

Habit Forming Key Station

Electrical & Computer Engineering

Team 17

Team Members

Ali Husain Senior – Computer Engineering Marsh Ma Senior - Electrical Engineering

Cedric Mathew Senior – Electrical Engineering

ELECTRICAL & COMPUTER ENGINEERING

Agenda

- 1. Objective
- 2. Design and High Level Requirements
- 3. Functional Requirements
- 4. Successes and Challenges
- 5. Conclusions and Further Work

Objective

Habit Forming Key Station Team 17

Problem

- People leave their keys around the house, making it difficult to locate them when it's time to leave
- Might result in people being late or add stress to people's lives

Solution

- Our habit-forming key station is a designated home for your keys
- It detects when you've come home
- Place the keys in the dish within a certain time period or it will sound an alarm
- Utilizes negative reinforcement to build a good habit for the user

Habit Forming Key Station Team 17

ELECTRICAL & COMPUTER ENGINEERING

Components

- -Force resistor
- -Speaker
- -Button
- -Power Adapter
- -Microcontroller
- -Transceiver on dish and keychain

- The microcontroller waits 2 4 minutes after removing the keys from the pressure plate before enabling the proximity subsystem to detect the keys
- The proximity subsystem should detect the key fob at a minimum of 15 feet from the dish. Upon detecting the keys, it should wait 30-90 seconds before sounding the alarm.
- The alarm turns off by either placing the keys in the dish or pressing the snooze button within 5 seconds of either method

Attached to keys are a transceiver that detects distance from

station

- As keys enter a certain radius, alarm will start buzzing
- If user does not want to place keys in and is leaving

residence soon, snooze button is available.

• As user leaves with the keys, station enters waiting state.

Overview of Functional Requirements

Habit Forming Key Station Team 17

ELECTRICAL & COMPUTER ENGINEERING

Block Diagram

ELECTRICAL & COMPUTER ENGINEERING

PCB Design - Station

ELECTRICAL & COMPUTER ENGINEERING

PCB Design - Keychain

Overall Design

Device State Diagram

Requirements

Transition between four states when provided the appropriate input

Verifications

- Simulate software stimuli to ensure sound control logic.
- Develop test harness which projects state to an LED. Provide stimuli to change states
- Test each path to ensure safety of state reachability

Proximity Detection

ELECTRICAL & COMPUTER ENGINEERING

Requirements

Verifications

The subsystem shall detect the key fob within a 5 meters radius.

The subsystem shall accurately measure the distance of the key fob using time-offlight calculations. Perform a series of detection tests at 1-foot intervals up to 5 meters. The system must detect the key fob at all distances, with a detection rate of 100% within 5 meters.

 Compare the system's distance measurements against a set of known distances, from 1 to 15 feet, in a controlled environment.

• The system's measured distances must have a maximum deviation of less than 5% from the actual distances. Confirmation

FORCE (g)

Confirmation

$$V_{OUT} = \frac{R_M V +}{\left(R_M + R_{FSR}\right)}$$

ELECTRICAL & COMPUTER ENGINEERING

Confirmation

Requirements	Verifications
Detect placement of objects weighing between 45g to 55g, simulating key weight, with a tolerance of ±5g.	 Place an object weighing 50 grams on the pressure sensor to simulate the presence of keys. The system must recognize the presence of the object as keys within 2 seconds of placement.
The subsystem shall trigger an alarm if the keys are not placed back within 2 minutes after being removed.	 Remove the keys and wait for 2 minutes to observe if the alarm is triggered.

Requirements	Verifications
The alarm must be audible at 80 dB SPL at 1 meter.	 Test with a sound level meter at 1 meter. Confirm SPL meets/exceeds 80 dB
Speaker power consumption should not exceed 2W.	 Measure power usage with a multimeter. Connect load to test voltage at differing current levels Ensure it is within 2W during operation

Power

Requirements	Verifications
Provide a stable 5V output under load.	 Conduct load testing with a multimeter Ensure voltage remains within 5% of 5V.
Voltage regulators must be able to output 3.3 VDC +/- 0.1 V with at most 1A of current	 Connect adapter to voltage regulators Connect test load resistors Confirm voltages at differing current values Confirm results are in range of 3.3V +/- 0.1V

Successes and Challenges

Habit Forming Key Station Team 17

ELECTRICAL & COMPUTER ENGINEERING

Control Subsystem:

Successes:

- Software implemented correctly
- Follows state diagram
- Sends the proper signals to alarm.

Changes:

• Microcontroller

changed for more pins

Confirmation Subsystem:

Successes:

- Correctly uses pressure sensor to detect change in voltage
- Sends signal to control system

Proximity Detection Subsystem:

Successes:

• Transceivers are able to

detect each other in a 5+

meter range

Changes:

• Operated under 5 Volts

instead of 3.3 Volts

Alarm subsystem:

Successes:

Outputs an 80 dB noise when prompted by control subsystem.

Changes:

• Switched to a piezo buzzer for breadboard testing purposes

Power Subsystem:

Successes:

 All components worked under expected voltages and did not exceed power capabilities

Failures:

• Power adapter not functional, cannot power the PCBs

Conclusions and Further Work

Habit Forming Key Station Team 17

ELECTRICAL & COMPUTER ENGINEERING

What We Learned

- Soldering experience
- CAD Design
- Deepened understanding on a wide variety of concepts
- Impact of good time management
- Technical writing and presentation

What We Would Have Done Differently

- Having a more timely product ordering schedule
- Starting development earlier
- Testing components regularly

Ι

PCB Implementation

- Find alternates for power components
- Compact power system for key PCB

Housing

Cost and Space efficient design

Questions?

ELECTRICAL & COMPUTER ENGINEERING

The Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN