
1

Appendices

Modular Requirements

::GPS::
Requirement Verification

1. 1 Must receive coordinates from global

positioning satellites.

1.2 Must update coordinates with movement.

1.3 Must be accurate enough for reasonable

boundary detection.

1. 1 We will first test the GPS on the

breadboard observing the output on the

oscilloscope. Using the NMEA-0183 serial

protocol and a website such as Google Maps

for reference, we will cross check that the

coordinates received from the Venus and

observed on the Oscilloscope coincide with

the results from Google Maps.

1.2 As our collar will not be mobile at this

point in time, we will need a very long

extension cable. For this verification we will

have had to have set up the communication

between the microcontroller and the GPS

unit. A small subroutine will be written for

the microcontroller that strictly stores the

current GPS coordinates received in to the

EEPROM as they change from location to

location. Using the long extension cable we

will walk down the hallways of Everitt as the

microcontroller should be storing the

updated coordinates.

1.3 By now the rig should be mobile and

attachable to a pet’s collar, Using the same

code subroutine as in 1.2 we will test the

GPS’s ability to update coordinates and its

accuracy in between coordinate updates.

2

 While the GPS is rated at 2.5m accuracy, we

will measure the exact accuracy for

determining a proper refresh rate as

outlined in the Calculations section. We will

need to determine the significant figures for

exact accuracy of the GPS coordinates.

::Transceiver::
Requirement Verification

2.1 Must communicate with the same model

of transceiver.

2.2 Must transmit only enough power to be

received within a small radius similar to the

interaction of pets.

2.1 We will set up both transceivers on the

breadboard each properly grounded and

powered at 5V with a signal generator

attached to the input of one and an

oscilloscope attached to the output of the

other. Using a 2.785 GHz (our selected

frequency of operation so as not to coincide

with other bandwidths) square wave at the

input and observing the output at the

oscilloscope connected to the out of the

second transceiver.

2.2 This will take rigorous trial and error of

various transmit and supply powers to each

of the transceivers so that they barely sense

each other at roughly 1’6” apart. After

ensuring 2.1, we will set up the transceivers

roughly a foot and a half apart and reduce

the output of the first transceiver until it is

not detected by the second transceiver. This

will dictate the power output threshold

needed to achieve short range

communication.

::Microcontroller::
Requirement Verification

3

3.1 Must be reprogrammable onboard.

3.2 Must accept and receive all proper I/O

from other components.

 - 3.2(a) GPS

 - 3.2(b) Transceiver

- 3.2(c) Buttons & Switches

3.1 A code subroutine will be written that can

increment the contents of a specific location

in EEPROM. This can simply be tested by

making a push button command subroutine

that will increment a counter in EEPROM. The

results will be observed by connecting the

microcontroller to the computer via USB and

checking the contents of EEPROM.

3.2(a) Using the same subroutine

programmed for 1.2, this will be the portion

where we see if the actual coordinates are

written in to the EEPROM. We will walk around

with our semi-mobile rig and examine the

contents to see if they update with new

coordinates.

3.2(b) Using a similar technique as in 2.1

except now with the addition of the

microcontroller. Replacing the oscilloscope

from 2.1 with the microcontroller and

observing the input via the USB connection

ensures proper output from the transceiver.

Replacing the signal generator with a pre-

specified square wave as programmed onto

the microcontroller with insure proper input

into the transceiver.

3.2(c) First proceed with 4. 1 to make sure

that all of the switches are in physical

working order. Using the same code

subroutine as in 3. 1, implement each button

and switch individually as a means of

incrementing a counter in the EEPROM. Try

4

- 3.2(d) Power

each button with its respectively assigned

I/O port on the microcontroller and change

the subroutine accordingly.

3.2(d) This should be easily testable as the

microcontroller specifications list specific

power supply values for microcontroller

operation. Simply set up accordingly and see

if the microcontroller turns on using the

preprogrammed LED confirmation included

with the Arduino programming when the

microcontroller is booted for the first time.

::Physical Interface::
Requirement Verification

4.1 Physical switches must properly relay

decision choices to microcontroller in a

reliable and predictable fashion.

4.2 Must be configurable in such a way as to

be aesthetically reasonable to a customer

and configurable on a PCB.

4.1 Simple breadboard checking of proper

connections between DC sources at the input

of the switches and multimeters at the

output. All of the switches function by making

a physical connection in place of a short and

are therefore easily tested with the

breadboard.

4.2 This will require EAGLE testing to see how

compact we can fit the switches without

interfering with necessary space for the

GPS, transceiver, and microcontroller

portions. Aesthetics will suffer for the sake

of functionality.

::Virtual Interface::
Requirement Verification

5.1 Must properly communicate decisions

through the USB driver to the

microcontroller.

5.1 Simple testing to see if input on virtual

interface can store values in the EEPROM of

the microcontroller. This will require

5

5.2 Must be user-friendly.

verification from the virtual interface

running in parallel with the Arduino

programming interface. A change in the

virtual interface should reflect changes in

the EEPROM as viewed from the Arduino

interface.

5.2 This will require the help of outside

criticism to aid us in deciding, by popular

poll, whether some features are too

complicated or simple for the pet-owner’s

needs. The virtual user interface will be

designed and programmed, test-users will

evaluate its functionality and ease-of-use,

and we will reprogram as necessary.

::Power::
Requirement Verification

6.1 Must properly supply power to all

components in need.

6.1 Virtual simulations point out that we

should be fine in terms of power, but if not,

then we will simply get a larger, more

expensive power source. Testing will consist

of replacing the breadboard-supplied power

with our simple AAA battery holder and

observing the results. As needed, various

multimeter readings will help determine any

source of over-usage of power. The power

values supplied in the power allocation table

are when the components are pushed to the

extreme. As is the case with the

transceivers, we will not be running our

components at anywhere near maximum

capacity (except maybe the LEDs for

maximum visibility).

6

Parts Schematics

GPS

Transceiver

7

Microcontroller

8

Fig. 3

9

‘

Fig. 4

10

Fig. 5

11

Fig. 6

12

Fig. 7

