
 Handheld Rocket Tracker

 By

 Benjamin Olaivar

 Maxwell Kramer

 Manas Tiwari

 Final Report for ECE 445, Senior Design, Spring 2024

 TA: Sanjana Pingali

 1 May 2024

 Project No. 16

 Abstract
 The Handheld Rocket Tracker seeks to make a more affordable and convenient method of

 recovering a rocket after an amateur rocket launch. In this two-part system, a beacon is placed
 inside the rocket, which transmits its gps position. A handheld tracker receives that signal, and
 guides the user to the beacon, acting as a compass, however instead of pointing north, it points to
 the beacon. Unfortunately the handheld device was not successfully completed on a PCB, which
 led to ergonomic issues, however the core functionality of the device was successful.

 2

 Contents

 1. Introduction ……………………………………………………………………. 4
 1.1 High Level Requirements ……………………………………………… 4

 2 Design …………………………………………………………………………... 5
 2.1 MCU Subsystem ……………………………………………………….. 8

 2.1.1 Beacon MCU ………………………………………………….. 8
 2.1.2 Tracker MCU …………………………………………………. 8
 2.1.3 Chip Selected and Challenges Faced …………………………. 9

 2.2 Sensor Subsystem ……………………………………………………… 9
 2.3 Communication Subsystem …………………………………………... 10

 2.3.1 Beacon Communication ……………………………………... 10
 2.3.2 Tracker Communication ……………………………………... 11

 2.4 Power Subsystem ……………………………………………………... 11
 2.5 User Interface Subsystem …………………………………………….. 11

 2.5.1 Data Display ………………..………………………………... 12
 2.5.2 Push Buttons ………………..……………………………….. 13

 3. Design Verification …………………………………………………………… 14
 3.1 MCU Verification …………………………………………………….. 14
 3.2 Sensor Verification …………………………………………………… 14
 3.3 Communication Verification …………………………………………. 14

 3.3.1 Beacon TX to Tracker RX …………………………………... 14
 3.3.2 Tracker TX to Beacon RX …………………………………... 14

 3.4 Power Verification ……………………………………………………. 15
 3.5 User Interface Verification …………………………………………… 15

 4. Costs ………………………………………………………………………….. 16
 4.1 Parts …………………………………………………………………... 16
 4.2 Labor …………………………………………………………………..17
 4.3 Schedule ……………………………………………………………… 17

 5. Conclusion …………………………………………………………………… 18
 5.1 Accomplishments …………………………………………………….. 18
 5.2 Uncertainties ………………………………………………………….. 18
 5.3 Ethical considerations ………………………………………………… 19
 5.4 Future work …………………………………………………………... 19

 References ………………………………………………………………………. 20

 3

 1. Introduction
 The Illinois Space Society is an amateur rocketry team here on campus, which launches a

 rocket 1-2 times a semester. Arguably the most important part of these launches is the recovery
 of the rocket. The team has committed considerable time and money into this project, and wants
 to retrieve their investment. Launches can reach altitudes of 60,000, where the rocket will deploy
 a parachute and drift back to the ground. It’s nearly impossible to track a rocket with eyesight at
 this altitude (see Figure 1 for the rocket POV). Commercially available trackers exist, however
 they’re typically clunky, expensive and unintuitive, making it inconvenient to use.

 To solve this issue, we have designed a Handheld Rocket Tracker, which consists of 2
 parts: First is the beacon module, which is placed inside the rocket and transmits its GPS location
 at all times. Second is the handheld tracker, which receives this transmission, and guides the user
 to the beacon. Our solution attempts to make a more affordable and intuitive method of tracking
 amateur rockets.

 Figure 1: Rocket POV at altitude of ~10,000ft. Source: Illinois Space Society 2021 October Launch [1]

 1.1 High Level Requirements
 1. Successfully transmit positional and state data from the beacon to the handheld tracker,

 and handheld tracker should successfully transmit commands to the handheld beacon. See
 outlined in the “Packet Breakdown” under Software Design.

 2. Have the capability for the user to switch the frequency of both the beacon and the
 handheld tracker via user input on the handheld tracker device.

 3. Accurately show the distance from the beacon within 5 meters, and point the user in the
 correct direction of the beacon within 5 degrees. This information should be shown via
 the screen in the User Interface, and behave similar to a compass, however pointing
 towards the beacon instead of pointing North.

 4

 2 Design
 The high-level design and subsystems for the beacon and handheld tracker are shown in

 Figure 2, and their physical concepts can be seen in Figure 5. The beacon, seen in Figure 4, has 4
 primary subsystems: mcu, sensor, communication, and power. The mcu subsystem is responsible
 for handling communication between subsystems, and making any necessary calculations. The
 sensor subsystem, consisting of a gps module, is responsible for collecting positional data for its
 respective device. The communication subsystem handles communication between the beacon
 and the tracker. This communication is done using the LoRa communication protocol within the
 433MHz band. Finally, the power subsystem takes a variable voltage input of 3.7 to 4.2V, and
 steps it down to 3.3V, which powers the entire device.

 Note the handheld system, seen in Figure 5 is identical to the beacon, however with the
 addition of the user interface subsystem. The user interface consists of buttons and a screen,
 which take inputs from the user to navigate the menu, and guide the user to the beacon.

 Figure 2: Subsystem Block Diagram

 5

 Figure 4: Beacon Concept Design

 Figure 5: Handheld Tracker Concept Design

 6

 Figure 6: General Overview Diagram

 Figure 7: Final Demo Design

 7

 2.1 MCU Subsystem
 The MCU subsystem is responsible for managing communication between the various

 subsystems, as well as making relevant calculations. While the beacon and handheld tracker are
 very similar, the MCU on each has slightly different responsibilities.

 2.1.1 Beacon MCU
 On the beacon, the MCU is responsible for receiving positional data from the sensor

 subsystem in the form of Longitude and Latitude via I2C, as well as receiving commands from
 the handheld tracker. Upon landing, the parachute, which is still deployed, may get caught in the
 wind and drag the rocket. To account for this, the beacon updates its gps coordinates every 3
 seconds, and transmits the new data to the handheld tracker via the Communication Subsystem.
 Additionally, the user may need to change the transmission frequency of the tracker. This isn’t
 uncommon, considering the narrow band that LoRa operates in, and the high volume of teams at
 rocket launches, which may be using the same frequency to track their own rockets. The MCU
 listens for a “Change Frequency” command, and changes frequencies according to user input.
 Further explanation of frequency changes is detailed in the Communication Subsystem
 description.

 2.1.2 Tracker MCU
 The MCU on the handheld tracker has many of the same responsibilities, however with a

 few notable differences. The handheld device has its own gps, which updates its position as the
 user walks around. It compares its own GPS coordinates with the coordinates received from the
 beacon, and calculates the distance and angle between the two devices. Details of how this
 information is displayed are detailed in the User Interface Subsystem description, however the
 basic equation to calculate the angle between the two points is seen below.

θ = 𝑎𝑟𝑐𝑡𝑎𝑛 (∆ 𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 | |
∆ 𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 | |)

 To ensure an accuracy of 5 meters, the TinyGPSPlus library was chosen to calculate the
 distance between the two devices, as seen in Figure 8 below. It was chosen not to use simple trig
 for this variable, as it could get increasingly less precise as the distance between the beacon and
 the tracker grew, hence the use of an external library.

 /* static */
 double TinyGPSPlus :: distanceBetween (double lat1 , double long1 , double lat2 , double long2){
 // returns distance in meters between two positions, both specified
 // as signed decimal-degrees latitude and longitude. Uses great-circle
 // distance computation for hypothetical sphere of radius 6372795 meters.
 // Because Earth is no exact sphere, rounding errors may be up to 0.5%.
 // Courtesy of Maarten Lamers

 double delta = radians (long1 - long2);
 double sdlong = sin (delta);
 double cdlong = cos (delta);
 lat1 = radians (lat1);

 8

 lat2 = radians (lat2);
 double slat1 = sin (lat1);
 double clat1 = cos (lat1);
 double slat2 = sin (lat2);
 double clat2 = cos (lat2);
 delta = (clat1 * slat2) - (slat1 * clat2 * cdlong);
 delta = sq (delta);
 delta += sq (clat2 * sdlong);
 delta = sqrt (delta);
 double denom = (slat1 * slat2) + (clat1 * clat2 * cdlong);
 delta = atan2 (delta , denom);
 return delta * 6372795 ;

 }

 Figure 8: TinyGPSPlus Distance between two coordinates function [2]

 2.1.3 Chip Selected and Challenges Faced
 To accomplish this, we chose to use the Atmega328p, which is the same chip as the

 arduino uno. We chose this chip because of its simplicity and ease of use, however this ended up
 coming back to hurt us. This chip only has 2KB of RAM, which is incredibly restrictive,
 especially considering the fact that our screen requires a minimum of 1KB to operate. This small
 memory size became even more apparent as we incorporated our GPS module, which was made
 by SparkFun. The SparkFun gps library [3] was designed to be a “cover all” for all of their GPS
 devices. This means it wasn’t really meant to be efficient, it was just meant to get the job done.
 This was a problem for us because we were running out of memory. The initial SparkFun library
 took up 76% of our total RAM. To solve this problem, we rewrote the GPS library, removing any
 unused global variables and functions, and deleting debug prints. By doing this, we got the GPS
 down to only 42% of our memory, which allowed us to use both the GPS and the display at the
 same time.

 2.2 Sensor Subsystem
 The Sensor subsystem is responsible for gathering positional data from the gps module

 and sending it to the MCU via I2C. Conveniently, we have found a sensor that has everything we
 need built into 1 unit: the SAM-M8Q. The SAM-M8Q has a builtin GPS module and antenna for
 communicating with local satellites, so no external antenna was needed. The SAM-M8Q
 breakout can be seen in Figure 9.

 9

 Figure 9: SAM-M8Q breakout board with built-in ceramic antenna [4]

 2.3 Communication Subsystem

 The communication subsystem is the system responsible for handling communication
 between the beacon and the tracker. Without this two-way communication we would not be able
 to track the rocket itself as we would lack comparable GPS data. This subsystem consists of two
 identical parts. Each is a LoRa RFM96 radio, one located on each of the beacon and tracker. The
 beacon will generally give the tracker its GPS location while the tracker will, on user request,
 change both itself and the beacon’s operating frequency. The radios can operate between 433 and
 434.8 MHz and can operate well between 0.5 to 5 miles [5]. The radios interact with the MCU
 using SPI. It should be noted that all data being sent needs a valid FCC license attached due to
 the operating frequencies being non-general purpose wavelengths.

 2.3.1 Beacon Communication

 The beacon’s LoRa module has one transceiver action and one receiver action to perform.

 For transceiving, the beacon will collect GPS data and package it within the Sensor and
 MCU subsystems. After the data is ready for transmission the LoRa code library will be used.
 Within it are three functions that package data for transmission. These are the beginPacket(),
 write(), and endPacket() functions which collectively in sequence create and send out a packet of
 data [6]. Once the data is packaged it will be transmitted on the current frequency set for the
 beacon. This occurs once every three seconds in order to not overload the tracker with incoming
 data.

 For receiving, every cycle of the main code a parsePacket() is called from the LoRa
 library. This parses the data into a form that can be manipulated and returns the bytes it received,
 or 0 if no data was found. The beacon will specifically only ever receive a packet containing the
 value of a new requested frequency from the user via the tracker. This frequency is extracted and
 checked for its value to be in the mentioned valid range. If yes then we stop accepting new
 frequencies for 5 seconds. This reason will be discussed in the next section for the tracker
 portion, Once this is validated we set the internal frequency and begin transmitting GPS data
 again.

 10

 2.3.2 Tracker Communication

 The tracker’s LoRa module also has one transceiver purpose and one receiver purpose.

 For transceiving, the tracker will only do this for when a new frequency is requested by
 the user. When this happens we transmit the new requested frequency once every second for 5
 seconds. This is because we want to make sure that the beacon doesn’t miss the singular request
 and so we send redundant requests. This is why, as mentioned above, we halt accepting new
 frequencies for 5 seconds after a valid is received. Testing showed that many requests would get
 jumbled and cause the beacon to switch to an unwanted frequency. The data is packaged the
 same way as mentioned above within the beacon.

 For receiving, the tracker will use the same parsePacket() LoRa function discussed
 before. On a valid packet being found, its contents are read into a dedicated struct locally and
 saved in other variables for the MCU’s use.

 2.4 Power Subsystem

 The power subsystem is responsible for intaking the voltage available from a power
 source and converting it to a usable voltage for every other subsystem. This system is present in
 identical forms in both the beacon and the tracker. The system has two main parts. The original
 design consisted of 18650 LiPo batteries and a LM3671 3.3V buck converter.

 The LiPo batteries would, based on its charge, provide 4.2-3.2V to the input of the buck
 converter [7]. The batteries would’ve been removable and would allow end users to charge them
 themselves and swap when needed. The batteries were not, however, usable in the final form of
 the project. Instead they were replaced by the 5V output line of an arduino uno dev board, which
 received its power separately. This will be discussed in depth within the power subsystem
 verification section later on in this report.

 The LM3671 buck converter was responsible for converting input voltage to 3.3V output
 for the rest of the systems in both the beacon and tracker. This was chosen over a linear regulator
 for concerns about overheating during rocket launch. This specific one was chosen for its ability
 to handle up to 600 mA of current draw [8]. This draw is well above expected draw from all the
 other systems and therefore is ideal for our purposes.

 2.5 User Interface Subsystem

 This subsystem facilitates user interaction with our project. It allows the user to access
 relevant data pertaining to tracking the beacon (i.e. the distance and direction), and takes in user
 inputs where and when required. It consists of a display to show data relevant to the user, and
 push buttons to enable navigation and provide inputs.

 The code to display text onto the screen is written in C++, and uses helper functions from
 the Adafruit_GFX.h and Adafruit_SSD1306.h libraries to do so. In addition, the push buttons are

 11

 polled continuously in a loop to detect user action. The logic of printing menu and sub-menu
 options along with the logic to navigate through them are also coded in C++.

 2.5.1 Data Display

 The screen used for our project is a 400 x 240 pixels Adafruit Sharp Memory Breakout
 display. It defaults to displaying the current menu, and switches to displaying other sub menus as
 per the user’s directions.

 The distance and direction to the beacon (computed by the MCU) is displayed within the
 Compass Menu. The distance is displayed as text, while the direction of the beacon is shown in a
 compass-like format, where the needle would be pointing towards the beacon. See Figure 10 for
 more information.

 Figure 10: Compass Menu displaying Distance and Direction to the Beacon

 The display screen is crucial in most of our verification procedures for the rest of our
 subsystems. Hence, it was of utmost importance that it worked correctly during our project’s
 progress.

 During our project, we needed to resolve multiple issues regarding the display. The first
 issue arose when the screen we had initially chosen took up more than 50% of our chip’s
 memory. Our solution at the time was to switch to one with a smaller size and resolution.
 However, we later realized that the new screen chosen would not be physically capable of
 displaying the direction to the beacon with a precision of 2 degrees. This led us to making a

 12

 change in our high level requirements to go from displaying the direction with a precision of 2
 degrees to 5 degrees instead.

 During final rounds of testing, we noticed that the screen was chipped. This caused the
 screen to not display anything at all, and forced us once again to make a switch to the 400x240
 Adafruit display. This switch required us to rewrite major portions of the UI code, due to the fact
 that this screen used a different set of drivers (Adafruit_SharpMem.h instead of
 Adafruit_SSD1306.h). We ordered the same screen, but it did not reach in time before the final
 demo.

 2.5.2 Push Buttons

 The last component of the UI subsystem deals with allowing the user to provide inputs in
 order to navigate to the desired menu to view its relevant information. This was implemented
 with 4 buttons corresponding to Up, Down, Select (Enter) and Main Menu selection (see Figure
 11). Menu navigation is achieved using these buttons, with UI code running in parallel to ensure
 the correct information is being displayed as requested by the received inputs.

 The “up” and “down” buttons are mostly used to change the highlighted option. This
 behavior differs in the Frequency Change menu, where they are used to increment/ decrement the
 displayed frequency by 0.1 MHz. The “enter” button signifies confirmation to enter the
 highlighted menu, or to confirm an action (such as setting the frequency). The “main menu”
 button is used to quickly navigate back to the default main menu display.

 Figure 11: Push Buttons and their functionality

 13

 3. Design Verification

 3.1 MCU Verification
 The verification process for the MCU was primarily focused on getting a response from the chip
 on the PCB. During our testing, we unfortunately couldn’t get the MCU on the PCB to respond
 to our programmer. We first soldered the MCU and external 16 MHz clock onto the PCB, and
 attempted to upload to the board using Arduino as ISP. Unfortunately during this process, we
 never got a response from our chip. Testing showed that the external 16 MHz clock was not
 oscillating. After discovering this, we instead used the internal 8MHz clock. Again, we got no
 response from the MCU. Unfortunately we still got no response from the chip. In the end we
 decided to omit the PCB in order to focus on fulfilling the high level requirements of our project.

 3.2 Sensor Verification

 To ensure accurate distance calculations between the beacon and tracker, we required this GPS to
 be accurate within 5 meters. To validate this requirement, we compared the coordinates received
 by the GPS to some known locations on campus. We used the coordinates of the spire on Eng
 quad as a baseline. We powered on the GPS, and compared the received coordinates of the gps to
 the spire, and made sure our location was accurate.

 3.3 Communication Verification
 The communication subsystem has two main areas of verification. The first is making

 sure beacon transceiving and tracker receiving are working together. The second is making sure
 beacon receiving and tracker transceiving are working together.

 3.3.1 Beacon TX to Tracker RX
 To verify a beacon to tracker transmission of the beacon’s GPS data, we have three steps.

 First, we have beacon print its GPS data it has and send it out as a packet every three seconds.
 This print out occurs on a connected serial port from the arduino uno the code is housed in.
 Second, we print out any received packets and their contents on a second serial port for the
 tracker when it sees any incoming data. This is to verify data is consistent between the devices.
 Finally, since we had UI working at the time we began RXTX testing, we had the MCU use the
 data as intended and check if the UI gives proper distance and direction. If yes, then the beacon
 to tracker data transmission is working.

 3.3.2 Tracker TX to Beacon RX
 To verify a tracker to beacon transmission, we do the same testing plan as described in

 3.3.1 above with some small changes. We do add one additional step at the end regarding
 matching the frequencies. After the beacon receives the new frequency and begins operating at it
 we need to check that communication is still active, mainly to see if both devices got the same
 new frequency. Therefore we hold the user in the current menu and wait to see if a packet of data

 14

 is received by the tracker. If it does then they both are at the new frequency. Otherwise, different
 frequencies have been applied and we therefore have failed.

 3.4 Power Verification
 Power verification was short but slightly complicated by the need to forgo the PCB. With

 the project running on a breadboard system with the arduino uno dev board, we could not rely on
 battery power. The dev board needs 12V-5V input, lower than the 4.2V maximum of the LiPo
 batteries. To work around this, the arduino was powered via usb connector to a laptop that was
 needed for serial port printout for verification. The 5V output pin of the dev board was then fed
 into the input of the buck convertor. This convertor then supplied its intended 3.3V output to the
 rest of the subsystems and was successful in powering them without any issues.

 We also debugged the buck’s themselves. The first one we received was determined to
 have an internal error as power supply and voltmeter testing revealed no output voltage.
 Replacements ordered did work as intended on the first try.

 3.5 User Interface Verification
 Testing of the display screen was largely a straightforward process. We first needed to

 ensure that the screen was working. This was done by powering the screen and displaying some
 text on it. Once its functionality was confirmed, we tested it further by displaying the distance
 and directional data, and other details as and when required.

 Testing of the push button was done by manually pressing the buttons, and displaying
 different text for each corresponding push button. Each button was pressed independently several
 times to ensure their expected behavior.

 Menu navigation was tested by providing inputs, and visually verifying that the menu
 navigation and selection were working as expected.

 15

 4. Costs

 4.1 Parts

 Table 1: Parts Costs

 Part Manufacturer Individual Cost
 ($)

 Quantity Total Cost ($)

 LM3671 3.3V Buck
 Converter

 Adafruit $4.95 2 $9.90

 Adafruit RFM96W
 LoRa Radio Transceiver

 Adafruit $19.95 2 $39.90

 Monochrome 0.96"
 128x64 OLED Graphic

 Display
 Adafruit $17.50 1 $17.50

 ABLS-16.000MHZ-B2-
 T

 CRYSTAL
 16.0000MHZ 18PF

 SMD

 Abracon LLC $0.45 2 $0.90

 CONREVSMA002-G

 CONN RP-SMA RCPT
 R/A 50 OHM PCB

 TE Connectivity Linx
 $3.74 2 $7.48

 Sam M8Q GPS Sparkfun
 $42.95 2 $85.90

 Switch Tactile SPST Shruter INC
 $0.26 20 $5.20

 RF ANT 433MHZ
 WHIP TILT

 RF Solution
 $5.69 2 $11.38

 ATMega 328p Microchip Technology
 $2.74 2 $5.48

 10K OHM Resistor Stackpole Electronics
 $0.10 10 $1.00

 1K OHM Resistor Stackpole Electronics
 $0.10 10 $1.00

 22pF Capacitor Murata Electronics
 $0.10 10 $0.29 (Bulk order)

 0.1uF Capacitor Murata Electronics
 $0.10 10 $0.19 (Bulk order)

 4.7uF Capacitor Murata Electronics
 $0.12 5 $0.60

 10uF Capacitor Murata Electronics
 $0.10 10 $0.19 (Bulk order)

 Total ~ ~ ~ $186.91

 16

 4.2 Labor
 With an hourly rate of $50 per hour, as used and approved of in this project’s design

 document, and assuming 15 hours per week over 15 weeks, we can get the following labor cost.

 $50/hr * 15 hr/week * 15 weeks * 3 members * 2.5 = $84,375

 4.3 Schedule
 Table 2: Initial Schedule

 17

 Week Task

 February 26th - March 4th Order parts for prototyping (Max)

 Start prototyping with existing components (All)

 Research Transceiver communication (Manas)

 Start PCB design (Max & Ben)

 March 4th - March 11th Begin 3D print designing (Ben)

 Successfully establish transceiver communication (Manas & Ben)

 Finish 1st iteration PCB design (Max & Ben)

 PCB Order (All)

 March 11th - March 18th Print first versions of 3D printed case prototypes (Max & Ben)

 Finish the baseline transceiver communication code (Manas)

 Finish baseline user interface menu (Ben)

 Range testing with wire antennas (All)

 March 18th - March 25th Finalize 3D prints (Max & Ben)

 Prototype user interface menu, controlling with Arduino Uno (Ben)

 Revisions to PCB (Max)

 Revisions to User interface software (Ben)

 PCB Order (All)

 March 25st - April 1st Revisions to PCB (Max)

 Revisions to User Interface software (Ben)

 PCB Order (All)

 Range testing with 1st ordered antennas (All)

 April 1st - April 8th Revisions to 3D design (Max)

 PCB Order (All)

 Finalize 3D prints (Ben)

 Order new antennas (if necessary) (All)

 5. Conclusion

 5.1 Accomplishments

 The project met all the high level requirements which were outlined before. We verified
 that all our subsystems were working as expected individually, and when put together as a single
 unit.

 We ensured the functionality of the project in expected conditions of amateur rocket
 launches, and close to complete functionality in less than ideal conditions.

 The long range viability of our project and accuracy of the data recorded and displayed
 makes it immediately viable for amateur rocket tracking. The cost of about $250, including
 shipping for parts and profit markup, makes it a much more affordable option compared to other
 similar devices in the market.

 This project has several complexities, and we ran into multiple issues while building it.
 This required our group to learn and deal with challenges in an efficient manner, which would be
 applicable in the industry. Besides, learning about RF communication (being a new topic for
 most project members), understanding the vitality of economically using memory on chips,
 learning new ways of debugging the physical board etc. are all highlights of what we managed to
 accomplish as learning milestones.

 5.2 Uncertainties
 The outdoor nature of the project brings uncertainties around its performance in

 inclement weather conditions. The GPS sensors we currently use work best in ideal weather
 conditions, and don't work as well in cloudy/ rainy conditions. We would have preferred using
 better GPS sensors that would be more resistant to poor performance in less than ideal weather.

 The difficulties in uploading code onto the actual MCU chip is a factor to potentially look
 into in more depth. During debugging, we noticed that the internal clock of the chip was not
 running, which was causing the failure of programming the chip. We are unsure as to why this
 occurred. We also could look into alternative methods of programming in order to work around
 this problem.

 18

 April 8th - April 15th Range testing with new antennas (if necessary) (All)

 Fix existing bugs (All)

 April 15th - April 21st Finalize Assembly (All)

 Fix existing bugs (All)

 April 22nd Final Demo (All)

 The screen chipping required us to change our high level requirements, and required a
 change in UI libraries used to code the functionality of printing to the screen. We are unsure of
 the cause of the chipping, and needed to simply replace it given the timing of our demo.

 5.3 Ethical considerations

 This group was careful in considering the ethical and unethical applications of our
 project. The one main item we wished to address was the misuse of our tracker system for
 personal espionage and similar unconsented tracking of objects or people. IEEE’s Code of Ethics
 Section 1.1 states we are responsible for the following. “ To strive to comply with ethical design
 and sustainable development practices, to protect the privacy of others, and to disclose promptly
 factors that might endanger the public or the environment” [9]. We have some design limitations
 and intended features that prevent such misuse. The tracker requires line of sight or low levels of
 obstruction between the target and user alongside outside use. Therefore use in dense areas or
 indoors renders the tracking inactive. Furthermore, the 433-434.8 MHz operating frequencies, as
 discussed earlier, need a FCC license number to be included in data transmission. This requires a
 malicious user to provide their license or use an illicit number, making them easy to ID by
 authorities.

 5.4 Future work
 Upgrading to a more powerful microprocessor with better storage capabilities would be

 the first step to improving our project. It would add the capability of adding more features and
 subsystems (magnetometers, accelerometers etc.) to our current project, and enhance our
 project’s serviceability to the user.

 Switching our current GPS sensors to one of higher quality would make our project’s
 performance in inclement weather a lot stronger. While amateur rocket launches wouldn’t take
 place in non-ideal weather conditions, it doesn’t rule out the possibility of them occurring during
 tracking, and it would be helpful if our project could maintain its functionality during these
 conditions.

 Improving the ergonomics of our tracker in order to make it more comfortable for the
 user to hold it for long periods of time would be another priority to incorporate. This would also
 include switching the casing from wood to a more durable material.

 Incorporating physical antennas in our current design instead of the currently used wired
 antennas would be an excellent way to improve the quality and range of communication between
 the tracker and the beacon.

 19

 Sources
 [1] “Illinois Space society Spaceshot Launch,” YouTube,
 https://www.youtube.com/watch?v=8wJdRGztPJ4&t=61s (accessed May 1, 2024).

 [2] Mikalhart, “Mikalhart/tinygpsplus: A new, customizable Arduino NMEA Parsing
 Library,” GitHub, https://github.com/mikalhart/TinyGPSPlus (accessed May 1, 2024).

 [3] Sparkfun, “SparkFun_Ublox_Arduino_Library/src/sparkfun_ublox_arduino_library.cpp
 at master · Sparkfun/SparkFun_Ublox_Arduino_Library,” GitHub,
 https://github.com/sparkfun/SparkFun_Ublox_Arduino_Library/blob/master/src/SparkFun
 _Ublox_Arduino_Library.cpp (accessed May 1, 2024).

 [4] M. #167436, Greggler, M. #873985, and M. #985133, “SparkFun GPS breakout - chip
 antenna, Sam-M8Q (Qwiic),” GPS-15210 - SparkFun Electronics,
 https://www.sparkfun.com/products/15210?gad_source=1&gclid=Cj0KCQjw0MexBhD3A
 RIsAEI3WHJYFJ1ye5tECrM2Z-IMW8Q5sZYL2penmC-ZT9jH7FYt2s6aO2gbxPEaAkd9
 EALw_wcB (accessed May 1, 2024).

 [5] Hoperf, https://www.hoperf.com/uploads/RFM96W-V2.0_1695351477.pdf (accessed
 May 1, 2024).

 [6] Sandeepmistry, “Arduino-Lora/SRC at master · Sandeepmistry/Arduino-Lora,” GitHub,
 https://github.com/sandeepmistry/arduino-LoRa/tree/master/src (accessed May 1, 2024).

 [7] “Lithium-ion Battery DATA SHEET Battery Model : LIR18650 2600mAh.” Available:
 https://www.ineltro.ch/media/downloads/SAAItem/45/45958/36e3e7f3-2049-4adb-a2a7-7
 9c654d92915.pdf

 [8] “LM3671/-Q1 2-MHz, 600-mA Step-Down DC-DC Converter Datasheet.”
 https://cdn-shop.adafruit.com/product-files/2745/P2745_Datasheet.pdf (accessed Feb. 20,
 2024).

 [9] IEEE, “IEEE Code of Ethics,” ieee.org , Jun. 2020.
 https://www.ieee.org/about/corporate/governance/p7-8.html (accessed: Feb. 22, 2024)

 20

https://www.ineltro.ch/media/downloads/SAAItem/45/45958/36e3e7f3-2049-4adb-a2a7-79c654d92915.pdf
https://www.ineltro.ch/media/downloads/SAAItem/45/45958/36e3e7f3-2049-4adb-a2a7-79c654d92915.pdf

