Ethernet Interface for Hardware Data Routing

Project Proposal

Team: John Alaimo Hendrik Dewald Satyam Shah

Group: 9

TA: Justine Fortier

Prepared for:

ECE 445 Department of Electrical Engineering University of Illinois at Urbana-Champaign

September 19th, 2012

TABLE OF CONTENTS

Existing Technology2
Benefits2
Features2
Design
Requirements and Verification
Tolerance Analysis
Cost
Schedule

INTRODUCTION

Our project hopes to address the issue of multiple and varied device control from a single controller. Using our routing blocks, a range of useful devices like servos, motors, sensors, and LEDs can be controlled and turned on/off from one computer. This ability could prove useful in many robotics applications, providing a modular and compact method for distributive control of many parts and sensors. The advantages of the hardware routers are its modularity, power-management support, and device adaptability.

Existing Technology

Currently, a number of devices are required to use data acquisition units, which are either internal cards in a PC or a USB device, in order to interface them to computers. Some devices include built in USB or Ethernet functionality.

Benefits

- Control multiple devices of varying types from one computer
- Access done through the familiar TCP/IP protocol
- Device power control reduces power consumption
- Universal computer support works with any Ethernet-capable computer

Features

- Analog and digital inputs
- Analog and digital outputs
- LED status indicator lights
- Fused power hub
- Interface with LabVIEW for verification of functionality

DESIGN

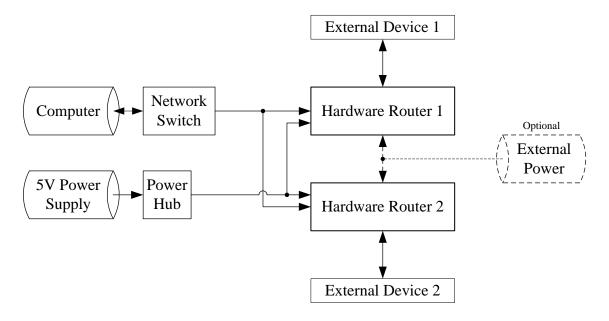


Figure 1: Network Overview

Computer: This represents any computer with Ethernet connectivity. The computer will generate commands, transmitted as TCP/IP packets sent to the router through Ethernet interface. The computer will process the data sent from the routers collected from the external devices.

Network Switch: A network switch connects multiple networked devices, transferring data between devices. It allows multiple hardware router devices to be connected to a single computer, each with their own MAC address, and thus assigned IP address.

5V Power Supply: This is a power source, either a 5V battery or wall plug, which supply power to the microcontroller through the Power Hub.

Power Hub: The power hub is the central location where the 5V logic power is distributed to the various routers, protecting the routers from over-current.

External Device: The external device is any device that does not already have a computer-ready interface, and is being connected to a computer. Examples include motor

controllers, sensors, lighting and indicators. These devices can be near the computer, or as part of a distributed system.

External Power: Optional power to be supplied to the external device, for devices requiring more power than can be sourced by the 5V logic supply, or for higher voltage requirements.

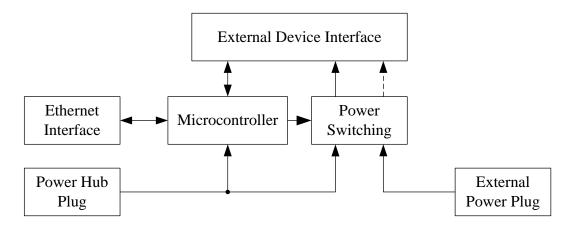


Figure 2: Hardware Router Internal Details

Ethernet Interface: The RJ-45 jack, galvanic isolation, TCP/IP stack implementation, and MAC address make up the Ethernet interface, connecting the microcontroller to the network.

Microcontroller: The microcontroller interprets the data from the Ethernet interface, as well as any data collected from the external device, and routes the data to the proper destination.

Power Switching: Solid-state switches that control the external power as well as the 5V logic power to the external device. The microcontroller sets these switches, disabling the external device initially until the device is initialized.

Power Plug: The power plugs are the physical jacks on each router to connect the various external power sources (from the external power and 5V logic power).

REQUIREMENTS AND VERIFICATION

Requirements	Verifications
A set instruction protocol controls the external	When the command is sent from the computer,
power source switch from the computer	the measured voltage should be observed to
	switch from 0 to the external source voltage or
	vice versa
Routed external power will observe the	The hardware router itself shall have a set,
limitations of the power switch	rated voltage maximum, but the switches shall
	be designed with a minimum safety factor of 25%
A/D sampling will be activated and automated	The input signal should be sampled at the rate
in response to a set instruction protocol for	a test instruction protocol dictates and should
sampling parameters	match a test input signal when the returned
	data is collected and plotted
A/D sampled data returns to the computer with	After sending a test instruction protocol, data
a set data packet protocol	should be returned to the computer and the
	plotted data should match the test input signal
Digital sampling will be activated and	The digital input signal should be sampled at
automated in response to a set instruction	the rate a test instruction protocol dictates and
protocol for sampling parameters	should match a test input signal when the
Digital input sampled data returns to the	returned data is collected and plotted After sending a test instruction protocol, data
computer with a set data packet protocol	should be returned to the computer and the
computer with a set data packet protocol	plotted data should match the test input signal
The Ethernet controller and the microprocessor	Both devices are SPI compatible, and a
will communicate using the SPI specification	software library exists for use with the Ethernet
will communicate using the STT specification	controller on the microprocessor
D/A converted signals will be generated	Generated signals of varying amplitudes and
according to parameters carried by a set	frequencies will be commanded, and
instruction protocol	subsequently measured by a scope
A digital signal will be generated according to	An oscilloscope connected to the digital out
parameters carried by a set instruction protocol	pins should show a signal that matches one
	described by a sent test instruction
The power on routine will turn on necessary	When power is applied, external devices do not
devices and then wait for instructions	begin to function until commanded
Each routing device will respond to ping	A ping of the individual devices should prove
	successful
The hardware router will use the TCP/IP	The network interface will implement a
protocol to communicate with the network	TCP/IP stack
A LabVIEW interface that shows which	Add and remove routers and view shown
routers are connected at all times	LabVIEW connections
LabVIEW GUI or scripts for instruction	Analog out/in and Digital out/in instruction
formation and transmission	protocols should be sent correctly so that
A covined data macanted in table and he	expected device implementation is observed
Acquired data presented in table, graphs, or	Test signals to Analog or Digital in should

scopes in LabVIEW during collection	provide appropriate graphs
Computer DHCP control assigns IP addresses	The routing devices should be visible and
according to MAC address	should be reachable by pinging their set IP
	addresses
Power hub supplies $5V \pm 0.1V$ to each router	For a varying electronic load, the power hub is
	able to supply 5V consistently without an
	excessive drop along the wire
The power hub will not provide an excessive	Each router output from the power hub will be
amount of current to the hardware routers	fused, and the current will be monitored along
	the line, at the hub and the router itself, and
	going into the microcontroller, by a current
	probe

TOLERANCE ANALYSIS

The hardware router will need to receive $5V \pm 0.1V$ in order for the circuits to function properly. Additionally, the regulated voltage to the microcontroller needs to be $3.3V \pm 0.3V$ in order for the microcontroller to function. The external power source switch should be able to handle inputs of up to 75 volts of any polarity, and its fuses should cut off higher inputs.

COST

Part	Price Quantity		SubTotal		
Microcontroller	\$	6.50	2	\$	13.00
External Power Interface	\$	0.50	2	\$	1.00
Network Switch	\$	15.00	1	\$	15.00
Power Plug	\$	3.00	5	\$	15.00
Enclosure	\$	10.00	3	\$	30.00
Ethernet Interface	\$	20.00	2	\$	40.00
Misc. Discrete Components	\$	0.20	30	\$	6.00
Shipping and handling		20%		\$	24.00
Total				\$	144.00

Table 1: Initial Parts Cost Estimate

Table 2: Initial Labor Cost Estimate

Worker	Hourly Rate		Hours/Week	Weeks	Salary	
John Alaimo	\$	35.00	20	12	\$ 8,400	
Hendrik Dewald	\$	35.00	20	12	\$ 8,400	
Satyam Shah	\$	35.00	20	12	\$ 8,400	
Subtotal					\$ 25,200	
Total2.5x overhead			\$ 63,000			

Estimated project grand total: \$63,144.00

SCHEDULE

Week	Description of Task	Group Member
	Design Review Sign-up, Basic Software Flow	Group
9/24/2012	Preliminary Hardware Layout, Preliminary Power Hub Design	John Alamo
9/24/2012	Set-up and Learn PIC MPLAB IDE	Hendrik Dewald
	Learn LabVIEW Usage	Satyam Shah
	Design Review	Group
10/1/2012	Detailed Hardware Layout	John Alamo
	Order Parts from Suppliers	Hendrik Dewald
	Develop Power-on Protocols	Satyam Shah
		Group
10/8/2012	PCB Schematic Design	John Alamo
10/8/2012	Create Skeleton code for PIC, Run Basic Simulation	Hendrik Dewald
	Develop Data Protocols	Satyam Shah
		Group
10/1 = 12012	Breadboard Verification of Layout	John Alamo
10/15/2012	Test Uploading to PIC, Run Simulation	Hendrik Dewald
	Run Protocols in Simulation	Satyam Shah
Individual Progress Report		Group
10/00/0010	PCB Schematic Update	John Alamo
10/22/2012	Verify Data Transmission with Network Analyzer	Hendrik Dewald
	Develop LabVIEW Interface	Satyam Shah
	General Troubleshooting	Group
10/29/2012	PCB Layout Design	John Alamo
10/29/2012	Test and Refine Protocols	Hendrik Dewald
	Test and Refine Protocols	Satyam Shah
11/5/2012	Mock Demos , Mock Presentation Sign-up,Test Protocols, Refine LabVIEW Interface	Group
	Mock-up Presentations, First Revision PCB Fabrication	Group
11/12/2012	Revise PCB Design for Additional Router(s)	John Alamo
11/12/2012	Test Routers using Different Devices	Hendrik Dewald
	Test Routers using Different Devices	Satyam Shah
11/19/2012	Final Revision PCB Fabrication	Group
11/26/2012	Demos and Presentation Sign-up, Fine-tune and Repair Testing Damages	Group
12/3/2012	Demos, Practice Presentation	Group
12/10/2012	Presentations, Final Paper, Lab Checkout, Lab Notebook	Group