
ECE 445
Spring 2024

Final Report

An Auto-Hand Chasing Lamp With Hand Gesture
Control

Team 49
Feiyang Liu (feiyang5)
Yiyan Zhang (yiyanz3)
Jincheng Yu (jy54)

TA: Luoyan Li
April 30th, 2024

Abstract

This document is team 49’s final report for ECE445 Senior Design. Team 49’s project is a smart
lamp with hand movement tracking and gesture control. The report covered the purpose, design,
testing, and final build of the smart lamp. Readers can refer to the graphs and formulas shown in
the corresponding section to understand the building process of the project. The conclusion at the
end of the report summarized our achievements and future recommendations for the project.

Contents

1. Introduction 4
1.1 Problem 4
1.2 Solution 4
1.3 Functionality 4
1.4 Subsystem Overview 5

1.4.1 Sensor Subsystem 6
1.4.2 Central Control Subsystem 6
1.4.3 Lamp Subsystem 6
1.4.4 Power Subsystem 6

2. Design 7
2.1 Visual Design 7
2.2 Hardware Design Description & Justification 8

2.2.1 PCB Diagrams & Schematics 8
2.2.2 Mechanical Arm 10

2.3 Software Design Description & Justification - Object Detection 12
2.3.1 Object Detection 12
2.3.2 Model training and deployment 13

2.4 Software Design Description & Justification - Hand Gesture Detection 15
2.4.1 Model and Development Platform Selection 15
2.4.2 Gesture analysis 16

2.5 LED 17
2.6 Design Alternatives 19

3 Cost Analysis & Schedule 20
3.1 Labour Costs 20
3.2 Parts Cost 20
3.3 Grand total 22
3.4 Schedule 22

4 Requirements & Verification 24
4.1 Subsystem Verification 24

4.1.1 Sensor Subsystem 24
4.1.2 Central Control Subsystem 25
4.1.3 Lamp Subsystem 26
4.1.4 Power Subsystem 27

4.2 Tolerance Analysis 27
5 Conclusion 28
Reference 31
Appendix A Requirements & Verification Tables 32

1. Introduction

1.1 Problem

In industrial workspaces, inadequate lighting, especially from shadows, hinders precision tasks
like soldering, impacting work quality and efficiency. Traditional lighting lacks flexibility and
fails to meet specific task needs, leading to a demand for a smart, adaptable desk lamp.

1.2 Solution

Our design is a desk lamp equipped with the capability to autonomously track the user's
hand/handlike object movements, thereby eliminating the common issue of shadows obscuring
the work area. This is achieved through a combination of a camera, several servo motors, and a
flexible mechanical arm, all of which work in tandem to reposition the lamp in real-time

The system utilizes gesture recognition technology, powered by an ESP32 module, to interpret
hand gestures. This allows users to control the lamp's functionalities—ranging from adjusting
brightness and color temperature to switching the lamp on and off. Furthermore, the lamp is
capable of executing more advanced commands, such as controlling the RGB matrix to generate
light to create atmosphere.

1.3 Functionality

Our project achieved the following high-level requirements and passed verification:
i. Autonomous Tracking Accuracy: The smart desk lamp can accurately

detect and follow a human hand’s movement when a hand is placed at
least 15cm away from the camera. The lamp should differentiate human
hands from objects and not move when a pen is placed in front of the
camera.

ii. Gesture Recognition Responsiveness: The user can show the following
hand gestures to control the light:

1. Pointing up or down to change light intensity

2. Control lamp movement by pointing left or right
3. Activate tracking mode by showing a fist

iii. Light Adjustment Range: The lamp can change between 2 brightness
and 2 colors when different hand gestures are captured through the
camera.

1.4 Subsystem Overview

Figure 1: Auto-Hand Chasing Lamp’s Block Diagram

Our initial block diagram included four subsystems: power, sensor, central control, and lamp
systems. The function of each subsystem is described in the next section.

1.4.1 Sensor Subsystem

The sensor subsystem is divided into two systems, the first is the object detection system, we will
use this to capture images in ESP32S3Cam, run the pre-trained object detection AI locally in
ESP32S3, and pass the offset to the central control system. Eventually, the model may be trained
using the model hand rather than the real hand according to various limitations.

In addition, the gesture system will use another ESP32S3cam for image capture. If the accuracy
of the training model is too low, the picture will be transmitted to the computer through WIFI,
and the command will be sent to the central control system after the picture is processed on the
computer.

1.4.2 Central Control Subsystem

This system contains a microcontroller that integrates the ESP32 module and necessary I/O
modules. It needs to process the input data from the sensor system like the offset of the servo
and the data into the RGB light. It can also communicate remotely with a computer to control
specific programs through WIFI. The lamp subsystem will receive outputs from the
microcontroller and change mechanical arm movement and light bulb activities based on the
detected hand gestures. Detectable gestures will include fists and raising, directions of thumbs,
and other interesting gestures. The gestures will be able to turn on/off, increase/decrease
brightness, and increase/decrease light temperature and other features.

1.4.3 Lamp Subsystem

The lamp subsystem makes up the physical lamp that will be used to track the user’s hand/
hand-like object movement. It contains two key parts, which are a mechanical arm lamp holder
and a light bulb. Three servo motors and a linear potentiometer are used to control the rotation
and location of the lamp. The lighting bulb should be adjustable in terms of color temperature
and brightness through instructions from the central control system.

1.4.4 Power Subsystem

The power subsystem provides the power needed for the sensors, microcontroller, and lamp
system. We use a 12V voltage adapter to power the core lamp system. A separate 3.3V voltage
adapter will be used to power smaller components including the camera sensor and
microcontroller. The power needs to be sufficient to support the three servo motors in moving the
physical-mechanical arms, and a wall outlet would be used as the primary energy source.

2. Design

2.1 Visual Design

Figure 2: Final Product’s Physical Design

Figure 3: Smart Lamp’s Design Layout

2.2 Hardware Design Description & Justification

2.2.1 PCB Diagrams & Schematics

As shown in figures 1 to 3, the hardware design for our project were focused on the PCB and

mechanical arm design. Our PCB design included ESP32 microcontroller, programming circuits,

power adapter, switches, and motor connectors that are used to fulfill the requirements for each

subsystem. The detailed schematic and layout are shown in the figures 4 and 5. Up on

completing the PCB, we could be able to perform image processing on ESP32 and output motor

signals to control the mechanical lamp holder. However, there were design and assembly issues

that caused the PCB to receive incorrect power and resulted in an unprogrammable PCB. We

eventually decided to replace the PCB with two ESP32 development boards. By having one

board controlling the motors and the other performing image processing, we enabled

communication between the microcontroller and two front cameras in the front of the mechanical

arm. The replaced ESP32 development boards passed all verifications and worked as we

expected.

Figure 4: Original PCB Schematic

Figure 5: Original PCB Layout

2.2.2 Mechanical Arm

In the development of a precision-controlled mechanical arm for a desk lamp, three hts35h servo

motors were employed to meticulously guide the arm's movement in the x, y, and z directions.

Initially, the focus was on ensuring the correct operation of these servo motors. Subsequently, the

coordination of their movements became paramount due to the arm's structural design, where

excessive extension could notably lower the LED light's position, rendering some areas

ineffective for illumination. Through rigorous testing and evaluation, a feasible range of motion

was determined for the arm, which was calibrated on a scale from 400 to 750 out of 0-1000.

Furthermore, an interface was devised that translates the movements of two servos into a polar

coordinate system: void LobotSerialServoControl::moveToAngleAndLength(float

angle, float length).This system utilizes angles ranging from 0 to 240 degrees and

distances extending up to 1000 units, facilitating precise and efficient control over the LED's

positioning. By inputting specific coordinates, the light can be directed accurately to any desired

location, thereby enhancing the functionality of the lamp. This integration addresses the initial

challenge of converting the point needed to two motor’s movement every time.

The greatest challenge lies in calculating the angle offset, and the following figure provides a

clear explanation.

Figure 6: Hand Angle Draft

The yellow lines and x's indicate the position of the model's hand, the 270-degree fan is the

Angle that the motor can support, and the red box is the area that the camera can capture.

According to the 96*96 pictures I streamed out, it is about 17cm. Therefore, I calculated that the

distance between each pixel is 17/96 cm. Currently, we only consider the rotation Angle of the

main servo. I used the length of the robotic arm (18cm) and found the Angle through the

following formula.

𝐴𝑛𝑔𝑙𝑒
𝑜𝑓𝑓𝑠𝑒𝑡

= (
𝑥−48()* 17

96

18) (1)

From this, our robotic arm can successfully find the Angle and keep track.

2.3 Software Design Description & Justification - Object Detection

2.3.1 Object Detection

Our first task was to choose the right development platform for the team and the AI model that

could be deployed on that platform. First, we chose the ESP32 series from the beginning.

Especially after learning about a lot of AI projects based on ESP32S3, we found that this chip

can largely achieve our requirements. Then, finding small AI models that can fit into them is the

next challenge.

Our team looked for various possible solutions on the web, such as converting the TensorFlow

model to the ONNX model based on the ESP-DL deep learning library. This was our initial

direction, however we ran into deployment issues with the Freenove ESP32S3Cam we

purchased. At the same time there are some necessary dependencies that we can never install

correctly. So we have to give up. The next attempt is to stream the captured images to the

computer for processing via MicroPython or ESP32 webserver. we completed Wifi-based image

streaming, but it was abandoned as a last resort because it went against our desire to run as

locally as possible. As we continued to read about the ESP32S3, we noticed the FOMO model

from Edge Impulse. It seems to do much of what we need.

The FOMO model[1] enables object detection models to be run on constrained devices and

brings real-time object detection, tracking, and counting to microcontrollers. Most importantly, it

is able to run smoothly on very small amounts of RAM. This is what we need.

2.3.2 Model training and deployment

Fortunately, we found full instructions and a relatively easy training environment on the edge

impulse website. we need to upload the object that needs to be identified and add the

corresponding label. Then fill in the corresponding image parameters (height and width are set to

96 for ESP32S3 processing). After that, background is needed as a control group to better train

the model.

To simulate the true image quality of the ESP32S3cam as much as possible, we deployed a web

server on the esp32s3 to capture the images and download them to the computer. However,

because the height of the robot arm we purchased is relatively low, and the FOV of the ov2640 is

not excellent. It is difficult for us to fully slap the palm into the camera at a normal height. We

need to use a set of Iron Man anti-Hulk armor model hands as a training object.

Figure 7: Pictures Taken by OV2640 Camera

First, we uploaded the picture data to the website and manually typed most of the pictures with

the correct label. We can then output the eigenvalues of all images for subsequent convolution.

We use RGB as the Color depth in the hope that the red color of the hand model can be perfectly

distinguished from the background and increase the accuracy. Then, follow the system to

download the Lib package in the form of Arduino Lib, deploy it into Arduino, and finally deploy

it on ESP32S3.

However, when we first practiced it, because the background was all white desktops and the light

was not enough, the accuracy was quite low on other colored desktops, and it also had a high

probability of recognizing the shadow as a hand. This is hard for us to accept. First, we try to

combine the three identifications, that is, record the data of the three identifications and compare

them before output, and output if the three identifications are close to each other. But this still

cannot meet our requirements, and will slow down our detection speed to a certain extent.

So, we did a second and third model training, adding black and well-lit datasets.

Figure 8: Graph of Features

In this image, each cluster represents an image, such as the manipulator on the far left, which has

a mostly black background. The good news is that each cluster is relatively concentrated.

Figure 9: Code Snippet

This method was used to send the detected coordinates to the GPIO-2 of the master via the TX

pin of the ESP32S3 in the loop.

2.4 Software Design Description & Justification - Hand Gesture Detection

We want gesture recognition to be able to control the on/off of the RGB strip, the color, to be

able to switch the tracking mode of the lamp on and off, and to be able to control the position of

the robotic arm when the tracking mode is off.

2.4.1 Model and Development Platform Selection

I originally wanted to be able to shoot and define a simple gesture model in a similar way to

objection detection. However, this does not seem to be the same thing. Because most of the

features of the hand are similar when it comes to gestures. we took a lot of shots for palm and fist

and tried to train and deploy on the ESP32S3 in a similar way. However, although the model can

be successfully deployed and can distinguish between the fist and the palm in some cases, the

accuracy is very low if the background is different or the position of the hand is slightly changed.

This is hard for us to accept.

We started thinking about using more mature datasets, such as an ONNX model based on the

Kaggle gesture recognition dataset. However, the models in these datasets are very large, taking

about 20 seconds for the ESP32S3 to process an image. This is not good news either.

At the same time, what makes us most hesitant is that most of the data sets support only partial

gestures, such as the palm, fist, and index finger. That's still not enough for us. We want to be

able to reverse control the mainframe and the computer through gestures. This requires us to be

able to implement gestures that are less common, but more intuitive.

Finally, we chose to send the picture to the IP address of the computer at a rate of once per

second through the Camera and Socket in Micropython, and then the computer monitored

0.0.0.0:9090, parsed the picture through OpenCV and sent it to MediaPipe for analysis.

The reason for using MediaPipe is that it can analyze the Landmark of each joint for hand photos

with relative accuracy and provide corresponding coordinates. This allows us to create a lot of

possibilities.

Figure 10: Hand Landmarks by MediaPipe [2]

2.4.2 Gesture analysis

First we want to be able to tell if each finger is in an active state. We judged the Euclidean

distance between the coordinates of the fingertips and the coordinates of the wrist. If it is greater

than the distance between the Previous Joint and the coordinates of the wrist and the Euclidean

distance, it means that the fingers have been extended. For the index, middle, ring and pinky

fingers, this algorithm is sufficient. However, this is not true for the thumb, because the distance

between the fingertip and the wrist in the contracted state of the thumb is sometimes still longer

than the distance between the previous joint and the wrist. At the same time, because of the

different posture of the fist, sometimes the change in the distance from the thumb to the wrist is

not obvious.

So, we try to calculate the slope of the previous joint to the fingertip and the wrist to the previous

joint and judge the Angle between them to determine whether the thumb is bent. This allows me

to judge the status of thumb.

Then we have a basic framework that we can use to implement gestures. First, we added

thumb-based directions when only the thumb was active. For example, with a thumbs-up gesture,

we can calculate the direction of my thumb by comparing the x coordinates and y coordinates of

my thumb and wrist and output up, down, left and right. we plan to use this gesture to control

motor movement when tracking mode is turned off.

At the same time, we created palm (all fingers active), fist (all fingers deactive) and so on. In the

future, these gestures could also be used to control motors. These gestures will eventually output

a string, which is sent over WIFI to the master ESP32 for control.

2.5 LED

In the design and implementation of the Smart LED Control System for Gesture-Responsive

Lighting, the WS2812B LED strip was selected for its balance of cost-effectiveness and

capability to meet the project's technical requirements. This type of LED strip is advantageous as

it requires only power and a data input, thereby simplifying the circuitry design. A matrix of four

WS2812B LEDs was configured into a square layout and soldered to ensure stable and consistent

illumination, as illustrated in figure 12.

The control of the LEDs was managed using the Adafruit NeoPixel library, renowned for its

precise tuning of color (RGB) and light intensity. The choice of this library was driven by its

extensive support and ease of programming LED behaviors, which are crucial for achieving

desired lighting effects.

The LED matrix was integrated with the development board and configured with WiFi

connectivity through the software, employing the HTTP protocol for communication. It allows

the LEDs to wirelessly receive commands such as turning on or off, adjusting brightness, or

changing colors.

The incorporation of WiFi and HTTP protocols significantly enhanced the system's adaptability

and enabled real-time interaction with the LEDs. This setup is pivotal for the system's readiness

to integrate with gesture recognition technologies, aiming to provide a responsive and

user-friendly lighting experience that dynamically adjusts to users' needs based on their inputs.

Figure 11: WS2812B

Figure 12: Led Matrix

2.6 Design Alternatives

Several design changes were made to the initial design. The first change was replacing the PCB

with two development boards. During our testing phase, we realized that the 5V voltage adapter

failed to drop the 12V power input to 5V. The multimeter showed that 10V entered the ESP32

microcontroller’s power pin, which resulted in the burning of our initial microcontroller. We first

ordered other PCBs and separated the power modules from microcontroller to ensure that power

modules could be tested separately. This design however caused our PCB to end up

unprogrammable due to potential soldering and designing mistakes. As a result, we decided to

replace the custom PCB with ESP32 development boards so that we could still program the

microcontroller and output the motor signals. This solution worked and allowed us to continue

implementing the gesture control and object detection features.

3 Cost Analysis & Schedule

The cost analysis for this project is primarily divided into two main components: labor costs and
parts costs. We have estimated the hourly wage for each project partner at $56, based on market
research for graduates from Electrical and Computer Engineering (ECE) at the University of
Illinois. Below is a detailed cost analysis:

3.1 Labour Costs

- The assumed hourly wage for each partner is $56.
- The total hours each person should use for the project is 20 hours/person, And we assume to
finish the project in 8 weeks.
-
- The formula for total labor cost is: `56 x 2.5 x 20 x 3 x 8 = 67200`.

3.2 Parts Cost

The following table lists all the parts required for the project, including description,
manufacturer, part number, quantity, and cost, along with estimated machine shop labor hours
needed to complete the project.

Item Manufacture Part Number Quantity Unit
Price(USD)

Total
Price(USD)

ESP32-S3-CAM Freenove - 1 20 20

HTS-35H Hiwonder - 3 23 69

Robot Arm kit Hiwonder - 1 50 50

ESP32-S3-CAM XIAO - 1 23 23

ESP-WROOM-3
2

Espressif N16CT-ND 1 3 3

Power Jack
Connector

CUI Devices CP-037A-ND 1 0.59 0.59

5V Linear Texas LM1117DT-5.0 1 1.81 1.81

Item Manufacture Part Number Quantity Unit
Price(USD)

Total
Price(USD)

ESP32-S3-CAM Freenove - 1 20 20

HTS-35H Hiwonder - 3 23 69

Robot Arm kit Hiwonder - 1 50 50

Regulator Instruments

USB to UART
Bridge

Silicone
Labs

336-5889-ND 1 4.66 4.66

NPN Transistor Onsemi SS8050CBU-N
D

2 0.41 0.82

3.3V Linear
Regulator

Texas
Instruments

LM1117DT-3.3 1 1.81 1.81

Single Diode STMicroelect
ronics

497-6610-1-ND 1 0.38 0.38

47.5K Ohm
Resistor

YAGEO 311-47.5KCRC
T-ND

1 0.1 0.1

22.1 Ohm
Resistor

YAGEO 311-22.1KCRC
T-ND

1 0.1 0.1

TVS Diode Onsemi ESD9B5.0ST5
G

3 0.17 0.51

Tacile Switch C&K 401-1426-1-ND 2 0.57 1.14

22UF Capacitor Samsung 1276-1100-1-N
D

1 0.13 0.13

0 Ohm Resistor ECE Supply
Shop

- 2 0 0

1k Ohm
Resistor

ECE Supply
Shop

- 1 0 0

10k Ohm
Resistor

ECE Supply
Shop

- 4 0 0

0.1uF Capacitor ECE Supply
Shop

- 7 0 0

10 uF Capacitor ECE Supply
Shop

- 4 0 0

4.7 uF Capacitor ECE Supply
Shop

- 1 0 0

Micro USB-B
Connector

ECE Supply
Shop

- 1 0 0

3 Position
Header
Connector

ECE Supply
Shop

- 1 0 0

18 Position
Header
Connector

ECE Supply
Shop

- 2 0 0

Total 177.05
Table 1: Costs of Components

3.3 Grand total

The grand total will include the sum of the labor costs and the parts costs. The specific labor cost
will need to be calculated based on the actual hours worked by each partner. The total parts cost
is $177.05. All labor costs amounted to $67,200.At the same time, we also need to consider the
expenditure of PCB board design completion. This will be updated after we decide on the design,
tentatively set at $20.
The total cost is therefore approximately 67,400.

3.4 Schedule

Week 1 (Feb 22 - Feb 28): Initial Planning and Architecture

Task: Select architecture and finalize project scope.

Members Involved: Jincheng (Lead), Yiyan, Feiyang.

Deliverables: Project scope and architecture plan

Week 2 (Mar 1 - Mar 7): Detailed Design Phase

Task: Design sensor subsystem; Yiyan begins ESP32-CAM integration.

Members Involved: Feiyang (Lead on sensor design), Yiyan (ESP32-CAM), Jincheng.

Deliverables: Sensor subsystem design, initial ESP32-CAM setup.

Week 3 (Mar 8 - Mar 14): Control and Lamp Design

Task: Design central control subsystem; start lamp subsystem design.

Members Involved: Jincheng (Lead on central control), Feiyang (Lead on lamp design), Yiyan.

Deliverables: Control and lamp subsystem designs.

Week 4 (Mar 15 - Mar 21): Parts Procurement and Testing

Task: Order and test individual components; finalize ESP32-CAM integration.

Members Involved: Yiyan (Lead on ESP32 and testing), Jincheng, Feiyang.

Deliverables: Components ordered, initial component tests, ESP32 integration.

Week 5 (Mar 22 - Mar 28): Assembly of Subsystems

Task: Assemble sensor and central control subsystems.

Members Involved: Feiyang (Lead on assembly), Jincheng, Yiyan.

Deliverables: Assembled sensor and control subsystems.

Week 6 (Mar 29 - Apr 4): Lamp Assembly and System Integration

Task: Assemble lamp subsystem and integrate with control system.

Members Involved: Jincheng (Lead on lamp assembly and integration), Feiyang, Yiyan.

Deliverables: Lamp assembly, integrated system.

Week 7 (Apr 5 - Apr 11): System Refinement and Demo Preparation

Task: Refine integrated system and prepare for mock demo.

Members Involved: Feiyang (Lead on refinement), Jincheng, Yiyan.

Deliverables: Refined system, prepared demo.

Week 8 (Apr 12 - Apr 15): Final Testing and Demo Execution

Task: Conduct final system testing and execute mock demo.

Members Involved: Yiyan (Lead on final testing), Jincheng, Feiyang.

Deliverables: Final testing completion, successful mock demo.

4 Requirements & Verification

4.1 Subsystem Verification

4.1.1 Sensor Subsystem

In the sensor subsystem, we employed two camera sensor, specifically the ESP32S3-CAM,

which is capable of capturing images accurately. The hand gesture tracking and hand movement

tracking were conducted directly on the ESP32S3-CAM, leveraging its onboard processing

capabilities to facilitate local model deployment. We conducted input power testing on the two

camera sensors and verified the correct 5V power input. Image processing was conducted on PC

and demonstrated correct detection of hand movement and hand gestures. In figure 11, a

performance score of 98.8% is achieved, which indicated that our sensor detection and image

processing were successful. We also set up the motion tracking camera to take 96 x 96 pixels

pictures and set the center coordinate to 48 x 48 pixels to compute offsets with the new

coordinate of hands. This allowed us to receive the correct coordinate of hand location and track

its movement through the camera sensor. The corresponding R&V table is shown as Table 2 in

Appendix A.

Figure 13: Image Processing Performance Metrics

4.1.2 Central Control Subsystem

A selected microcontroller, ESP-WROOM-32 Microcontroller, was ysed to process captured

images from the ESP32 sensor and connect with the lamp system to determine mechanical arm

movement and lamp lighting. However, we did encounter issues with verification of the central

control microcontroller. After we finished soldering of custom PCB, we set up and programmed

the ESP-WROOM-32 Microcontroller through Arduino IDE. Then we connected ADALM2000

between the ports used to transfer PWM and UART data to verify if signals are sent to sensor

and lamp subsystems. However, the ESP32 microcontroller ended up to be not programmable.

As a result, we had to replace the central control with ESP32 Development Boards. After the

replacement, we performed the same verification steps again and could successfully program the

microcontroller. Another requirement was reducing the delay between image capturing and

mechanical arm movement to under 5 seconds. This was verified using timer, and the average

delay was under 5 seconds which matches our requirement. Table 3 in Appendix A shows the

detailed requirements.

Figure 14: Delay Timer Results

4.1.3 Lamp Subsystem

The lamp system ensures the movement of the light bulb and controllable lighting. The lamp

uses a mechanical arm to move the light bulb to track hand movement. We measured voltage

across three HTS35h servo motors and were able to activate the motors with 12V. Figure 15

shows the rotational angles and distance that were verified by measuring The mechanical arm

was able to move at a total angle of 240 degrees and extend for 17cm. The resulting

measurement fulfills our requirements and allows the light to move in x and y directions.

Multimeter tests were also performed on the RGB light strip to ensure the light is receiving

stable 5V power input. Table 4 in Appendix A shows detailed requirements.

Figure 15: Mechanical Arm’s Rotational Angle and Distance

4.1.4 Power Subsystem

The power system supports the energy needed for the lamp, sensor, and central control

subsystems. A wall outlet will be the primary energy source. Extra 12V, 5V, and 3.3V voltage

adapters are used to power up separate components in the design. We used a multimeter on the

voltage regulator output to verify if it supports the corresponding output. Our final design

decided to use an external power adapter since there were issues with the PCB design, and the

multimeter tests showed that our external power source could support 12V +/- 5%, 5V +/- 5%,

3.3V +/- 5% power supply which satisfied our needs. Table 5 shows the detailed verification

steps.

4.2 Tolerance Analysis

In our design, we will be utilizing the ESP32 controller, which has a minimum load requirement

of 0.5A. Additionally, we will also be using three HTS-35H motors with 35kg high torque to
control the robotic arm.

τ = F ⋅ r ⋅ sinθ
Referring to the torque formula, the entire lamp would weigh about 2kg. Assuming a rotation
radius of 20cm and an angle of 270 degrees. We calculate that the minimum torque required to
move the lamp would be τ = 9.81*2*0.2*sin(90) = 3.5 N-M. HTS-35H motor could support
torque greater than 5 N-M and is expected to meet our needs.

We have also planned to use a power supply capable of providing 2A of current, so we can safely
utilize this power source. Furthermore, we need to ensure that the cameras' field of view (FOV)
can capture as much of the scene as possible to avoid losing track. For the ESP32-CAM, we are
using the OV2640, which offers around 65 degrees of FOV, sufficient to capture adequate scene
information. Additionally, the maximum resolution can reach 1622x1200. When used separately
from a computer, the ESP32-S3 is capable of shooting at 400 × 300 pixels and running relatively
small AI models at the same time. This gives us enough computing power and pixels to find the
hand bones.

5 Conclusion

5.1 Accomplishments

Overall, we were able to accomplish most of the requirements we had. We successfully delivered
a final smart lamp product that satisfied all high-level requirements. Our final project were able
to perform movement tracking and gesture recognition so that our users can use the smart lamp
to minimize the shadow cast on their hands. In addition, our RGB light could correspond to
gestures for users to change the light’s brightness and temperature by raising fingers up and
down. Some of the design changes we made included replacing PCB with development boards,
but the replacement allowed us to finish all remaining requirements fo the project and we did
deliver the high level requirements we initially planned.

5.2 Uncertainties

The challenges with the project were mainly related to PCB and the limitation of camera angles.
Our PCB design initially did not take into consideration of possible burning, and due to soldering
issues we failed to drop 12V power supply to 5V, which resulted in the burning of the
microcontroller. This issue could be avoided by performing adequate testing and separating
power module from the control module. In addition, due to the limited access we have to a
professional camera, the ESP32-CAM module we purchased had a limited field of view, which

caused the camera to fail to capture the entire hand image. As a result, we had to use a smaller
model hand to ensure the camera could capture the entire hand image. This issue could also be
resolved by purchasing more expensive professional camera with a larger field of view.

5.3 Future Work

For the future, we could continue refining the tracking algorithm and conduct additional image
processing training to improve the accuracy of object movement detection. Also, if we have
more resources, we could purchase better cameras and motors to improve the flexibility of the
lamp. As of now, we are using an RGB light strip as our lighting component due to its low costs.
We could also improve the quality of lighting by purchasing brighter and larger light bulb to
improve the lighting quality. In addition, we would order preassembled PCB board to ensure any
potential soldering issues may not interfere with the functionality of the final product.

5.4 Ethics and Safety

In terms of ethics and morality, our team adheres to the IEEE Code of Ethics adopted by the
IEEE Board of Directors in June 2020. We firmly believe that as members of UIUC, a
world-renowned university, we need to hold ourselves to the highest academic and ethical
standards. We hope to change the world with our technology. Therefore, when working in our
team, we will take the following measures, including but not limited to:

 1: Diligently Studying Technology and Actively Communicating with Guides (TAs,
Professors): Within our team, we strive to learn as much technology as possible in this
project, as well as how to successfully combine the knowledge we have learned into a
viable project. We will seek various resources, including but not limited to the internet,
videos, and books, and actively seek advice from professors with insights in this field. At
the same time, we will also actively share and exchange experiences and insights within
the group to help everyone gain sufficient knowledge and skills. In this task, we will
learn about relatively cutting-edge fields such as web development, AI vision, firmware
development, PCB research and development, and robotics. Perhaps our ability to delve
deeply is temporarily limited, but at least we can explore these fields and gain insights.
We will continue to learn and apply this knowledge in the future in academia or the
industry.

 2: Developing Comprehensive Feedback and Testing Plans: In our team, because there

are many different areas of content, we will develop comprehensive testing plans for

subsystems including robotic arms and AI, and timely feedback these test results to TAs
while planning the next strategy.

 3:Treating Everyone with Respect and Kindness and Ensuring These Codes Are Adhered

To: To ensure good teamwork and communication, we have set up chat groups, a GitHub
repository, and Google Drive space to share resources. We ensure all technical details can
be tracked.

Laboratory Usage and Safety

Adherence to Laboratory Rules: Strictly following all laboratory rules and guidelines is essential
for ensuring safety. This includes wearing appropriate personal protective equipment (PPE), such
as safety goggles, gloves, and lab coats, when necessary.

Supervised Mechanical Work: When developing or working on mechanical parts, supervision or
collaboration is crucial. Working alone on mechanical components can increase the risk of
accidents, so we'll ensure that team members are present or that a lab supervisor is available for
assistance.

Equipment Training: Before using any lab equipment, team members will receive proper
training. This training will cover the operation of the equipment, safety procedures, and
emergency protocols.

Digital Security

Secure Wi-Fi and Bluetooth Connections: Given the project's reliance on Wi-Fi and Bluetooth
for communication, ensuring these connections are secure is vital. We will implement encryption
protocols such as WPA2 for Wi-Fi and LE Secure Connections for Bluetooth to protect against
unauthorized access.

Data Privacy: Protecting the privacy of users interacting with our system is paramount. We will
design the system to collect only the necessary data, ensuring it is stored securely and that users
are informed about how their data is used.

Reference

[1] “Detect objects with FOMO | Edge Impulse Documentation,” Edgeimpulse.com, Feb. 29, 2024.

https://docs.edgeimpulse.com/docs/tutorials/end-to-end-tutorials/object-detection/detect-objects

-using-fomo (accessed Mar. 27, 2024).

 [2] “Hand landmarks detection guide | MediaPipe,” Google for Developers.

https://developers.google.com/mediapipe/solutions/vision/hand_landmarker#models (accessed

Mar. 27, 2024).

[3] Eloquentarduino.com, 2024. https://eloquentarduino.com/ (accessed Mar. 27, 2024).

[4] IEEE code of Ethics. IEEE. (n.d.-a). https://www.ieee.org/about/corporate/governance/p7-8.html

Appendix A Requirements & Verification Tables

Requirement Verification Results

1. Able to capture the image

when the sensor is powered

on by 5V +/- 5%

● Set up both camera sensors on Arduino
IDE and connect them to a 5V power
source

● Use an multimeter on the camera power
input to verify that the power input is
within the range 5V +/- 5%

● Check on a personal laptop if Arduino
IDE can receive images from the ESP32
sensor

Pass

2. Able to conduct model

training for the tracking

object

● Conduct a model test on ESP32S3, the
processing time for each frame should
be less than 200ms.

Pass

3. Able to accurately count

stretched-out fingers within

the range of 0-5

● Use the gesture detection camera to take
20 hand images with stretched-out
fingers ranging from 0 - 5.

● Check all trained images’ properties to
verify if the images are correctly tagged
with finger numbers within the range of
0 - 5

Pass

4. Able to identify hand

coordinates to enable hand

movement tracking

● Set up the motion tracking camera to
start taking 96 x 96 pixels pictures

● Set the center coordinate to 48 x 48
pixels to compute offsets with the new
coordinate of hands

● Move one’s hand in front of the camera
to observe if the camera can move in the
same direction as the hand’s movement

Pass

Table 2: Sensor Subsystem Verification Table

Requirement Verification Result

1. Able to communicate data

through PWM, and UART

● Set up and program the
ESP-WROOM-32 Microcontroller
through Arduino IDE

● Connect ADALM2000 between the

PCB was
unprogrammable,
central control
was replaced with

protocols ports used to transfer PWM and UART
data to verify if signals are sent to sensor
and lamp subsystems

development
board

2. Communicate with the

mechanical arm to follow

human hands with a delay <

0.5s

● Set up and assemble the complete
control, lamp, sensor, and power
systems

● Initiate hand movement in front of
ESP32 Cam

● Use the timer app on your mobile phone
to ensure the reaction speed delay of
mechanical arm tracking is below 0.5s

Pass

3. Communicate with the

light controller to switch

on/off and adjust brightness

with a delay < 0.5s

● Set up and assemble the complete
control, lamp, sensor, and power
systems

● Stretch out one finger (turn on light
gesture) in front of ESP32 Cam

● Use the timer app on your mobile phone
to ensure the light switching delay is
below 0.5s

Pass

Table 3: Central Control Subsystem Verification Table

Requirement Verification Result

1. Servo motors can move the

mechanical arm when

powered on by 12V +/- 5%

● Set up servo motors and mechanical
arms and connect servo motors to a 3.3V
power source

● Activate HTS35H motors and observe if
mechanical arms can be moved by
motors

Pass

2. Mechanical arm can move

in x and y directions

● Set up servo motors and mechanical
arms and connect servo motors to a 12V
power source

● Activate the servo motors and observe if
the mechanical arm can move in the
corresponding x and y directions

Pass

3. RGB Light strip can adjust

brightness and temperature

when powered on by 5V +/-

● Assemble the complete power, sensor,
central control, and lamp subsystems and
connect an RGB light strip to a 5V
power source

● Stretch out 2-3 fingers in front of ESP32

Pass

5% Cam to verify if the light strip can
increase/decrease brightness through
dimming

● Stretch out 4-5 fingers in front of ESP32
Cam to verify if the light strip can
change color temperature

Table 4: Lamp Subsystem Verification Table

Table 5: Power Subsystem Verification Table

Requirement Verification Result

1. Primary voltage regulator

enables 12V +/- 5% voltage

output

● Connect a 12V voltage regulator to a
wall outlet

● Use a multimeter on the voltage
regulator output to verify if it supports
12V +/- 5% output

Passed using an
external power
adapter and
development
board

2. Primary voltage regulator

enables 5V +/- 5% voltage

output

● Connect a 5V voltage regulator to a wall
outlet

● Use a multimeter on the voltage
regulator output to verify if it supports
5V +/- 5% output

Pass

3. Secondary voltage

regulator enables 3.3V +/- 5%

voltage output

● Connect a 3.3V voltage regulator to a
wall outlet

● Use a multimeter on the voltage
regulator output to verify if it supports
3.3V +/- 5% output

Pass

