

Self-Tuning Violin Electrical & Computer Engineering

Team 9: Kevin Lyvers, Erik Kwiatkowski, Ginny Bytnar

04/29/24

Overview

Design Components

Results

Lessons Learned

What's Next

Introduction

We've created a self tuning violin.

With only plucking the strings the instrument can tune itself without the technical skills required to tune by hand.

Before:

After:

Music Terms used in the Presentation

Pitch - a certain fundamental frequency measured in Hertz

Flat - the pitch has a *lower* frequency than desired

Sharp - the pitch has a *higher* pitch than desired

Tuning pegs - wooden pegs at the head of the violin used for large changes in pitch

Fine Tuners - small metal knobs at the bottom of the instrument; easy to use and for fine adjustments

Fundamental Frequency and Timbre

This is an image of a spectrogram of Kevin singing

Ι

• The system must be able to accurately turn the tuning peg to within 2.5% of the correct frequency

(i.e, $G_3 = 196.0 \text{ Hz}$, $D_4 = 293.7 \text{ Hz}$, $A_4 = 440.0 \text{ Hz}$, $E_5 = 659.3 \text{ Hz}$)

- The system must be able to complete this tuning within 30 seconds.
- The system must be able to slowly bring strings taught in the case a new string is put on in under 90 seconds.

- The **issue** is the difficulty and danger of tuning a violin for beginner students.
 - The instrument or strings can easily break when handled without care
 - The force required to tune an instrument by hand is demanding
 - The ear to tune correctly is a skill that has to be developed over time
 - Having a teacher or adult tune an instrument takes away practice time

- Our **solution** is to tune the instrument without the need for the player to touch the tuning pegs
 - A microprocessor acts as a tuner on the violin that can detect the instrument's pitch range
 - The processor can determine if the given note is flat or sharp to the desired pitch
 - This information is sent to the motors to tighten or loosen the strings correctly

Design - Initial Block Diagram

Design - Revised Block Diagram

Provide consistent and accurate voltage to the other components, primarily a 9V \pm 0.5V line to turn the motors and a 3.3V \pm 0.3V line for most other items.	1.	Connect all subsystems to power, either directly to the 9V line or to the 3.3V line from the batteries or voltage regulator respectively Use a multimeter to verify that the 9V line is within the tolerance range, as well as verify the 3.3V line is within its own tolerance range
---	----	---

Design - Power Module - R&V1

Voltage of 3.3V output *Input voltage going into the ATMEGA*

Voltage of 9.0V output *Voltage going into the H-bridge*

Able to keep the motors running under 5 rpm to avoid damage to the violin	1. 2.	Connect power to the motors Check if motor speeds are under 5 rpm by marking one side of the motor shaft and calculating the speed of a rotation to make sure the violin will not be damaged

Time of one rotation	RPM calculation
11.90 s	5.042 rpm
12.02 s	4.992 rpm
11.82 s	5.076 rpm
11.84 s	5.068 rpm
11.90 s	5.042 rpm
12.10 s	4.959 rpm
11.93 s	5.030 rpm

Excerpt of time per rotation to RPM measurements

Accurately transceive sounds ranging from a	Set up the microphone to receive sound and
minimum span of 100 Hz to 1000 Hz	send the signal to an oscilloscope
2. Pl	Play sounds with verified frequencies
3. Cl	Check that the correct frequency is displayed
or	on the oscilloscope from the microphone
in	nput

Design - Microphone Module

Image from oscilloscope measuring microphone receiving pure sine wave

Image from oscilloscope measuring microphone receiving pure sawtooth wave

Accurately turn the tuning peg to within 5 degrees as directed forwards and backwards through the use of H-bridges.	 Connect the motors to the H-bridges Mark the tuning peg to see where you began Input a command to turn the peg a specific number of degrees Check the difference between the mark and where it began and compare this to the inputted command and make sure it is within 5 degrees
	* 5° = 166ms

In	Input		tput	State
IN1	IN2	OUT1	OUT2	State
L	L	OPEN	OPEN	STOP
Н	L	Н	L	FORWARD
L	Н	L	Н	REVERSE
Н	Н	L	L	BRAKE

H-bridge Truth Table

Be able to control the 2 LEDs to show the current string being worked on and do this without skipping to another string or turning off completely	 Once the power switch is turned on, the first LED should turn on for the first string to begin being tuned Once the string is played, the string should be tuned by the rest of the system Once this is completed the first LED will turn off, and the second will turn on to continue tuning the next string
---	---

Design - Microcontroller Module - R&V1

Image of LEDs functioning properly

Accurately determine the loudest pitch in the	 Set up the microphone to receive sound and
given analog signal using a FFT with more than	send the signal to the microcontroller Play sounds with verified frequencies Run the signal through the FFT Check that the frequency is within the given
95% accuracy	range of frequencies

Actual Frequency	Perceived Frequency	Relative Error
440.0 Hz	445 Hz	%1.13
196.0 Hz	200 Hz	%2.04
293.7 Hz	295 Hz	%0.443
659.3 Hz	665 Hz	%0.865

Excerpt from microcontroller calculation of pitch given a pure sine wave

percent error =
$$100 * \frac{(Estimated Value - Actual Value)}{Actual Value}$$

Send consistent signals to the motor module so the motor spins within 5 degrees of the correct location	 Connect the microcontroller to the motors and to the power system Send a command from the microcontroller to the motors to spin a certain amount of degrees Check that the motor spins within 5 degrees of the correct amount
	* 5° = 166ms

Design - Microcontroller Module - R&V3

Clicks per minute	Tme Threshold calculation
181 clicks	165.746 ms
182 clicks	164.835 ms
181 clicks	165.746 ms
184 clicks	165.746 ms
180 clicks	163.043 ms

Excerpt from motor precision experiment

1 -	while (1){
2	<pre>turnMotorClockwise();</pre>
3	sleep(166); /// ms
4	<pre>stopMotor();</pre>
5	<pre>sleep(166);</pre>
6	
7	<pre>turnMotorAnitclockwise();</pre>
8	sleep(166); /// ms
9	<pre>stopMotor();</pre>
10	sleep(166);
11	}

Time precision = 60,000/(BPM * 2)

Project Results - Graphically

Pitch

Successes and Challenges

• PCB Implementation:

- Designing
 - Misidentifying Microphone components
 - Attaching non-solderable items
- Soldering
 - Excessive grounding

Underpowered Microprocessor

- Computation
 - Need more memory for higher fidelity DSP
 - Faster processor would allow for more error checks
 - Lo-fi filter implement in software
- I/O Pins
 - Almost ran out of I/O pins
 - Could be circumvented using MUX

•

Conclusions

Lessons Learned:

- **Datasheets Information**
- Part selection •
- Stay organized with materials
- Looking back:
 - Document with pictures and videos ٠
 - Tested more
 - Get work done earlier

Future Endeavours

Design:

- Smaller, more compact design
- Hide exposed electrical components

Efficient Circuitry:

- A single on/off switch
- A microcontroller with more memory for more precision
- Better user interface

Thank You for Listening!

Any Questions?

The Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN

Ι

HEADING

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam ut orci condimentum, commodo dui quis, faucibus mauris. Praesent nec sapien sed nunc sollicitudin.

(Main section divider slide, background image option one.)

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam ut orci condimentum, commodo dui quis, faucibus mauris. Praesent nec sapien sed nunc sollicitudin.

(Main section divider slide, background image option two.)

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam ut orci condimentum, commodo dui quis, faucibus mauris. Praesent nec sapien sed nunc sollicitudin.

(Main section divider slide, background image option three.)

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam ut orci condimentum, commodo dui quis, faucibus mauris. Praesent nec sapien sed nunc sollicitudin.

(Main section divider slide, background image option five.)

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam ut orci condimentum, commodo dui quis, faucibus mauris. Praesent nec sapien sed nunc sollicitudin.

(Main section divider slide, background image option four.)

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Nullam ut orci condimentum, commodo dui quis, faucibus mauris. Praesent nec sapien sed nunc sollicitudin.

(Main section divider slide, background image option six.)

GRAINGER ENGINEERING

Heading

(Transition slide option one.)

Heading

(Transition slide option two.)

Ι

IMAGE / GRAPHIC

Lorem Ipsum Dolor Sit Amet Consectetur Adipiscing

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Lorem Ipsum Dolor Sit Amet Consectetur Adipiscing

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Lorem Ipsum Dolor Sit Amet Consectetur Adipiscing

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Lorem Ipsum Dolor Sit Amet Consectetur Adipiscing

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. **IMAGE / GRAPHIC**

Consectetur Adipiscing

Lorem Ipsum Dolor Sit Amet

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Lorem Ipsum Dolor Sit Amet Consectetur Adipiscing

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Lorem Ipsum Dolor Sit Amet Consectetur Adipiscing

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Lorem Ipsum Dolor Sit Amet Consectetur Adipiscing

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

(Short commentary or relevant information about the contents of the chart/graph.)

IMAGE (Send to back so Block I is not covered.)

(Text here relevant to the photo for a larger call out on a given idea or message.) (Keep this text simple and short on one or two lines.)

IMAGE

Lorem ipsum dolor sit amet consectetur adipiscing elit

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Lorem ipsum dolor sit amet consectetur adipiscing

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

IMAGE

Lorem ipsum dolor sit amet consectetur adipiscing elit

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

Lorem ipsum dolor sit amet consectetur adipiscing

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

IMAGE

(Use a photo for the entire slide like the example shown here. Send the photo to the back behind the blue shaded box. Be sure the Block I is not covered up and is in front of both the photo and blue shaded box.)

(Text here relevant to the photo for a larger call out on a given idea or message. Keep this text simple and short on one or two lines.)

$\chi = c$ $\chi = c$

IMAGE

(Use a photo for the entire slide like the example shown here. Send the photo to the back so the Block I and footer text is not covered.)

(Slide the blue transparent box and the text left or right to fit over your background image. Use this text box for a call out or caption to the image.) with 5ite (1) **GRAINGER ENGINEERING**

 $pw_{k}(1) - \frac{1}{holl:} = \frac{2}{(Im_{1} - JL)L} = \frac{1}{LJLL} = (111 - 102) = \frac{1}{JL}$ $hith_{1} e^{2} = 1 - \frac{1}{M_{2}} = \chi^{2} \chi_{1} + (1 - e^{2}) \chi_{2}, \text{ where } \chi_{1} - \frac{1}{M_{2}} = \frac{1}{M_{2}} = \frac{1}{M_{2}} = \frac{1}{M_{2}} + \frac{1}{M_{2}} + \frac{1}{M_{2}} = \frac{1}{M_{2}} + \frac{1}{M_{2}} = \frac{1}{M_{2}} + \frac{1}{M_{2}} = \frac{1}{M_{2}} + \frac{1}{M_{2}} + \frac{1}{M_{2}} = \frac{1}{M_{2}} + \frac{1}{M_{2}} + \frac{1}{M_{2}} = \frac{1}{M_{2}} + \frac{1}{M_{2}} + \frac{1}{M_{2}} + \frac{1}{M_{2}} = \frac{1}{M_{2}} + \frac{1}{M_{$

(Closing slide option one. Suggestions for last slide)

Summary Thank You Questions Contact Information

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

(Closing slide option two. Suggestions for last slide)

Summary Thank You Questions Contact Information

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.