that the software sends the calibration

parameters to the ESP32-S3 microcontroller.
● Perform touch tests post-calibration and log the

touch accuracy to ensure the system accurately
tracks the pen location after calibration.

Table 4: Software Monitoring Subsystem Requirements & Verification Table

2.6.7 Design Decisions

One could expect the device to operate without any sort of GUI, but there are several reasons we
decided to include one. First, it provides a method for the user to input custom parameters that
affect the device’s accuracy, the most important being the screen size and resolution. The user
also needs a way to map custom hotkeys to the buttons on the pen. Additionally, it gives the user
a way to monitor that device’s accuracy over time and receive important alerts (eg. if the battery
has low charge)

For the GUI, we decided to use the Qt framework as it would allow us to more easily build a
cross-platform application compared to other frameworks like Flutter or Electron which would
require more custom software to operate across multiple OSs. Using Qt allows us to easily
develop on Windows, macOS, and Linux.

We’ve also decided to include the calibration process as it is important towards maintaining the
accuracy of our device. Many UWB modules send inaccurate data right out of the box and
performing this calibration step will allow us to modify the location data as necessary and
account for variability in the accuracy of the DWM1000 UWB modules.

2.7 Tolerance Analysis

The most critical aspect of our device is the UWB-based positioning and communication
system, which uses Time of Flight (ToF) to eventually locate the pen's position on the screen.

28

The accuracy of this positioning is essential, as even a small error in detecting the pen's position
could lead to significant usability issues, such as incorrect touch points on the screen, poor
gesture recognition, and overall frustration for the user.

The primary risk in this system is the error in the position calculation due to timing inaccuracies
in the UWB sensors. To achieve accurate touch-screen emulation, the positioning error must
remain below a threshold of 5% of the screen size. Given the short timing intervals involved in
UWB signal transmission and reception, any noise, propagation delay, or timing drift could result
in larger positioning errors.

Figure 11: The SSR Time of Flight Algorithm

Figure 11 shows the simple Single-Sided Ranging (SSR) ToF. The ToF, which can be decoded to
calculate the distance between the pen and the screen, will be given by this expression:

𝑇𝑜𝐹 = 𝑡
𝑏
 − 𝑡

𝑎

Although this looks like a simple technique, it holds a high potential for error when used for the
UWB communication system: the clock offsets and drifts of the UWB transceivers are not
synchronized.

A better way would be to use a Two-Way Ranging (TWR) ToF algorithm. Figure 12 shows the
TWR in action between two UWB transceivers. Mathematically, the expression of the ToF
becomes:

29

𝑇𝑜𝐹 =
𝑟

𝑎
 − 𝑑

𝑏

2

Note: is the total time it takes for UWB to transmit and receive back the signal from𝑟
𝑎
 𝑎

UWB . is the process time UWB takes between receiving the initial signal from UWB𝑏 𝑑
𝑏
 𝑏

and sending it back.𝑎

Figure 12: The TWR Time of Flight Algorithm

Now, the clock offsets and drifts will be completely local. This means the error of distance
calculation no longer depends on strict synchronization. The error analysis for the TWR
algorithm is the following:

Let and be the respective errors due to clock drifts, then:𝑒
𝑎
 𝑒

𝑏

where and are total time measurements𝑅
𝑎
 = (1 + 𝑒

𝑎
)𝑟

𝑎
 , 𝐷

𝑏
 = (1 + 𝑒

𝑏
)𝑑

𝑏
 𝑅

𝑎
 𝐷

𝑏

accounting for errors. We then have:

30

𝑇𝑜𝐹
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

 =
𝑅

𝑎
 − 𝐷

𝑏

2

.𝑇𝑜𝐹 𝑒𝑟𝑟𝑜𝑟 = 𝑇𝑜𝐹
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

 − 𝑇𝑜𝐹 =
𝑅

𝑎
 − 𝐷

𝑏

2 −
𝑟

𝑎
 − 𝑑

𝑏

2 = 1
2 (𝑒

𝑎
𝑟

𝑎
 − 𝑒

𝑏
𝑑

𝑏
)

However, we know that . Hence, we have:𝑟
𝑎
 = 2 𝑇𝑜𝐹 + 𝑑

𝑏

, where is the speed of light.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑒𝑟𝑟𝑜𝑟 = 𝑐 * (𝑒
𝑎
𝑇𝑜𝐹 +

𝑑
𝑏

2 (𝑒
𝑏

− 𝑒
𝑏
)) 𝑐

We have reduced the distance error to be completely independent of clock synchronization
between the UWB transceivers. However, an issue remains. Notice that is in the𝑒

𝑎
𝑇𝑜𝐹

magnitude of nanoseconds due to the relatively high speed of light. However, is still in the
𝑑

𝑏

2

milliseconds ToF error magnitude, which makes our distance error relatively concerning.

Figure 13: The ADS TWR Time of Flight Algorithm

Note: is the total time it takes for UWB to transmit and receive back the signal from𝑟
𝑎
 𝑎

UWB . is the process time UWB takes between receiving the initial signal from UWB𝑏 𝑑
𝑏
 𝑏

and sending it back.𝑎

31

Further improvements need to be made to make our touch-screen emulation accurate. The
Alternative Double-Sided TWR (ADS TWR) is an extension of the TWR to minimize the

distance error by eliminating the error magnitude, as shown in Figure 13. The algorithm is as
𝑑

𝑏

2

follows:

.𝑇𝑜𝐹 = 1
2 (𝑇𝑜𝐹

𝑎
+ 𝑇𝑜𝐹

𝑏
) = 1

4 (𝑟
𝑎
 − 𝑑

𝑏
 + 𝑟

𝑏
 − 𝑑

𝑎
)

With this, the error analysis for our ADS TWR algorithm is the following:

. Then,𝑟
𝑎
 = 2𝑇 + 𝑑

𝑏
 , 𝑟

𝑏
 = 2𝑇𝑜𝐹 + 𝑑

𝑎

𝑟
𝑎
 𝑟

𝑏
 = (2𝑇𝑜𝐹 + 𝑑

𝑏
)(2𝑇𝑜𝐹 + 𝑑

𝑎
) = 2𝑇𝑜𝐹 (2𝑇𝑜𝐹 + 𝑑

𝑎
+ 𝑑

𝑏
) + 𝑑

𝑎
 𝑑

𝑏

Then, . Hence, the time of flight can be expressed𝑟
𝑎
 𝑟

𝑏
 − 𝑑

𝑎
 𝑑

𝑏
= 2𝑇𝑜𝐹 (2𝑇𝑜𝐹 + 𝑑

𝑎
+ 𝑑

𝑏
)

as follows:

. Substituting the denominator to𝑇𝑜𝐹 = 1
2

𝑟
𝑎
 𝑟

𝑏
 − 𝑑

𝑎
 𝑑

𝑏

2𝑇𝑜𝐹 +𝑑
𝑎
+𝑑

𝑏
 𝑟

𝑎
 = 2𝑇𝑜𝐹 + 𝑑

𝑏
 , 𝑟

𝑏
 = 2𝑇𝑜𝐹 + 𝑑

𝑎

omit ToF, our final expression will be:

. Accounting for error,𝑇𝑜𝐹 = 1
2

𝑟
𝑎
 𝑟

𝑏
 − 𝑑

𝑎
 𝑑

𝑏

2(𝑟
𝑎
+𝑑

𝑎
) = 1

2

𝑟
𝑎
 𝑟

𝑏
 − 𝑑

𝑎
 𝑑

𝑏

2(𝑟
𝑏
+𝑑

𝑏
)

, where𝑇𝑜𝐹
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

= 1
2

𝑅
𝑎
 𝑅

𝑏
 − 𝐷

𝑎
 𝐷

𝑏

2(𝑅
𝑎
+𝐷

𝑎
) = 1

2

𝑅
𝑎
 𝑅

𝑏
 − 𝐷

𝑎
 𝐷

𝑏

2(𝑅
𝑏
+𝐷

𝑏
) 𝑅

𝑎
 = (1 + 𝑒

𝑎
)𝑟

𝑎
 , 𝐷

𝑏
 = (1 + 𝑒

𝑏
)𝑑

𝑏

Finally,

.𝑇𝑜𝐹
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

 =
(1 + 𝑒

𝑎
)(1 + 𝑒

𝑏
)

(1 + 𝑒
𝑏
) 1

2

𝑟
𝑎
 𝑟

𝑏
 − 𝑑

𝑎
 𝑑

𝑏

2(𝑟
𝑏
+𝑑

𝑏
) = (1 + 𝑒

𝑎
) 𝑇𝑜𝐹

𝑇𝑜𝐹 𝑒𝑟𝑟𝑜𝑟 = 𝑇𝑜𝐹
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

 − 𝑇𝑜𝐹 = (1 + 𝑒
𝑎
) 𝑇𝑜𝐹 − 𝑇𝑜𝐹 = 𝑒

𝑎
𝑇𝑜𝐹.

Our distance error will then be:

, where is speed of light.𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑒𝑟𝑟𝑜𝑟 = 𝑐 * 𝑇𝑜𝐹 𝑒𝑟𝑟𝑜𝑟 = 𝑐 * 𝑒
𝑎
𝑇𝑜𝐹 𝑐

We reduced the ToF error magnitude to nanoseconds with the ADS TWR algorithm for UWB
transceivers communication protocol.

32

Furthermore, to help the ADS TWR minimize the distance error, we plan to commit to these
extra implementation strategies:

1. Sensor Calibration: Regularly calibrating the UWB sensors can help mitigate timing
drift and errors, ensuring that the ToF calculations remain accurate over time.
Furthermore, our calibration process involves taking sensor data at several predefined
locations on the screen with the help of the GUI. We can use these data-to-location
mappings to help with error correction and outlier detection in real-time.

2. Error Correction Algorithms: Implement filtering techniques or error correction
algorithms to smooth out data points that are outside the expected range of variation,
reducing the likelihood of large positioning errors

3. Gyroscope Location Adjustment: The UWB module may not be located at the tip of the
pen, causing the UWB sensors to incorrectly sense where the pen’s tip is located if the
pen is held at an angle. Offsetting the location with the gyroscope data will allow
accurate pen tip location.

3 Cost and Schedule

3.1 Cost Analysis

3.1.1 Parts/Materials
For this project, we are planning on making 2 prototypes for continuous debugging improvement
and connectivity development. Table 5 specifies the total cost of the hardware parts and
components we plan to utilize.

Component Part Number
Unit
Price

Quantity
Number of
Prototypes

Total
Cost

Sourcing
from:

Microcontroller ESP32-S3-WROOM-1 $3.48 4 2 $27.84
Electronic
Services
Shop

UWB Module DWM1000 $23.62 4 2 $188.96
My.ECE
ordering or
free samples

IMU LSM6DSLTR $6.01 1 2 $12.02 Link

3.7V Batteries Samsung 35E 18650 $2.75 5 2 $27.50 Link

Button
E-SWITCH
TL1105AF100Q

$0.51 11 2 $11.22
ECE supply
shop

Pen Enclosure 3D Printed $7.00 1 2 $14.00
Grainger
IDEA Lab

https://www.digikey.com/en/products/detail/stmicroelectronics/LSM6DSLTR/6192804
https://www.18650batterystore.com/products/samsung-35e?utm_campaign=859501437&utm_source=g_c&utm_medium=cpc&utm_content=201043132925&utm_term=_&adgroupid=43081474946&gad_source=1&gclid=Cj0KCQjw3vO3BhCqARIsAEWblcCnUJQLZ2ZU92jb92tLsJIG9wuyEgKmmc2Ap0E3hlKQEsxV6atbJ1QaAmVdEALw_wcB

33

Anchor Enclosure 3D Printed $10.00 2 2 $40.00
Grainger
IDEA Lab

1.8V LDO AMS1117-1.8 $0.31 1 2 $0.62 Link

Buck Converter LM2596S-5.0 $4.73 4 2 $37.84 Link

Battery Gauge BQ27441DRZT-G1A $3.26 4 2 $26.08 Link

Battery Holder BH-18650-W $4.17 4 2 $33.36 Link

Power Switch RSC141D1000-116 $1.73 4 2 $13.84 Link

10 kΩ resistor RMCF0805JG10K0 $0.10 18 2 $3.60
ECE 445
Inventory/20
70 Lab

10 uF capacitor GRM21BR61H106ME43L $0.33 20 2 $13.20
ECE 445
Inventory/20
70 Lab

100 uF capacitor 50ZLH100MEFC8X11.5 $0.27 3 2 $1.62
ECE 445
Inventory/20
70 Lab

0.47 uF capacitor CL21A475KAQNNNE $0.10 4 2 $0.80
ECE 445
Inventory/20
70 Lab

1 uF capacitor CL21B105KBFNNNG $0.11 7 2 $1.54
ECE 445
Inventory/20
70 Lab

BJT Transistor S8050 $0.11 2 2 $0.44 Link

USB-to-UART
Bridge

CP2104-F03-GM $5.43 3 2 $32.58
ECE 445
Inventory/20
70 Lab

USB-C (2.0) Plug Molex 2171750001 $0.81 3 2 $4.86 Link

470 Ω resistor MFR-50FRF52-470R $0.18 24 2 $8.64
ECE 445
Inventory/20
70 Lab

1 kΩ resistor YAGEO CFR-25JR-52-1K $0.10 6 2 $1.20
ECE 445
Inventory/20
70 Lab

5.1 kΩ resistor CFM14JT5K10 $0.10 3 2 $0.60
ECE 445
Inventory/20
70 Lab

LED XLMYK12W $0.34 12 2 $8.16
ECE 445
Inventory/20
70 Lab

Final Cost $510.52

https://www.digikey.com/en/products/detail/evvo/ams1117-1-8/24370064
https://www.digikey.com/en/products/detail/umw/LM2596S-5.0/16842178?utm_adgroup=&utm_source=google&utm_medium=cpc&utm_campaign=PMax%20Shopping_Product_Medium%20ROAS%20Categories&utm_term=&utm_content=&utm_id=go_cmp-20223376311_adg-_ad-__dev-c_ext-_prd-16842178_sig-Cj0KCQjw3vO3BhCqARIsAEWblcDIx3HM6XloK6cYchWfTTvPfc1bSJEIh2Y8QxBijO7Au9WtD1TdypEaAvAIEALw_wcB&gad_source=1&gclid=Cj0KCQjw3vO3BhCqARIsAEWblcDIx3HM6XloK6cYchWfTTvPfc1bSJEIh2Y8QxBijO7Au9WtD1TdypEaAvAIEALw_wcB
https://www.digikey.com/en/products/detail/texas-instruments/BQ27441DRZT-G1A/4733020
https://www.digikey.com/en/products/detail/mpd-memory-protection-devices/BH-18650-W/3029217
https://www.digikey.com/en/products/detail/e-switch/RSC141D1000-116/2116232
https://www.digikey.com/en/products/detail/nextgen-components/S8050/16602420
https://www.molex.com/en-us/products/part-detail/2171750001

34

Table 5: Bill of Materials

3.1.2 Estimated Hours of Development
Both members of the group are Computer Engineering students. Based on the Grainger College
of Engineering website on post-graduate success [5], the average starting salary for a Computer
Engineering graduate from the University of Illinois at Urbana-Champaign is $118,752/yr, which
is equivalent to $57.09/hr.

Category Estimated Hours

Sakhi Muthu

Circuit Design 15 15

Board Layout 10 10

Soldering 10 10

Firmware Development 25 15

Software Data Monitoring 5 15

Prototype & Debug 40 40

Documentation & Logistics 40 40

Total Hours 145 145

Table 6: Estimated Hours

With the hourly estimate configured in Table 6, we compute the estimated cost for the project
labor as follows:

$57. 09/ℎ𝑟 × 145 ℎ𝑟𝑠 = $8, 278. 05 𝑝𝑒𝑟 𝑡𝑒𝑎𝑚 𝑚𝑒𝑚𝑏𝑒𝑟

3.1.3 External Materials and Resources
● ECE Supply & Electronic Services Shop

○ We are planning on purchasing existing resources that are available directly from
the ECEB machine shop. The main component we are getting is the
ESP32-S3-WROOM-1 microcontroller; the rest of the items are extra components
for debugging purposes including resistors, wires, soldering equipment, etc.

35

● Senior Design Lab Resources
○ We are planning to utilize the soldering, testing, and debugging resources

provided in the Senior Design Laboratory which include soldering iron,
oscilloscope, multimeters, and power supplies. Concurrently, we will be taking
advantage of the available electrical components which involve capacitors,
resistors, transistors, buttons, and switches.

● External Resources
○ Aside from the generic electrical components provided, we will be purchasing the

rest of the components which include the UWB transceivers (DWM 1000), IMU
sensor (LSM6DSL), USB-to-UART bridge (CP2104), and other crucial
components for the power subsystem from external resources that mainly come
from Digikey and Amazon.

● Grainger IDEA Lab
○ We are planning on 3D printing our enclosures at the IDEA lab within Grainger

Library. We have to submit 3D design files through an online portal and the lab
will print the designs for us.

3.1.4 Total Estimated Cost
We conclude the cost analysis by summing up the cost estimation from both labor and materials
cost breakdowns. Table 7 is the conclusion of the total estimated cost of our project.

Category Estimated Cost

Material and Parts $510.52

Total Labor Cost $16,556.1

Total Estimated Cost $17,066.62

Table 7: Total Estimated Cost

3.2 Schedule
● Week of 9/30; Week 6

○ Design Document, Schematic Review & Feedback, - Sakhi, Muthu
○ Cost Analysis and Breakdown, - Muthu
○ PCB Layout - Sakhi, Muthu

36

○ ESP32 Firmware Development (SPI Protocol) - Sakhi

● Week of 10/7; Week 7
○ Design Review Presentation, – Sakhi, Muthu
○ PCB Layout & Routing, – Muthu
○ Initial ESP32 Firmware Flash Test, – Sakhi, Muthu
○ ESP32 Firmware Development (DWM1000 TWR Algorithm), – Sakhi
○ Ordering Parts – Sakhi, Muthu

● Week of 10/14; Week 8
○ Ordering Parts, – Muthu
○ Ordering PCB, – Sakhi, Muthu
○ Sensor Development, – Sakhi, Muthu
○ ESP32 Firmware Development (DSP Triangulation) – Sakhi

● Week of 10/21; Week 9
○ Prototype I Assembly, – Sakhi, Muthu
○ Hardware Test, Debug, & Improve, – Sakhi, Muthu
○ ESP32 Software Development (Bluetooth HID Protocol), – Sakhi
○ Host Device Software Development (Data Logging) – Muthu

● Week of 10/28; Week 10
○ Prototype I: Hardware Debug & Review, – Sakhi, Muthu
○ Firmware Debug & Optimization, – Muthu
○ Order 2nd Wave PCB, – Sakhi, Muthu
○ Software Test on Touch Emulation – Sakhi

● Week of 11/4; Week 11
○ Prototype II: Hardware, Firmware, & Software Integration – Sakhi, Muthu
○ 3D Print Pen Enclosure,v– Muthu
○ Prepare for Mock Demo – Sakhi, Muthu

● Week of 11/11; Week 12
○ Prototype II: Debugging & Review, – Sakhi, Muthu
○ Prepare for Mock Demo – Sakhi, Muthu

● Week of 11/18; Week 13
○ Mock Demo, – Sakhi, Muthu
○ Prototype II: Debugging & Review, – Sakhi, Muthu
○ Prepare for the Final Demo & Presentation – Sakhi, Muthu

37

● Week of 11/25; Week 14
○ Fall Break

● Week of 12/2; Week 15
○ Final Debugging & Review, – Sakhi, Muthu
○ Work on Final Presentation & Paper, – Sakhi, Muthu
○ Final Demo – Sakhi, Muthu

● Week of 12/9; Week 16
○ Final Presentation – Sakhi, Muthu
○ Final Paper – Sakhi, Muthu
○ Lab Notebook and Checkout – Sakhi, Muthu

4 Ethics and Safety
RF Exposure and UWB Compliance: The UWB transceivers emit radiofrequency (RF) signals,
which must comply with FCC regulations (Part 15 Subpart F) concerning RF exposure limits and
interference control. We will ensure that our device operates within the permitted frequency
bands (4.5 GHz) and maintains safe RF power levels to avoid harmful exposure to users and

38

prevent interference with other devices. The Code for Federal Regulations details an entire
section on Ultra-Wideband operation:

Data Privacy: Our software subsystems compile data logs and take in the user’s screen
information and computer environment. Following the ACM Code of Ethics section 1.6-1.7, we
must ensure that this data is handled with the highest regard for privacy and confidentiality. Any
data collected during calibration or logging must not be misused or shared without explicit user
consent.

To mitigate this risk, we will ensure users are informed about what data is collected,
aligning with principles of transparency and accountability. We will also only collect data that is
strictly necessary for location/mouse data logging and accuracy analysis.

Battery Safety: Our device uses 3.7V rechargeable batteries, which can pose risks like
overheating or fire if mishandled. We will follow IEEE Standard 1725 for rechargeable battery
safety, mitigating these risks by implementing a power monitoring system that will prevent
excessive discharging of the battery

Campus and Lab Policies: We will adhere to the University of Illinois laboratory safety
guidelines, which emphasize the proper handling of electronic components and the safe use of
tools/materials. This includes wearing appropriate PPE and ensuring that workspaces/lockers are
kept organized and free of hazards.

5 Citations
[1] Advanced Monolithic Systems. (n.d.). AMS1117-1.8 low dropout voltage regulator datasheet.

[Online]. Available:
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6283/AMS1117-1.8.pdf

https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6283/AMS1117-1.8.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6283/AMS1117-1.8.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6283/AMS1117-1.8.pdf

39

[2] Digi-Key Electronics. (n.d.). ESP32-S3-WROOM-1-N8. [Online]. Available:
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-S3-WROOM-1-N8/15
200089

[3] Digi-Key Electronics. (n.d.). LSM6DSLTR. [Online]. Available:
https://www.digikey.com/en/products/detail/stmicroelectronics/LSM6DSLTR/6192804

[4] Espressif Systems. (n.d.). ESP32-S3 products. [Online]. Available:
https://www.espressif.com/en/products/socs/esp32-s3

[5] The Grainger College of Engineering. (n.d.). Computer engineering major. University of
Illinois Urbana-Champaign. [Online]. Available:
https://grainger.illinois.edu/academics/undergraduate/majors-and-minors/computer-engineeri
ng

[6] S. Hossain and B. A. Khawaja, "A survey on ultra-wideband communication technologies
and applications," IEEE Access, vol. 7, pp. 29714-29730, 2019, [Online]. Available:
https://doi.org/10.1109/ACCESS.2019.2892430

[7] Makerfabs. (n.d.). ESP32 UWB (Ultra-Wideband). [Online]. Available:
https://www.makerfabs.com/esp32-uwb-ultra-wideband.html

[8] Qorvo. (n.d.). DWM1000: Ultra-wideband module. [Online]. Available:
https://www.qorvo.com/products/p/DWM1000

[9] Qorvo. (n.d.). Getting back to basics with ultra-wideband (UWB). [Online]. Available:
https://www.qorvo.com/resources/d/qorvo-getting-back-to-basics-with-ultra-wideband-uwb-
white-paper

[10] S. Raghavan, S. Kittipiyakul, and Y. Srikant, “Ultra-wideband channel modeling for
wireless communication systems,” IEEE Transactions on Wireless Communications, 20(3),
1789-1801. [Online]. Available: https://doi.org/10.1109/TWC.2020.3041958

[11] RRC. (2023). Real-world algorithms for IoT and data science. [Online]. Available:
https://rrc-uiuc.notion.site/Real-World-Algorithms-for-IoT-and-Data-Science-74d8f612f74a4
c1689760dafa31ef93d

[12] Texas Instruments. (2018). BQ27441-G1 fuel gauge datasheet (SLUSBH2B). [Online].
Available: https://www.ti.com/lit/ds/symlink/bq27441-g1.pdf

[13] U.S. Government Publishing Office. (2022). Title 47—Telecommunication, chapter
I—Federal Communications Commission, subchapter A—General, part 15—Radio
Frequency Devices, subpart F—Unlicensed National Information Infrastructure Devices.

https://www.digikey.com/en/products/detail/espressif-systems/ESP32-S3-WROOM-1-N8/15200089
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6283/AMS1117-1.8.pdf
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-S3-WROOM-1-N8/15200089
https://www.digikey.com/en/products/detail/espressif-systems/ESP32-S3-WROOM-1-N8/15200089
https://www.digikey.com/en/products/detail/stmicroelectronics/LSM6DSLTR/6192804
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6283/AMS1117-1.8.pdf
https://www.digikey.com/en/products/detail/stmicroelectronics/LSM6DSLTR/6192804
https://www.espressif.com/en/products/socs/esp32-s3
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6283/AMS1117-1.8.pdf
https://www.espressif.com/en/products/socs/esp32-s3
https://grainger.illinois.edu/academics/undergraduate/majors-and-minors/computer-engineering
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6283/AMS1117-1.8.pdf
https://grainger.illinois.edu/academics/undergraduate/majors-and-minors/computer-engineering
https://grainger.illinois.edu/academics/undergraduate/majors-and-minors/computer-engineering
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6283/AMS1117-1.8.pdf
https://doi.org/10.1109/ACCESS.2019.2892430
https://www.makerfabs.com/esp32-uwb-ultra-wideband.html
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6283/AMS1117-1.8.pdf
https://www.makerfabs.com/esp32-uwb-ultra-wideband.html
https://www.qorvo.com/products/p/DWM1000
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6283/AMS1117-1.8.pdf
https://www.qorvo.com/products/p/DWM1000
https://www.qorvo.com/resources/d/qorvo-getting-back-to-basics-with-ultra-wideband-uwb-white-paper
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6283/AMS1117-1.8.pdf
https://www.qorvo.com/resources/d/qorvo-getting-back-to-basics-with-ultra-wideband-uwb-white-paper
https://www.qorvo.com/resources/d/qorvo-getting-back-to-basics-with-ultra-wideband-uwb-white-paper
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6283/AMS1117-1.8.pdf
https://doi.org/10.1109/TWC.2020.3041958
https://rrc-uiuc.notion.site/Real-World-Algorithms-for-IoT-and-Data-Science-74d8f612f74a4c1689760dafa31ef93d
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6283/AMS1117-1.8.pdf
https://rrc-uiuc.notion.site/Real-World-Algorithms-for-IoT-and-Data-Science-74d8f612f74a4c1689760dafa31ef93d
https://rrc-uiuc.notion.site/Real-World-Algorithms-for-IoT-and-Data-Science-74d8f612f74a4c1689760dafa31ef93d
https://www.ti.com/lit/ds/symlink/bq27441-g1.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6283/AMS1117-1.8.pdf
https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6283/AMS1117-1.8.pdf
https://www.ti.com/lit/ds/symlink/bq27441-g1.pdf
https://www.ecfr.gov/current/title-47/chapter-I/subchapter-A/part-15/subpart-F

40

[Online]. Available:
https://www.ecfr.gov/current/title-47/chapter-I/subchapter-A/part-15/subpart-F

https://mm.digikey.com/Volume0/opasdata/d220001/medias/docus/6283/AMS1117-1.8.pdf
https://www.ecfr.gov/current/title-47/chapter-I/subchapter-A/part-15/subpart-F

