ECE 445 Team 1: Waste Bin Monitoring System

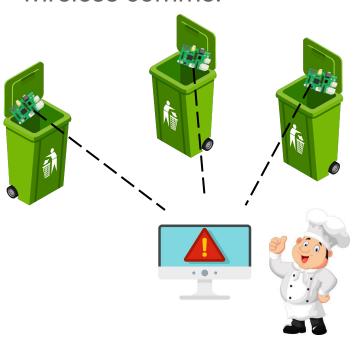
Matt Rylander, Allen Steinberg, Ben Gao

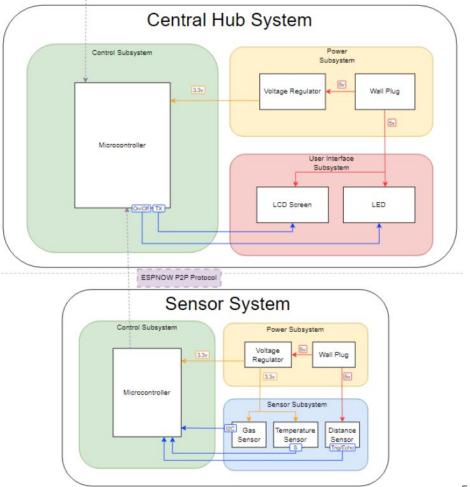
Matt <mark>Allen</mark> Ben

DELETE THIS SLIDE WHEN WE ARE DONE

- Introduction to your team and your project.
- Objective. What problem are you solving?
- 3. Brief review of original design, statement on areas of design that changed, and overview of each functional block's requirements.
- Description of project build and functional test results. You can choose to include a short (30s) video of your project here.
- Discussion of successes and challenges, as well as explanations of any failed verifications demonstrating and understanding of the engineering reason behind the failure
- Conclusions from the project: what did you learn, what would you do differently if you redesigned your project, etc.
- 7. Recommendations for further work.

Any significant, relevant ethical issues should be briefly addressed, preferably in a single slide. (Both Allen and Ben)


Introduction



Objective

- Sensor tags on trash cans
- Central hub for restaurant staff
- Simple-as-possible setup and wireless comms.

Original Design Overview

Subsystems

Sensor subsystem:

HC-SR04 Ultrasonic

DHT-22 Temperature/Humidity

ZMOD4410 Gas Sensor

Found unsuitable (details on later slide)

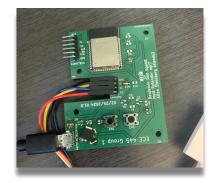
Changed gas sensor to MQ-135 Gas Sensor

Subsystems (cont.)

Power subsystems: 5V->3V3 regulator

Control subsystem: ESP-32

User Interface Subsystem:


Nextion LCD screen

Description of Project Build, Test Results

Hub Board

Sensor Board x 2

Final Product

Ultrasonic Sensor

Requirement: +/- 5cm distance measured

Verification:

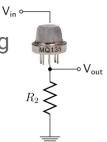
Results:

Actual Distance(cm)	Measured Distance(cm)
65	62.4
53.5	50.8
44.5	46.6
32	33.7
20.5	19.8
12	12.1
9	8.6
4.5	4.3

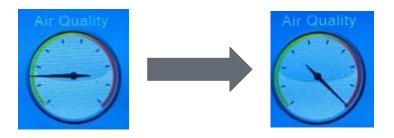
Temperature Sensor (DHT22)

Requirement: +/- 2°F

Verification:


Results:

Thermometer Temp(F)	Measured Temp(F)
72	72.0
70	69.9
59	59.6
45	44.4
41	41.1


Gas Sensor

Requirement: detect noxious fumes (CO₂, NH₃, etc.)

Verification: >100 change in analog reading (0.08V) due to exhale

Results: >450 (>0.36V) change observed

Microcontroller Systems

Requirement: send/receive data within 10 seconds

Verification: measure response time

Results: <2 seconds

Power Systems

Requirement: Step input 5V from USB to 3.3 +- 0.3V

Verification: Measurements with multimeter

Results: Steady voltage levels at around 3.3 +- 0.1V

Challenges

 Gas sensor choice and calibration

- ESP32 soldering and programming
- Sensor board heat generation

Successes

- ESPNOW protocol
- Sensor accuracy
 - Ultrasonic: < 1 inch precision
 - Gas sensor: ~1000 ppm sensitivity
- Functioning PCBs

Ethical Considerations

Privacy:

- Devices gathering data in public areas
- What kind of data is collected and tracked?

Safety:

- Our product is not a hard rule for changing trash
- Splash safety for electronics

Conclusions from the Project

Conclusions:

Product addresses specific issue

Balancing complexity with convenience

- Wifi
- Battery power

Recommendations for Further Work

Reduced height/form factor

 Battery system for buffer in power outages

 Balance price point and size vs features

Recommendations for Further Work (cont.)

Additional Sensors

Recalibration

Improved UI

Thank You!