
Smart Stick System (TripleS)

ECE 445 Design Document

Project 22

Ritvik Manda, Shivam Patel, Pranav Nair

Professor: Cunjiang Yu

TA: Dongming Liu

1 Introduction 2
1.1 Problem 2
1.1 Solution 2
1.2 Visual Aid 3
1.3 High Level Requirements 4

2 Design 6
2.1 Physical Diagram 6
2.2 Block Design 7
2.3 Functional Overview and Subsystems 8

2.3.1.1 LaxHub Description 8
2.3.1.2 LaxHub Requirements and Verification Table 9
2.3.2.1 LaxSense Description 11
2.3.1.2 LaxSense Requirements and Verification Table 11
2.3.3 TripleS Application Description 13
2.3.1.2 TripleS App Requirements and Verification Table 14

2.4 Software Design 14
2.5 Component Selection 16
2.6 Tolerance Analysis 17

3 Cost and Schedule 20
3.1 Cost Analysis 20
3.2 Schedule 21

4 Ethics and Safety 23
5 References 24

1

1 Introduction

1.1 Problem

Lacrosse players and coaches currently lack real-time, detailed performance metrics to help

improve their gameplay. Traditional training methods rely heavily on subjective observation, which is

not very consistent. No tools such as those available for other sports like baseball, golf, soccer, etc are

available to monitor and improve lacrosse form and accuracy, especially when a player is training alone.

Since lacrosse is not a well known sport, it becomes difficult for beginners and enthusiasts to start

learning the mechanics of the stick and being proficient with it.

1.1 Solution

This project aims to address the need for a smart, data-driven tool that can measure shot speed,

accuracy, and stick form, providing lacrosse players with accurate and instant feedback to enhance their

training and technique. We seek to help experienced players to obtain performance data while also

aiding beginners in strengthening their form and tactics. Our proposed system consists of a hub unit, a

monitoring device fitted to the lacrosse stick, and a mobile app. The base or hub unit (known as the

LaxHub) is the main processing unit, and will receive data from the remote unit as well as use a built in

camera and lcd screen. We aim to use computer vision based processing to monitor a player’s form,

suggest changes, and track progress. A secondary subsystem is meant to be securely fit onto the end of a

lacrosse stick (known as the LaxSense). This unit contains sensors to transmit information like swing

speed and angle back to the LaxHub for processing and estimating metrics like ball speed and

trajectory. Finally, the TripleS application provides detailed feedback based on LaxHub processing, and

tracks the user’s history making use of AWS storage and processing.

The end product is very user friendly and fits a completely exclusive niche in the world of

sports performance tracking. It can help new and experienced users alike maintain, keep track of, and

improve their lacrosse game. Because the full package is rather portable, with only a small box and

minimal stick unit, it can be taken and used almost everywhere. We also plan to have rechargeable

2

batteries to add to this aspect, allowing players to take the system for use outside. Finally, with both an

instantly updating built-in LCD screen as well as more detailed metrics on an app, we hope to give

essential feedback quickly and clearly to assist in a training session.

1.2 Visual Aid

Figure 1: A standard lacrosse stick

A standard commercially available lacrosse stick is made of metal alloy and carbon fiber, and

holds up the head (containing the net pocket to hold lacrosse balls). They are typically swung in a

catapulting motion. We plan to use a standard lacrosse stick with the only main alteration being

attaching a small module to the bottom to monitor information.

More specifically, lacrosse sticks are shaped in an octagon and typically are mostly hollow as

seen in label A of Figure 2. They have a rubber stop at the end which we plan to remove and replace

with our securely fitted monitor.

3

Figure 2: Visual Aid of the Stick System (LaxSense)

As shown more clearly in label B of Figure 2, our actual LaxSense unit (with a rectangular shaped 3D

printed case) will be fixed with a hexagonal prism connector that can simply slot into the end of the

lacrosse stick. Ideally we will not need any adhesive if this is a secure enough fit, meaning it can easily be

swapped in and out for regular use or monitoring. Since the mounted components simply consist of

sensors (gyroscope and accelerometer), a microcontroller, and a battery, we aim to house this in a small

and lightweight container to avoid tampering with the player’s feel for the lacrosse stick.

1.3 High Level Requirements

1. Our first requirement is real-time performance tracking and analysis, more specifically to

provide feedback and improvements or failures of a swing within 30 seconds. The systemmust

accurately measure and analyze metrics in near real-time, including shot speed, accuracy, and

stick form. This delay also includes sending data to the cloud and outputting a more detailed

response in the application.

2. Our second requirement is that the accuracy of ball speed and trajectory to be ±10 mph

and within 10 feet respectively. It’s important to measure this accuracy since players need to

clearly see if their speeds and trajectories change over time. A user might want to keep track if

4

the speed of his throws become faster over time, while also maintaining a good trajectory.

3. Our third requirement is that the LaxSense unit must weigh less than 3 ounces. It’s crucial

to keep the unit light to avoid interfering with the mechanics of the lacrosse stick. If the

LaxSense unit is too heavy, it could negatively affect shot speed and trajectory, which is not

ideal. By keeping the unit under 3 ounces, we can ensure it doesn’t disrupt the natural balance

of the stick, allowing players to maintain optimal shot speed, accuracy, and overall

performance.

5

2 Design

2.1 Physical Diagram

Below is a physical representation of our Smart Stick System. The modification of the lacrosse

stick is present in the bottom portion, where the plug is located. The original plug will be replaced by

our LaxSense system, which is a 3D printed plug with sensors.

Figure 3: Smart Stick System (Triple S) Physical Diagram

The LaxHub processing unit will be placed on the ground when a player uses the lacrosse stick,

tracking the motion and form of the player. The data measured from the LaxSense unit will be logged

into the LaxHub. The data is then sent to our TripleS application via an AWS Kinesis agent.

6

2.2 Block Design

Figure 4: Smart Stick System (Triple S) Block Diagram

LaxHub is the main processing unit of this system and contains the custom PCB,

microcontroller, LCD screen, and camera, as well as a bluetooth 5.0 module (as part of the

microcontroller). The LaxHub will need to be powered by a rechargeable battery. The main peripheral

connection of this subsystem is the low-power bluetooth connection with the LaxSense subsystem. It

7

also connects directly to the backend cloud component of our application via a Kinesis client.

LaxSense is a subsystem that mounts on the back of the lacrosse stick, which will contain a

microcontroller, accelerometer, and a gyroscope. These parts will work in conjunction to keep track of

performance metrics such as shot speed, stick angle, and form. Because this is a standalone device, this

will need to be powered by a small battery system. LaxSense directly sends data to the LaxHub via the

built-in bluetooth module of the microcontroller. The TripleS application is our final subsystem, and

handles data display and analysis. It receives data from the ESP 32 microcontroller through a Kinesis

Client and places it in our database, which is DynamoDB in our backend. We will use React as our

frontend and use AWS Amplify to help build the infrastructure. A mobile user will have access to this

application and the data displayed will be from the very DynamoDB table that the microcontroller

sends data to.

2.3 Functional Overview and Subsystems

2.3.1.1 LaxHub Description

The LaxHub consists of four main hardware components all connected through the PCB.

Our main processing hub is the ESP 32 microcontroller. We specifically will use a ESP32-S3 which

integrates a bluetooth 5.0 and wifi module. The microcontroller will handle communication with both

other modules and requires this form of connectivity. More specifically, the microcontroller receives

data from the LaxSense through low power bluetooth, and sends data to the backend cloud

application by connecting to the internet. Receiving accelerometer and gyroscope data from the

LaxSense will particularly be used in the LaxHub to predict data like throw speed and distance, and

ultimately display on the local screen. Sending data to the application will be done by implementing

Kinesis client code in the microcontroller. The next component is the battery unit. We chose a

B0143KH9KG, 3.7V-2600mAh-9.62Wh Rechargeable Li-ion Battery Pack in order to have plenty of

reserve battery and be able to charge it up when possible. The battery connects to the microcontroller,

camera, and LCD screen, and needs to be able to supply a constant 500mA to all. The ESP32

microcontroller cannot function below 500mA. The camera module we will use is a 2MPOV2640

8

Sensor. It is a small camera option that is still able to capture 1080p at 30 ± 12 fps video for short frame

by frame analysis. We need to account for some amount of frame drops limited at processing speed.

The camera module is connected as an I2C device to the microcontroller and we will install the

appropriate driver and devicetree to read and use its data. We will need a connection between these two

components able to send 30 frames per second of data to the microcontroller. Similarly we have an

LCD screen that will receive basic data to display from the microcontroller. We chose the ST7735R

screen especially to have a SPI interface as opposed to I2C for faster data transfer and being able to

display more critical information as quickly as possible. Most important connection points are simply

MOSI (Master Out Slave In), SCLK (Serial Clock), and CS (Chip Select) on the SPI interface of the

ESP32. Overall this is the most essential subsystem and as the hub of communication for all processes,

it must use its connections with high rates of data movement to satisfy requirements of providing

feedback as quickly as possible.

2.3.1.2 LaxHub Requirements and Verification Table

Requirements Verification

● When the hub system is active and
detects that a swing has happened, it
should complete internal processing and
display basic output on the LCD screen
within 10 seconds of receiving data

● First confirm the LaxHub and LaxSense
subsystems are both active and
connected (look for a “connected” status
on screen)

● Once in range and in frame of the
LaxHub, do a test swing

● Wait to see a processing message on the
screen

● Confirm that predictions are outputted
within 10 seconds

● If any communication failure occurs
between the LaxHub and LaxSense
device subsystems when they are active in
a waiting state, the LaxHub should let
the user know through the LCD screen
within 5 seconds of losing the
connection, and attempt to reconnect

● Initially confirm the LaxHub and
LaxSense subsystems are both active and
connected (look for a “connected” status
on screen)

● Temporarily turn off the LaxSense
subsystem,possibly by disconnecting its
battery

9

automatically afterwards ● Wait for 5 seconds and check to see a
disconnected message on the LaxHub
LCD screen

● Now reconnect the LaxSense battery and
make sure it turns on

● Wait and check for a reestablished
connection (back to a “connected” status
on the screen)

● If the battery percentage of the LaxHub
system falls below 15%, the LaxHub
should detect this and display a low
battery warning on the LCD screen

● First connect a new fully charged battery
to the system and turn it on for standard
use

● Calculate approximately how long the
battery should take to get to 15% by
looking at overall current draw

● Wait for this amount of time, and expect
to see a battery warning message on the
screen

● Calculate approximately how long the
battery should take to run out with 15%
left

● Wait for this amount of time, and make
sure the system dies from battery loss

● When the system is alive and ready to use
the camera, it should display a “Camera
On” indicator on the LCD screen; In
addition if the Camera is obscured or not
reading frames it expects to, it should
display a camera error to the screen
within 5 seconds

● Initially confirm the LaxHub and
LaxSense subsystems are both active and
connected (look for a “connected” status
on screen)

● Ensure the LaxHub unit is turned on
and the LCD display initially shows a
“Camera On” status

● Cover the camera temporarily with a
screen or cover so it is unable to see the
lacrosse player

● Wait 5 seconds and make sure we see a
“Camera error” message on the screen

● When the LaxHub has received and
transmitted data to the cloud, display a
message to show the data has been sent
for processing, ultimately routing the

● Initially confirm the LaxHub and
LaxSense subsystems are both active and
connected (“connected” status)

● Demonstrate a normal use of the system

10

user to a more detailed breakdown in the
application

by doing a practice swing
● Expect to see a “Data sent to cloud”

message on the LCD screen
● Later check the TripleS application has

updated with more data

2.3.2.1 LaxSense Description

The LaxSense subsystem is a critical component mounted on the bottom of the lacrosse stick,

responsible for gathering and transmitting performance metrics such as shot speed, stick angle, and

form. It utilizes the MPU-9250 sensor unit, which integrates a 3-axis accelerometer, 3-axis gyroscope,

and a magnetometer, working together to capture real-time data about the stick’s movement. The

accelerometer measures the stick’s linear acceleration with configurable ranges of ±2g, ±4g, ±8g, and

±16g, ensuring precise tracking of shot velocity and force. Meanwhile, the gyroscope measures angular

velocity with full-scale ranges of ±250, ±500, ±1000, and ±2000°/s, allowing for detailed analysis of

stick rotation and form. The subsystem is powered by a 500mAh Li-ion battery, which must provide a

continuous 3.7 ± 0.75 V output and support up to 5 hours of operation per charge. TheMPU-9250

operates with low power consumption, so the connection from the battery to the sensor systemmust

be a stable 3.5 ± 0.75 mAwhen all axes are enabled. The LOLIND1Mini microcontroller, based on

the ESP-8266EX, processes the data and transmits it to the LaxHub via Bluetooth Low Energy (BLE).

The microcontroller connects to the sensor system via I2C and so we must properly install the driver

and devicetree for these sensors. The BLE connection to the LaxHub must maintain a stable data rate

of at least 1 ± 0.5 Mbps with a range of up to 10 meters, to allow for real-time performance feedback

without noticeable delays. The total weight of the subsystemmust remain under 3 ounces to avoid

affecting the lacrosse stick's balance. Any failure in sensor accuracy, bluetooth range, or power

efficiency would cause the subsystem to fail, leading to the loss of data.

2.3.1.2 LaxSense Requirements and Verification Table

Requirements Verification

11

● If the bluetooth BLE connection is lost
when the subsystems are in use, the
system should attempt to reconnect
within 5 seconds

● Establish a BLE connection between
LaxSense and LaxHub.

● Turn off the LaxHub momentarily, turn
it back on, and verify that the system
reconnects automatically

● Only when the LaxSense detects a shot,
denoted by rapid acceleration, 15 ± 3
m/s2, it must log and transmit the data to
the LaxHub within 10 seconds. This is to
prevent any unnecessary logging.

● Simulate a shot by moving the stick in a
fast, forward motion

● Confirm that LaxHub received the data
transmitted by LaxSense within 10
seconds (timer) by observing the logs on
LaxHub.

● Additionally, move the stick lightly and
verify that no log has been sent to the
LaxHub unit

● If there is a critical miscommunication
between the LOLIND1Mini and the
MPU-9250 sensor, the subsystemmust
stop transmitting data and log an error
on the LaxHub

● To simulate a failure, we can interrupt
the I2C connection by disconnecting the
sensor unit from the microcontroller.

● Make sure that the system stops
transmitting data once the
communication error is detected - this is
needed so that LaxHub does not receive
false readings

● Verify that an error is logged on LaxHub
to maintain the integrity of data

● The systemmust monitor the battery
voltage and log a warning on the
LaxHub if the voltage drops below 3.7
volts

● Simulate low battery conditions by using
a variable power supply to reduce
voltage.

● Confirm that a warning is logged on the
LaxHub when the voltage falls below 3.7
volts

To connect the MPU9250 to the Lolin D1Mini using I2C communication, we need to first

connect the VCC pin of the MPU9250 to the 3.3V pin on the D1Mini, the GND pin of the

MPU9250 to the GND pin on the D1Mini, the SDA pin of the MPU9250 to the D2 pin on the D1

Mini, and the SCL pin of the MPU9250 to the D1 pin on the D1Mini. For powering the Lolin D1

Mini, we are going to use the 500 mAh Li-ion battery pack, ensuring the voltage is appropriate.

12

Connect the positive terminal of the battery to the 5V pin of the D1Mini and the negative terminal to

the GND pin. It's important to ensure that your Li-ion battery pack provides a voltage between 3.3V

and 5V, as the Lolin D1Mini has an onboard voltage regulator that can handle this voltage range.

2.3.3 TripleS Application Description

The frontend of theTripleS application is created using React, and we will use AWS Amplify

to develop and deploy the mobile application. The TripleS application contains a singular DynamoDB

database. Once the ESP 32 microcontroller has the necessary data, then this data is sent to Amazon

Kinesis streams through a Kinesis Client. This is done by first setting up the AWS software

development kit on the microcontroller, initializing the client, creating a data stream, and then sending

the data in a JSON format. All of this is done via the Internet. The stream then sends the data to

DynamoDB using a Lambda function which processes it. Users will go through Amazon Cognito to

authenticate, there will be RESTHTTPS communication for the API Gateway, which in turn will

verify the authentication. This gateway then invokes a Lambda function which queries and reads the

data from the DynamoDB table. One of our high-level requirements is that we aim for real-time

performance tracking and analysis. To achieve this, we are using Amazon Kinesis streams which are

excellent for real-time data streaming and we are using serverless architecture, such as Lambda and

DynamoDB. Because of our choice of architecture, we should be able to get analysis and data under 30

seconds. The list of requirements such that if any of them are removed the subsystem would fail, are as

follows: Since Kinesis has shard limits, each shard can support up to 1000 messages per second or 1MB

per second, so if these thresholds are broken, it may lead to throttling and in turn, failures. Sending the

data from Streams to Lambda is 2 MB per second (shared) per shard for all consumers, so if these

thresholds are broken, it may lead to throttling and in turn, failures. We also have to ensure that the

Lambda functions to send the data to DynamoDB and retrieving the data from the database both

follow the same format, or else there will be errors in consistency regarding data.

13

2.3.1.2 TripleS App Requirements and Verification Table

Requirements Verification

● The end data should be sent to Amazon
Kinesis Streams in JSON format within
30 seconds from creation time (readings
from LaxSense)

● Simulate data from LaxSense, and track
to see the time it takes for the data to
travel from one subsystem to another

● Confirm data transfer through logs sent
to the microcontroller

● Once the data reaches the cloud, verify it
has been reached within 30 seconds since
the shot start time

● Ensure that the Lambda function
transmits data to DynamoDB that does
not exceed 2MB / per second per shard
to avoid throttling.

● Deploy a temporary, test Lambda
function that sends messages to
DynamoDB

● Configure AWS Cloudwatch on the
Lambda function

● Use the AWS Cloudwatch console to
monitor the throughput and metrics and
see if it is below the 2MB limit

● The format of the data sent from the
Lambda functions to DynamoDB and
retrieved fromDynamoDB has to be
consistent to prevent any data errors for
calculations

● Conduct tests where data is sent to
DynamoDB and also retrieved

● This can be done by hard coding values
via the LaxHub microprocessor to be
sent to the Kinesis Streams

● Validate that the data retrieved (client
side mobile application) matches what is
being sent

2.4 Software Design

Our core software component is the threaded processing done by the microcontroller within

the LaxHub, along with further processing completed in a cloud instance before being sent to the

application. Ultimately, the ESP 32 must simultaneously receive video data at a high rate, receive sensor

data over bluetooth from the LaxSense, process basic data for display on the LCD screen, and send data

to the cloud using a Wifi connection to university internet.

14

Figure 5: An OpenCVMPII Pose Tracking Overlay on an Example Lacrosse Pass

One process cycle begins with the devices simply set up to capture information (camera

pointing at a person). An OpenCVMPII lightweight model will be running on the ESP 32 using

captured frame data from the camera, essentially running “pose tracking”. This means the program is

able to predict the “skeletal” position of people from video data, mainly keeping track of arms, legs,

and joints. An example of how this pose tracking works is shown in Figure 5. Using a predicted motion

here, as well as a significant change in threshold on the LaxSense accelerometer, the system triggers the

start of a cycle. The frames for a full predicted throwmotion are captured (~3 seconds or 90 frames)

and recorded as raw position data through CV, ignoring all other data from the image like color,

saturation, etc. The tracked position data for all of these frames along with sensor data from the

LaxSense is immediately sent for cloud processing via an AWS Kinesis client. As soon as this is done,

the ESP 32 sends a hard coded message “Data sent to cloud” on the LCD screen. For simplicity, to

write to the LCD screen, the program will use Adafruit's ST7735 library, which is compatible with the

ESP 32 microcontroller. Locally, we then begin processing the accelerometer and gyroscope data to

predict speed, distance, and trajectory, explained further mathematically in the next section. With this

information processed, we once again display it on the LCD screen. Ideally, we wait for a final pingback

from the cloud indicating processing is finished, the database is updated, and the latest information can

15

be accessed from the app. From the perspective of the ESP 32 on the LaxHub, we now simply wait to

restart the loop.

To predict the trajectory of the ball that would be released from a similar pass, we can first use

an accelerometer threshold value to consider exactly when the shot begins and ends. Since we are using

a threshold this will not be exact, but we will round lower so that it is more sensitive to any kind of

shot. Now using the gyroscope and accelerometer, we can calculate the angular velocity and

acceleration of the shot, mainly due to the pivoting nature of the lacrosse shot. More specifically, the

angular velocity can be measured throughout the shot path simply by tracking over short periods of

time. After recording a continuous function of velocity at the LaxSense microcontroller, acceleration is

found by simply taking the mathematical derivative. Knowing the stick length and average angular

velocity over the throw period, we use the equation v = rw to estimate linear velocity. Now using linear

release speed and angle measured using the gyro, the final trajectory can be predicted with the trajectory

equation. We use

x = (v₀cosθ)t and y = (v₀sinθ)t - (1/2)gt²

to correspondingly calculate the predicted distance and height trajectory values, and record/display

them on the LaxHub unit. Ultimately this will have noise that might need to be filtered and these

values will be estimates. Regardless, this estimated information being displayed almost immediately to a

training player would be very helpful to see differences over time.

2.5 Component Selection

We selected each component primarily based on their functionality along with how compatible they

are with other parts. Here we briefly discuss why we chose several of these components.

ESP32-S3 (ESP32-CAM)Microcontroller - We chose the ESP 32 microcontroller due to its

accessibility, well documented uses, and size. The ESP32-S3 specifically matches our use cases of having

to communicate through bluetooth, connect to a network throughWifi, and have compatibility with a

camera unit. We are easily able to connect our camera sensor to this microcontroller with a ribbon

cable, which will help significantly.

16

2MPOV2640 Camera Sensor - This camera sensor was chosen again due to its small size while being

very capable. It is easily connected to the ESP 32, and is able to provide 30 fps video at 1080p

resolution. While we likely will not need to use 30fps or a clear 1080p video, this ensures we are

gathering more data rather than less which can later be compressed.

ST7735R LCD Screen - We chose this screen unit due to its small but readable size, and once again

simple connectivity with the microcontroller. This screen uses an SPI interface, which as discussed

earlier, is a great option for faster data transfer. This seemed crucial to us considering all the tasks the

microcontroller must handle.

B0143KH9KG 3.7V-2600mAh-9.62Wh Rechargeable Li-ion Battery Pack - This battery pack is a great

option we found for our system as it has enough of a capacity to power the LaxHub for several hours,

and is rechargeable. From a product perspective, it is great to have a rechargeable battery pack instead

of having to find and replace new batteries each time after a few uses of the system.

LOLIND1Mini Microcontroller - On the LaxSense side, we very much prioritized lightweight and

small components to fit within our criterion of weight (to avoid changing the feel of the lacrosse stick).

This microcontroller, which is adapted from the ESP8266, is very small but powerful enough to

process and transmit sensor information. It includes a bluetooth module which we will use to send the

information to the LaxHub.

MPU-9250 sensor unit - We chose this sensor unit because it comes with both sensors we need to use, a

gyroscope and an accelerometer. It also includes a magnetometer, which we plan to not use in this

project. We can very easily connect this unit to the LaxSense microcontroller as well through the SPI

interface.

2.6 Tolerance Analysis

It is important to focus on the accuracy of the gyroscope in the LaxSense subsystem, which is

crucial in measuring stick rotation, which directly impacts trajectory. Let’s analyze the feasibility of

meeting our requirement based on the given following information:

1. Gyroscope sensitivity: 131 LSB/(°/s) for ± 250 °/s full range scale

17

2. Gyroscope total root-mean-square noise 0.1 °/s

3. Typically a lacrosse shot takes approximately 0.2 seconds

4. Typically lacrosse shot speed ranges between 70-100 mph

Now listed below are the steps and calculations to prove the feasibility of the MPU-9250

gyroscope sensor unit.

Step 1: Calculate the angular velocity of a typical shot, assuming a 90° rotation

ω = 90° / 0.2s = 450°/s

Step 2: Calculate the gyroscope output for ω

450°/s * 131 LSB/(°/s) = 58,950 LSB

Step 3: Calculate the error due to gyroscope noise

Error ω = 0.1°/s * 0.2s = 0.02°

Error in rotational measurement = 0.02° / 90° = 0.022%

Step 4.1: Translate rotational error to linear velocity error, assuming stick length of 1.016 m

v = ω * r

v = ω * r = (450°/s * π/180) * 1.016 m = 80.1 m/s (179 mph)

It’s good to note that the release point of the ball is not necessarily at the top of the stick and

that not all of the stick’s angular velocity is transferred to the ball. As we are placing our hands towards

the bottom of the stick, the pivot point of the catapult-like action changes as well. To achieve a more

realistic calculation, we can do the following:

Step 4.2: Translate rotational error to linear velocity error in a realistic scenario

v = ω * r * transfer efficiency = (450°/s * π/180) * (1.016 * 0.75) * 0.60 = 36.1 m/s (80.7 mph)

18

Step 5. Calculate the error in linear velocity

80.7 mph * 0.022% = 0.0178 mph

To make this calculation more robust, we can take additional errors into consideration:

1. Temperature drift: 0.75%

2. Calibration error: 1.25%

Step 6: Calculate the total error via the additional errors

Total error = √(0.022²+0.75²+1.25²) = 1.46%

80.7 mph * 1.46% = 1.18 mph error

The calculated error of 1.18 mph is still well within our high-level requirement of ±10 mph

accuracy for shot speed measurement. It’s also important to note that the 80.7 mph falls well within

the 70-100 mph for a typical lacrosse shot. This analysis shows that the gyroscope in the MPU-9250 is

sufficiently accurate for our application, even when considering a more realistic shot speed and

mechanics, and with slightly increased error factors for temperature drift and calibration.

19

3 Cost and Schedule

3.1 Cost Analysis

The total cost for parts, as seen in the Bill of Materials below, is $92.75 before shipping. A 5%

shipping cost adds an additional $4.64, bringing the total to $97.39. In Champaign County, a 9% sales

tax on the parts cost adds another $8.34, resulting in a total of $105.73 for the components. For labor

costs, calculated at $40/hr for 3 hours per day over 40 days, the total salary per teammember comes to

$4,800. Multiplying this by 3 teammembers results in a total labor cost of $14,400. Adding the labor

cost to the total parts cost gives us a comprehensive total of $14,505.73. Therefore, the overall total cost

for this project, including materials, shipping, sales tax, and labor, amounts to $14,505.73.

Name Description Quantity Cost

1 ESP32-S3Microcontroller Espressif microcontroller for IoT applications 1 $12.99

2 2MPOV2640 Camera Sensor
OmniVision 2MP camera sensor for capturing
images

1 $8.99

3 ST7735R LCD Screen Adafruit 1.8" TFT LCD display 1 $9.95

4
B0143KH9KG Li-ion Battery
Pack

Odec 3.7V-2600mAh rechargeable battery 1 $12.69

5
LOLIND1Mini
Microcontroller

LOLINmini Wi-Fi microcontroller 1 $14.99

6 MPU-9250 Sensor Unit InvenSense 9-axis motion tracking sensor 1 $14.59

7 Li-ion Battery Charger Adafruit charger for Li-ion batteries 1 $5.99

8 FTDI FT232HQ
USB to UART interface chip for serial
communication 1 $4.57

9
EEMB 3.7V LiPo Battery
500mAh 403048 Lithium Polymer rechargeable battery. 1 $7.99

10 Amazon Kinesis Client SDK Amazon's real-time streaming data service SDK N/A $0.00

11 DynamoDBDatabase Amazon NoSQL database service N/A $0.00

12 AWS Lambda Amazon's serverless compute service N/A $0.00

20

https://www.amazon.com/AiTrip-ESP32-CAM-Bluetooth-Dual-core-Development/dp/B07WCFGMTF/ref=sr_1_8?crid=2WAWS1T0ZYP69&dib=eyJ2IjoiMSJ9.uzOFe9cj1TWX_j3crZl_JuDQh24HRIMV7TlWUo9kwkAoseIz0RuXD0zyJ7K43QI0jrgzrDDx1WZI_5bRk4GKKnq3g8gpmi8Aut-DV1hMdGAFipBruGKsWSs-zbgjESHpaoJvIyjOtA0md0Tfd0e3hrg9WNKG2PhXd734oU8NaFep8CBY1f-h15QH2xb41vCuuQUqi_U6JXjv9c4C_owbaIRtq_ca6T9aWzOJGDNFlz0.drzSumot2P_nYNtMa8a0nF1aMQM5NnqD7sEay9M8f3U&dib_tag=se&keywords=ESP32-CAM&qid=1727988032&sprefix=esp32-cam%2Caps%2C172&sr=8-8&th=1
https://www.amazon.com/Treedix-OV2640-Camera-Module-Degree/dp/B0894KKXHX/ref=sr_1_6?crid=2C2HD8I9DY78S&dib=eyJ2IjoiMSJ9.K5wO--98yKOQVOsQHDpL1GfXQxSjk_ZyhKVwzcjM379Vq5j16xpe43OsLy3dsP3L-8nxLQjCMVVGdsigX-uD2P4l5QQ1JkynTJhn2-oYqao370qYUbx8QVTTmm_TalaHG8vsZ5E5bWYGenPLOv5O0jH0yuqOn7-U3Ppcs__P1p3EGvBphORZ_8ij-bhSXH6RACAycjP1H0pzw05i58Tlv0qtBBXokDuOV7t-ZkF_hJ4.ti8R3xMCYDZqPeBkdnpyiz7LMiXgg7G5LSVE_rbY9H8&dib_tag=se&keywords=2MP+OV2640+Camera+Sensor&qid=1727987259&sprefix=2mp+ov2640+camera+sensor%2Caps%2C78&sr=8-6
https://www.amazon.com/JESSINIE-Display-Arduino-128x160-Interface/dp/B0D31BGJWF/ref=sr_1_2?crid=3CVM1FB82K4YJ&dib=eyJ2IjoiMSJ9.9d0K0jWfZ3Ud1k_Ir2yDS64CVa1PW9PLYE9d6zhLYwo2n75-FEqlcuT50bLcV3ZdGU8C1bmqgqNSwfWNMW6k2RzlhDOgT2lLs78JjQ-fPnRcBe2zMAfRnYc41M5weGoay_sPEfZptNOQI5mo-5RaLCVjRCcNeoRyKrkL9f5WWHpRJpvhnPfaICuG88ba07APTslct9N9QpilMrUvGra_vqGtdx_3FI9m3cTaeTruyPE.-0-Rr4QEPdhPTXNx1G-BdJV_KmB3phoFw0mZ-ez1x2s&dib_tag=se&keywords=Adafruit+1.8%22+ST7735R+LCD+Screen&qid=1727987320&sprefix=adafruit+1.8+st7735r+lcd+screen%2Caps%2C73&sr=8-2
https://www.amazon.com/Qimoo-Replacement-B0143KH9KG-Rechargeable-Lithium-ion/dp/B0BP1KRVX6/ref=sr_1_2_sspa?crid=H6GGF01CJXTK&dib=eyJ2IjoiMSJ9.qUm6SMDBYhIYUAF3_eS1F3tBEqEGT9s1gZiF1moCI3HIM6udrRLiiCfCqL9RE8cwZvvKg4nknVjUoLOFKEZMcuia0a8aOJAlCKObyauf_OyZlrfhd8VbMx_JyZddOS_L7xfy-o0Roi7lMZ4cKkI2az75lwA-VV3m5ErPhXFWGYWoQxoGNIxPk4d3y7lbNujzCVqlIt9t4MR71oqZFymb3OjIYjTflhMRZMtOkK-acTAhaKVg4jmMXAOu4NCWopwqPKaq7kNyYkLkPXzg6Np6XCktKdOIUOQUajLWC0YVhZg.A0GOfXj2eUmnDJxYQFrFUP-rC42gd8ZeiqPC5yKNypQ&dib_tag=se&keywords=B0143KH9KG+Li-ion+Battery+Pack&qid=1727987412&sprefix=b0143kh9kg+li-ion+battery+pack%2Caps%2C67&sr=8-2-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9hdGY&psc=1
https://www.amazon.com/Hosyond-Wireless-Internet-Development-Compatible/dp/B09SPYY61L/ref=sr_1_2?crid=3GQUP1EFD5ZAX&dib=eyJ2IjoiMSJ9.0F1FA2nQWYSQqY-BoeGRG6odXPfHdB2go3wp7ms9v_0mvhepk_4rgk4YKeffJBEZIWwxFN5v1iEkSTbHUwvM2mtpokoJSSijyhl1RT4lvdVRanSybSMvkumEFkVENYMpAa9_F5OWOIzoZLDr9oEjJ8-VxZPtQY1k4IVYrteaM9RrPQnyc2nOaHECNKaHTqQwjWmEoDwWrTBi6g71YLenwxxToEstjVl7PbewpiK7aNo.gN8byqMo7C90g8PHvZ-AQIk1WVsHTZC8cm4skjiDz1w&dib_tag=se&keywords=LOLIN%2BD1%2BMini%2BMicrocontroller&qid=1727987448&sprefix=lolin%2Bd1%2Bmini%2Bmicrocontroller%2Caps%2C78&sr=8-2&th=1
https://www.amazon.com/Gyroscope-Acceleration-Magnetic-Accelerator-Magnetometer/dp/B0B6ZRH4RQ/ref=sr_1_2?crid=3B4ALYVEQSMNK&dib=eyJ2IjoiMSJ9.4KXBpYVrgczHQ4VYQCP3BvivKjVEj51EkhWZa-xiDFmGa81p3eHoFJN46rSiZjMJAMaHr0yBlWdNOV0JuxsRkMTElJRcRIuDuzuA6dSTXOL8EEqGuRKrRqGipIzYQij_UtN929k8LElwfi2VYhBBFiWqxaWvO-eZnBpIs6m56M2f0QECeWHeqxBIHV-kQ2a8_WVM8HCAYPrRLt2cSkYnppX6xUai7gYIISEautOKazY.8kXWoEQh1GBf7wrqfrQn7bwyCwhZo0iMftE6GOK57ss&dib_tag=se&keywords=MPU-9250+Sensor+Unit&qid=1727987533&sprefix=mpu-9250+sensor+unit%2Caps%2C75&sr=8-2
https://www.amazon.com/Battery-Charger-Single-Slot-Intelligent-Rechargeable/dp/B089SY8PBG/ref=sr_1_4?crid=2QT4ZBTGVUFDA&dib=eyJ2IjoiMSJ9.fEmKWBACUNO6gtuds946nxkIYTJYJVE2HFC5b0rCf8-lFlBbUpC9GWH762UGhQzmnFOBJELftlICfXIj-OW73r84G_qt0mhFqADgc-7gmkwhLsI4aNfXjADJ-n-dBZdXk0QPnksh47jnVtoDmWID3eSoDq1xmMZZReoN80z408PHE3O6PaaMu7TsQGfjSdBVavsDb4Z9pU63jCb0YQevHVjgJzdpwNpmBWsiVihx1Co.gYTFiFywU8RTGa1PoRfgEoVMt3-mq0OHKhi5CK3wTys&dib_tag=se&keywords=Li-ion+Battery+Charger&qid=1727987559&sprefix=li-ion+battery+charger%2Caps%2C91&sr=8-4
https://ftdichip.com/
https://www.amazon.com/EEMB-Battery-Rechargeable-Connector-Certified/dp/B095W6742D/ref=sr_1_3?crid=16YEOHKPMSGJK&dib=eyJ2IjoiMSJ9.DJxoMgigGpnCi3ofoLV_vAEFOcoRf5QKvcvA5k_MEtDRnXMAjxChpmdR3jyFzu7wn2RODz5YZEYGgZ3U0PHSSWcxpjyWdEY6lXJx7N9AcaosA-OWruqBPvXr8m5VdVQcVmnV6-PH17OdYNHrYIfurTYqHShnM8M4Xo721HHMzWdkcZWF-FRCV2FrBGCWB2mlRsszm98bhNfz9OfLJG9uETESuwrFhjVW1JAv4vtXqc0.r8BZz0bcimTUEOOD_wguJdIZqWUM3-gO1bJ3txRXYcQ&dib_tag=se&keywords=500mA+battery+pcb&qid=1727987985&sprefix=500ma+battery+pcb%2Caps%2C83&sr=8-3
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/kinesis/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/lambda/

3.2 Schedule

Week Task Member

October 6th →
October 12th

Order parts to start prototyping Everyone

Take measurements of the parts and start CAD design
for LaxSense

Ritvik

Research communication between microcontrollers and
subsystems

Shivam, Pranav

Start PCBDesign and get it reviewed Everyone

October 13th →
October 19th

Print 3D prototype Shivam

Test 3D prototype to see if sensors fit in the module Pranav, Ritvik

Finish PCBDesign Everyone

First Round PCBDesign - Pass Audit Everyone

October 20th →
October 26th

Continue working on CADDesign Shivam

Start developing openCVmodel for the camera Pranav

Start building LaxSense and LaxHub Shivam, Ritvik

Finish CADDesign Ritvik

Second Round PCBDesign - Pass Audit Everyone

October 27th →
November 2nd

Research best practices for building AWS based app Pranav, Ritvik

Start building the Triple S application via pipeline Ritvik, Shivam

Start connecting LaxSense and LaxHub Shivam, Pranav

Beta testing for Laxhub Everyone

Third Round PCBDesign - Pass Audit Everyone

November 3rd →
November 9th

Beta testing for application and openCVmodel Everyone

Continue testing subsystems for faults Everyone

21

Fourth Round PCBDesign - Pass Audit Everyone

November 10th →
November 16th

Finish application creation Ritvik, Pranav

Finish openCVmodel Pranav, Shivam

Finalize Assembly Everyone

PCBDesign Revisions Everyone

Fifth Round PCBDesign - Pass Audit (finalize PCB
design)

Everyone

November 17th →
Mock Demo Day

Fix minor bugs Everyone

Demo Everyone

22

4 Ethics and Safety

Our lacrosse performance tracking system raises several important ethical and safety

considerations that we must carefully address throughout development and deployment. Our system

collects and processes personal performance data of players, and in accordance with the IEEE Code of

Ethics principle to "respect the privacy of others", we will implement data protection measures. This

means allowing users full control over their data (including the ability to delete it), only collecting data

necessary for the system's core functionality, and clearly communicating our data practices to users.

Transparency is another key ethical principle we will adhere to, following the ACMCode of Ethics

principle of honesty. We will clearly communicate the capabilities and limitations of our system,

provide accurate information about the accuracy of our measurements, and be transparent about any

data sharing practices to ensure “full disclosure of all pertinent system capabilities, limitations, and

potential problems”. For example, we would be very clear about how distance and trajectory values are

based on predictions, and have a high margin of error. We have to keep safety in mind as well for our

product design. The LaxSense unit attached to the lacrosse stick must not have a chance of causing any

physical danger to players. We will ensure the unit is securely attached and cannot come loose during

play, use materials that are safe for skin contact and won't shatter if impacted, and design the unit to

minimize risk of injury if a player falls on it. We plan to use a soft plastic 3D-printed shell, which will

help it stay safe and lightweight.

Electrical safety is also a concern, as both the LaxHub and LaxSense contain electrical

components. Specifically, the lithium-ion batteries we plan to use can pose a fire hazard. We will

comply with IEC 60950-1 for IT equipment safety, ensure all batteries are properly enclosed and

protected from impact, and use low-voltage components where possible to minimize electrical hazards.

In terms of regulatory compliance, we will ensure our product complies with relevant regulations,

including FCC regulations for wireless devices, and Consumer Product Safety Commission guidelines

for sports equipment.

23

5 References

“Biomechanics of the Lacrosse Shot.” Biomechanics of the Lacrosse Shot, Center Island Performance

Athletics,

www.centerislandperformanceathletics.com/2016/03/biomechanics-of-lacrosse-shot.html.

Accessed 3 Oct. 2024.

Esp32 Series, Espressif, www.espressif.com/sites/default/files/documentation/esp32_datasheet_en.pdf.

Accessed 3 Oct. 2024.

“Getting Started with ESP32 CAM: Streaming Video Using ESP Cam over WIFI: ESP32 Security

Camera Project.” Instructables, Instructables, 22 Feb. 2022,

www.instructables.com/Getting-Started-With-ESP32-CAM-Streaming-Video-Usi/.

“Lacrosse Passing Guide: How to Throw a Lacrosse Ball.” LacrosseMonkey.Com, Lacrosse Monkey,

15 July 2024, www.lacrossemonkey.com/learn/how-to-pass-lacrosse-ball.

Lacrosse Shooting: A Guide to Increased Shot Speed and a Quicker Release, A-Game Sports, 13 Aug.

2018,

agamesports.net/2017/09/04/lacrosse-shooting-guide-increased-shot-speed-quicker-release/.

“Lolin D1Mini.” LOLIND1Mini - WEMOSDocumentation,

www.wemos.cc/en/latest/d1/d1_mini.html. Accessed 3 Oct. 2024.

“MPU-9250.” TDK InvenSense, 3 Nov. 2023,

invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250/.

Rabil, Paul. Lacrosse Passing Guide: How to Throw a Lacrosse Ball, YouTube, 29 Nov. 2017,

www.youtube.com/watch?v=TnsMrcQ0H-M.

ST7735R, Adafruit, cdn-shop.adafruit.com/datasheets/ST7735R_V0.2.pdf. Accessed 3 Oct. 2024.

24

