

Multipurpose Temperature Controlled Chamber

Electrical & Computer Engineering

Senior Design Group 42

Isaac Brorson

Mitchell Stermer

Stefan Sokolowski

4/24/2024

Project Introduction

High Level Summary of Project

Problem:

People often store food without considering how its temperature will change, leading to instances where food is not thawed or frozen as intended, highlighting the need for an intelligent device to quickly cool or warm food without freezing or cooking it.

Solution:

Our solution is a programmable temperature-controlled chamber that:

- > Allows users to set a **temperature curve** for food items
- Has a user-friendly interface offering:
 - Standard Presets
 - Temperature Set and Hold
 - Detailed Temperature Curve Settings
- Designed for consumer applications as an affordable and compact alternative to existing expensive and bulky options on the market.

Project Explanation

High Level Requirements

The user will have the ability to set a target final temperature, \succ heating/cooling curve and max/min temperature allowances through GUI on an LCD display.

The device will have a temperature floor of at most 0°C, and a \succ temperature ceiling of at least 40°C. (Including the ability to freeze pure water)

The device will be able to hold temperature to **within ±5°C** of target \succ temperature at any given time.

Design Overview

Summary of Project Subsystems

Visual Aid

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

Mechanical Design

Temperature Sensors

Cooling Subsystem

Testing Peltier Coolers Using Programmable Power Supply

- Verify Peltier Coolers work using a known voltage and observable current
- Test chamber temperature performance without needing the power electronics to work

Difficulties with Peltier Coolers

- When screwing in the heatsinks to clamp down on the Peltier \succ coolers, an audible "ting" was heard.
- After removing the \succ heatsink, we noticed a visible fracture in the Peltier cooler.
- Fractured Peltier \succ coolers would fail several minutes into being run.

Peltier

How Many TECs Broken?

In total, we broke 13 Peltier coolers, almost all of which were due to mechanical fracturing.

זנ

Solution to Peltier Cooler Problem

- After some trial and error, we found the best solution to be the addition of a <u>thermal pad</u> on the adapter side of the Peltier Coolers.
- We think mechanical fracturing was caused by curvature in the surface of the Peltier adapters.

Results:

After applying this solution to all four Peltier coolers, we were able to reach temperatures below 0°C

Heating Subsystem

Testing Heating Band

- At first, the heating band was a little too powerful, so we \succ used its built-in temperature knob to reduce its power
- Chamber easily achieved greater than 40°C \succ

Heating Band with 120V Power Cord

Block Diagram

Subsystems

- Power Subsystem
- Central Control Subsystem
- Temperature Sensing Subsystem
- Heating Subsystem
- Cooling Subsystem
- User Interface Subsystem

PCB Design - Main Board

PCB Design - TMP Sensor Breakout

- Mouse Bites for Separation
- Proprietary RJ-12 Connector for SPI
- Address Selection Through Jumpers
- Decoupling Cap and Pull up Resistors
- TMP 1075 Sensor on Back

PCB Verification

Power System Verification:

- ➢ 24V Power Supply Verified at 100W ✓
- ➤ 12V Buck Verified at 5W ✓
- ➢ 5V Buck Verified at 10W ✓
- ➤ 3.3V LDO Verified at 1W ✓

Cooling System Verification:

➢ 50% PWM Output - Verified on Oscilloscope ✓

Heating System Verification:

Relay Switching - Verified using Multimeter

- Buck Chip Enable Pin
 - Enable pin initially tied to 24V, datasheet stated it must be 5.5V or below
 - Resistor divider added in rev. 2 of board
- > Thermistor Sensing Circuit
 - Taken from Ti reference design

TH2 Thermistor_NTC

R42

- Didn't work because thermistor value unknown
- Replaced it with voltage mirror circuit and solved tuning in software

TH2 Thermistor_NTC

R42 1.37k

Half-Bridge Nightmare - V1 PCB Issues

Bootstrap Issue

- Problem: Gate drivers explode when output capacitance is added
- Cause: The node in the bootstrapped half bridge MUST be connected to GND for some time in order for bootstrap cap to charge. Bootstrap cannot have capacitance directly on output.
- Solution 1: Add inductor in series with capacitor
- Solution 2: P+N channel half bridge

Overheat Issue

- Problem: MOSFET overheat during operation at high currents
- Cause: Not 100% confident but most likely shoot through+ringing in combination with rds at high current spikes caused by switching into inductor
- Solution 1: Run MOSFETs at lower PWM cycle and lower load
- Solution 2: Add proper heatsink

Bootstrapped Topology Temp (20 Ohm Load with Heatsink)

PWM Output (%)

Half-Bridge Nightmare - End Solution

Back to Bootstrapped

- Not confident in BJT circuit handling gate charge at our frequency (not thoroughly tested due to lack of time)
- P+N MOSFETS hotter than bootstrapped layout
 - 150C vs 75C (50% PWM, no heatsink, 20 Ohm Load)
- LC network with higher current limit and more capacitance Heatsink Added
- Beefy heatsink and fan added
- Isolated from MOSFETs

Kapton

Software Design

User Interface Menus

		ENT	RY	MODE	
inter i	info:	time	(h.m)	T (C)	
START		00h	00m	20	
	2	00h	15m	14	
		00h	25m	12	
		01h	00m	-Z	
		01h	25m	20	
		02h	10m	35	
	7	02h	33m	30	
END	8	03h	00m	38	BACK
					START

Software Verification (1st HL Requirement)

User Interface Subsystem Verification

- Buttons and Encoders Echo test uploaded to STM
- Storing User Data Display Graph
 ✓

Temp Sensing Subsystem Verification

 I2C Temp Sensor and Thermistor - Printed to Screen and Verified with external infrared temperature gun ✓

Clock and Temperature Control \checkmark

 Screen - Tested with Screen uploaded and verified with a Real Clock

Index	0	1	2	3	4
VALID_TIMES (minutes)	0	10	13	37	40
VALID_TEMPERATURES (Celsius)	28	40	40	15	15

More on Analog Thermistor

$$R_1=R_0e^{eta(T_1^{-1}-T_0^{-1})}$$

$$T_{1} = \frac{BT_{0}}{T_{0} \ln\left(\frac{R_{1}}{R_{0}}\right) + B} - 273$$

$$V_0 = 3.3 \left(\frac{1.37}{1.37 + R_1} \right)$$

$$R_1 = \frac{(3.3 - V_0)(1.37)}{V_0}$$

R0 = 10k B = 3500 K

Larger B parameter -> lower temperature dependance

1

Red - Desired Heating Curve

Purple - Food Temperature

Blue - Chamber Temperature

Elapsed Time on Horizontal Axis

User has the option to edit the heating curve <u>during</u> operation by selecting "DATA" or cancel by selecting "X"

Error Tolerance (3rd HL Requirement)

Error (C)

Error Comparison					13	40	40	27	-1.057	Temperature vs Time
					14	38.943	40	28	-2.098	Target (C) Food (C) Chamber (C) Error (C)
Time	Target	Food T	Chambe	Error	15	37.902	40	27	-2.139	45
(m)	T (C)	(C)	r T (C)	ΔT (C)	16	36.861	39	26	-2.18	35
0	28	28	26	1.2	17	35.82	38	25	-1.221	
1	29.2	28	26	3.4	18	34.779	36	24	-0.262	251
2	30.4	27	25	3.6	19	33.738	34	24	-0.303	الله 20
3	31.6	28	25	2.8	20	32.697	33	24	0.656	15
4	32.8	30	25	2	21	31.656	31	23	0.615	10 5 10 15 20 25 30 35
5	34	32	26	1.2	22	30.615	30	22	0.574	Time (minutes)
6	35.2	34	25	0.4	23	29.574	29	21	-0.467	VEED.IO
7	36.4	36	26	-0.4	24	28.533	29	20	-0.508	ENTRY MODE
8	37.6	38	25	-0.2	25	27.492	28	20	-0.549	Enter info: time (h,m) T (C) START 1 00h 00m 28
9	38.8	39		3	26	26.451	27	19	0.41	2 00h 10m 40 3 00h 13m 40
10	40	37	24	3	27	25.41	25	18	0.369	4 00h 36m 15 END 5 00h 40m 15
10	40	27	24	0 0	28	24.369	24	18	0.328	
11	40	37	20	2	29	23.328	23	17	0.287	BACK
12	40	38	25	0	30	22.287	22	17	0.246	START
31						21.246	21	16	1.205	

Conclusions

Successes and Future Improvements

Project Success

All of our high level requirements were met:

- We achieved temperatures below 0°C and above 40°C. \succ
- The user interface provides the user a convenient way to set \succ whatever temperature curve they want.
- The device kept food within 5°C of the set temperature. \succ

Other Notable Successes:

- The power supply provided sufficient power and didn't overheat. \succ
- \succ The electronics were neatly contained in two eboxes.
- The device turns on and is ready to operate as soon as the user \succ connects the power cord.

Future Mechanical Improvements

- We were forced to cut a hole in the main board ebox to accommodate a heatsink to cool the full bridge MOSFETs. If we had the time, we would redesign the ebox to make space for this heatsink.
- We'd like to add a status RGB LED to clearly indicate the current operation being performed. (Heating / Cooling / Ready)
- Replace stainless steel bain-marie with an aluminum inner chamber to reduce thermal gradient across chamber. The aluminum has a much higher thermal conductivity, and would work to even out temperature differences.
- Increase the number of Peltier coolers to improve rate of cooling

Future Electrical Improvements

Ι

- Improved Half-Bridge Setup
 - Gate driver isolation
 - Larger output capacitance
 - MOSFETS with higher current rating
- Current and Voltage Sensing on Output
- Move Connectors to the Top
- Breakout Board for Buttons

UCC23313BDWYR

TEXAS INSTRUMENTS

- Improve Interface System
- Run more tests on PID temperature control to prevent overshoot from heater

int kp = 90; int ki = 30; int kd = 120;

- Add safety detection with added hardware
- Use Display Touchscreen for alternate input
- ➢ Integrate ESP32 Coprocessor
 - Syncing of clock with internet and setting temperature curves through web portal

Thanks For Your Attention!

Any Questions?

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

Power Verification Proof

23.73V*4.28A=101.6W

12.3V*.46A=5.67W

3.17V*.28A=0.89W

4.15V*1.97A = 8.176W

ELECTRICAL & COMPUTER ENGINEERING

Half Bridge Verification Proof

The Grainger College of Engineering

UNIVERSITY OF ILLINOIS URBANA-CHAMPAIGN