"Extended Reach" Haptic Array Project Proposal September 19, 2012

Nathan Murray Todd Pixton

ECE 445 Fall 2012 TA: Lydia Majure

Table of Contents

1.	Introc	luction	
	1.1	Description	2
		Benefits	
	1.3	Features	3
2.	Desig	jn	
	2.1	Block Diagram	3
	2.2	Block Descriptions	3
	2.3	Performance Requirements	4
3.	Verifi	cation	
	3.1	Testing Procedures	4
	3.2	Tolerance Analysis	4
4.	Cost and Schedule		
	4.1	Cost Analysis	5
	4.2	Schedule	

Introduction

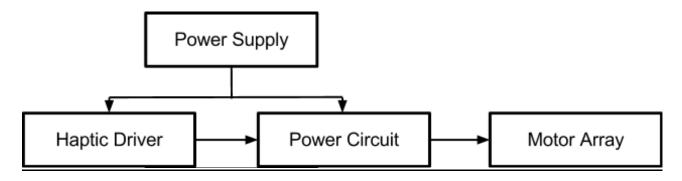
Description

The motivation for this project stems from a desire to extend and expand human sensory perception. There are many signals that humans simply don't have the capacity to sense; ultrasound, infrasound, the vast majority of the electromagnetic spectrum, and the temperature of distant objects are all invisible to humans. Our project aims to allow humans to experience these signals by translating them into a form that humans can recognize.

Specifically, this project will provide the tools to map any quantified characteristics of a signal detected by a sensor into a haptic response on an arm-worn array of motors. This haptic feedback system will use an array of micro-transducers to stimulate the user's arm, utilizing the body's haptic perception of different intensities, locations (two dimensions), and frequencies. Every tenth of a second, the haptic device will accept a packet of information from the sensor. This packet will give values for up to three signal characteristics, which will then be intelligently mapped to haptic intensity, location, and frequency. The mapping will be modular and easy to use; the user will have the ability to decide what signal characteristic gets mapped to each haptic quality. The end result will be a "natural" psychophysical stimulus to a signal imperceivable to humans.

This project is a continuation from a previous semester's project (60 Hz Electromagnetic Field Detector/Interface System). We are focusing on improving the haptic array. The previous project's haptic array was only capable of changing intensity, and was also flimsy. We aim to expand the haptic stimulus to include location and frequency, and use durable build techniques for a robust haptic device.

Benefits


- Augments human sensory perception
- Delivers "natural" psychophysical haptic feedback
- Provides four dimensions of biofeedback (intensity, frequency, x/y location)
- Modular device driver works with any quantified signal characteristics
- Unobtrusive haptic feedback works in noisy and bright environments.
- Modularity allows expansion and integration into other human augmentation designs

Features

- Arm-worn haptic feedback array
 - Sturdy, compact design
 - Four dimensions of haptic feedback
- Haptic feedback driver with simple programmable interfacing with signal characteristics
 - Modular, simple user interface
 - Supports any quantifiable signal qualities

<u>Design</u>

Block Diagram

Block Descriptions

Power Supply: Power will be supplied by DC battery sources. Inputs: None Outputs: 5V and 9V DC

Haptic Driver: A microcontroller will take in quantified signal characteristics and map these characteristics to haptic features of the array. PWM values for every motor will be calculated to achieve the haptic stimulus.

Inputs: 9V DC UART data from sensor Outputs: PWM signals for every motor **Power Circuit:** The power circuit will amplify the PWM signals from the Haptic Driver such that they can be used to drive the motor array. Transistors will be used for amplification.

Inputs: 5V DC

PWM signals from Haptic Driver Outputs: Amplified PWM signals for every motor

Motor Array: The motor array will be two 7x4 arrays of shaftless vibration motors (one for the top of the forearm, and one for the bottom). The motors will be secured in a robust armband.

Inputs: Amplified PWM signals from Power Circuit Outputs: Haptic stimulus on user's arm

Performance Requirements

- Achieve a robust device by employing durable build techniques
- Achieve continuous perception (motors indistinguishable from one another)
- Achieve large range of frequency and intensity for a wide range of stimulus

Verification

Testing Procedure

Every block in the above diagram will need to be tested for completeness and operability. Each block will also need to be tested with the other blocks to make sure that the entire system works as a whole. In order to test the Haptic Driver, we will use a simple test that will cause all of the PWM signal outputs to exercise their full range of intensity and frequency, which we will then measure for correctness using an oscilloscope. For the Power Circuit block, we will supply input signals from a function generator and measure the output signals using an oscilloscope to ensure that they are being amplified correctly. For the Motor Array block, we will use a function generator to test the boundaries of motor behavior, and eventually test the functionality of the entire array after the previous blocks have been constructed and tested.

Robust design techniques will be evaluated for their durability, such that we can ensure a robust design.

Tolerance Analysis

The Power Circuit block for this project must work to a tight tolerance. The motors can not run when powered by the Arduino. The motors require more current than the Arduino can supply without burning out. For this reason, we need to ensure that the Power Circuit block is capable of amplifying the signals from the Arduino into the range of operation for the motors.

In order to verify that the Power Circuit block works as intended, we will need to subject it to a variety of PWM signal scenarios and measure the output. We will then analyze the output signals to confirm that they conform to the acceptable range of inputs for the motors.

Cost And Schedule

Cost Analysis

Labor Cost

Billable Hours Per Week Per Engineer	Weeks Of Contract Per Engineer	Total Billable Hours Per Engineer	Multiplicity Factor	Per Hour Billing Rate Per Person	Total Contract Cost
9	13	117	2.5	\$34.00	\$9,945.00
No. Of Engineers in Team					2
Total Labor Cost of Project					\$19,890

Parts Cost

Part	Quantity	Unit Cost	Total Cost + Shipping
Shaftless Vibration Motor 8x3.4mm	50	\$2.79	\$146.45
Arduino Uno	1	\$29.95	\$33.59
TI TLC5941 16-Channel LED Driver	2	\$2.32	\$12.64
22 Gauge Wire	10 ft	\$0.30/ft	\$3.00
Resistors	10	\$0.10	\$1.00
9V Battery	12	\$1.40	\$16.80
AA Battery	20	\$0.32	\$6.49
Total Parts Cost			\$217.97

Total Cost of Project: \$20,109.97

<u>Schedule</u>

Week	Date	Task	Member Responsible
1	9/10/2012	Write Proposal	Both
		Haptic Array Design	Nathan Murray
		Haptic Driver Design	Todd Pixton
2	9/17/2012	Decide Array Parts	Nathan Murray
		Design Sensor Interface	Todd Pixton
3	9/24/2012	Order Power/Motor Parts	Nathan Murray
		Order Arduino, Interface Parts	Todd Pixton
		Design Review	Nathan, Todd
4	10/01/2012	Build Power Circuit	Nathan Murray
		Build Arduino Interface, Testing Code	Todd Pixton
5	10/08/2012	Build Motor Array	Nathan Murray
		Test Motors with Arduino	Todd Pixton
6	10/15/2012	Signal Group Communication Collab.	Nathan Murray
		Code Motor Interface Protocols	Todd Plxton
7	10/22/2012	Build Arduino Enclosure	Todd Pixton
		Build Motor Array Enclosure	Nathan Murray
8	10/29/2012	Test Connections and Functionality	Nathan, Todd
9	11/05/2012	Mock Up Demo	Nathan, Todd
10	11/12/2012	Mock Presentations	Nathan, Todd

11	11/19/2012	Thanksgiving break	
12	11/26/2012	Resolve Problems from Mock Ups	Nathan, Todd
		Prepare Presentation	Nathan Murray
		Prepare Final Paper	Todd Pixton
13	12/03/2012	Demo	Todd Plxton
		Presentation	Nathan Murray
14	12/10/2012	Final Paper	Nathan, Todd