Appendix A Requirement and Verification Table

Table A.1 shows the performance requirements and verifications procedures for each block of the project.

Performance Requirement	Verification	Verification status (Y or N)
User Interface		
The voltage at a particular position on the rotary switch should differ from its neighbors by 1V+/-20%	The switch will be rotated into each position and we will measure the output voltage with a Multimeter. These are the ranges of values for each position: Position 1 : 4.8 -5.2 volts Position 2 : 3.8 -4.2 volts Position 3 : 2.8 -3.2 volts Position 3 : 2.8 -3.2 volts Position 4 : 1.8 -2.2 volts Position 5 : 0.8 -1.2 volts Position 6 : 0.0 -0.2 volts	Y
Each specific button on the keypad needs to send a distinct voltage level to the Arduino. The voltage levels are TBD, since we need to build the circuit to determine what voltage each key outputs.	The keypad output will be connected to a Multimeter. The keys will be pressed one at a time and the voltage will be measured and recorded. The voltage levels for each key will be distinct.	Y
Push buttons must output 5V+/-20% when pressed, 0V+/-20% when released.	The output of the switch will be connected to a Multimeter and the button will be pressed then released. When pressed, the Multimeter will read between 5V+/-20%. When the button is released, the Multimeter will read 0V+/-20%.	Y
Rotary encoder will output Gray code	Connect the output of the rotary encoder to the	Y

Table A.1: System Requirements and Verifications

	oscilloscope. Rotate clockwise and then counterclockwise. The waveform will output Gray code which will change based on rotation direction. The waveforms will match the waveforms shown on the datasheet.	
LCD		
LCD display must refresh in less than 250ms and needs to properly display data	Connect the LCD to the Arduino and connect the output of the LCD to an oscilloscope. Set up the Arduino so that it prompts the LCD to cycle through characters. The oscilloscope will show voltage spikes when the characters change. Measure the time between voltage peaks to determine how quickly the LCD refreshed. This will be less than 250ms.	Y
LCD must constantly have 5V+/-10% for power	Power the LCD and measure the voltage at the power pin with a Multimeter. The voltage will be 5V+/-10%.	Y
Microcontroller		
Microcontroller needs to map keypad voltage presses to the corresponding key value	Write code on Arduino that maps voltage levels to specific number or character. The code will output serial data to the PC and display the values using Arduino software. Input the specific voltages directly to the Arduino input pin using the digital power supply. The values displayed on the PC will match the key pressed on the keypad.	Υ
Will map switch voltage to proper	Write Arduino code that	Y

switch position	interprets specific voltage level as switch positions. The code will output serial data to the PC and display the values using Arduino software. Connect the specific voltage levels directly to the Arduino input pin using a digital power supply. The values displayed on the PC will correspond to the position that the switch is in.	
Will determine which button is pressed and be able to determine which position it is in (e.g. OV for off and 5V+/-20% for on)	Write code on the Arduino that interprets if a button is pressed. The code will output serial data to the PC and display the values using Arduino software. Connect 5V and then GND directly to the Arduino input pin. The PC will display a 1 if the Arduino input is 5V and a 0 if the Arduino input is GND.	Ŷ
Direction of rotation for the rotary encoder will be determined by the Gray code input	Write Arduino code that interprets grey code. The code will output serial data to the PC and display the values using Arduino software. Connect the output of the rotary encoder directly to the Arduino input pin. Rotate the knob clockwise and then counter-clockwise. The PC will display "clockwise" for clockwise rotation and "counter-clockwise" for counter-clockwise rotation.	Y
Microcontroller will transmit data via USB to PC	Connect the Arduino to the USB interface and connect the USB interface to the PC. Write Arduino code that outputs serial data. The PC will show the same data.	Y

Microcontroller will transmit data to LCD	Connect the LCD to the Arduino. Write Arduino code that displays "Hello World". The LCD display will say "Hello World".	Y
Power supply		
Power supply will provide 12V+/-20%	Plug power supply into the wall. Connect the output of the power supply to a breadboard. Use a Multimeter to measure the output voltage. The Multimeter will read 12V+/- 20%.	Y
USB Interface		
USB will transfer data reliably without errors from the microcontroller to the PC	Write code on the Arduino that outputs a basic text file. Display the text file on the computer. The displayed file will be the same data the Arduino output	Y
PC		
The GUI will change values on the based on the values from the microcontroller	Write Arduino code that sets heart rate to 60. The Laerdal software will change the heart rate to 60.	Y

Appendix B User Interface Supplemental Materials

Key Pressed	Pins shorted
0	1,4
1	2, 3
2	1, 2
3	2, 5
4	3, 7
5	1, 7
6	5, 7
7	3, 6
8	1, 6
9	5, 6
#	4, 5
*	3, 4

Table B.1: Pin shorts for each key pressed

Figure B.1: Top view of user interface

Figure B.2: Left side view of user interface

Figure B.3 Left side view of user interface

Figure B.4: Switch layouts

Figure B.5: Arduino schematic

Appendix C Verification data

Figure C.1: Rotary switch verification

Key Pressed	Key Accuracy (out of 25 key presses)
0	15
1	24
2	24
3	24
4	23

5	23
6	23
7	21
8	21
9	20
#	12
*	10

Table C.2: Keypad verification data after averaging function

Key Pressed	Key Accuracy (out of 25 key presses)
0	25
1	25
2	25
3	25
4	25
5	25
6	25
7	25
8	25
9	25
#	25
*	24

Figure C.2: Button verification

Figure C.3: Rotary encoder verification

Figure C.5: Power supply verification

Figure C.6: Voltage regulator verification

Figure C.7: Microcontroller verification to the LCD

Appendix D PCB layout and schematics

Figure D.1: PCB Layout

Figure D.2: Actual PCB with all components soldered to it

Appendix E Arduino Code

```
1+
      The circuit:
       * LCD RS pin to digital pin 12
3
       * LCD Enable pin to digital pin 11
4
       * LCD D4 pin to digital pin 5
5
       * LCD D5 pin to digital pin 4
6
       * LCD D6 pin to digital pin 3
       * LCD D7 pin to digital pin 2
8
9
       * LCD R/W pin to ground
10
       * 10K resistor:
       * ends to +5V and ground
       * wiper to LCD VO pin (pin 3)
     L .,
13
14
15
      // include the library code:
16
      #include <LiquidCrystal.h>
      #define ENC_A 14
      #define ENC_B 15
18
19
      #define ENC_PORT PINC
20
21
22
      // initialize the library with the numbers of the interface pins
23
24
     LiquidCrystal lcd(12, 11, 4, 5, 6, 7);
25
      int keypressed = 0;
26
      int keyboardPin = 4;
                              // Analog input pin that the keypad is attached to
      int keyboardValue = 0; // value read from the keyboard
28
      int SixWayPin = 3;
29
      int SixWayPos = 0;
30
      int SixWayPin2 = 2; // not sure about the pin number DAVID !!!
      int SixWayPos2 = 0;
32
      int buttonPin = 9;
33
      int buttonState = 0;
34
      // added for second button serial output
35
      int buttonState2 = 0;
     int buttonPin2 = 10;
36
38
39
    void setup() {
40
        Serial.begin(115200);
41
       //Serial.begin(9600);
42
        Serial.println("Start");
        // set up the LCD's number of columns and rows:
43
44
        lcd.begin(16, 2);
45
        // Print a message to the LCD.
       // lcd.print("KEY ROT SW B");
lcd.print("HRtm Vital Val #");
46
47
48
        pinMode(ENC_A, INPUT);
49
        digitalWrite(ENC_A, HIGH);
pinMode(ENC_B, INPUT);
50
51
        digitalWrite(ENC_B, HIGH);
52
53
        pinMode(buttonPin , INPUT);
54
        pinMode (buttonPin2, INPUT);
55
56
57
58
    void loop() {
59
       //Button Pos
60
       // read the state of the pushbutton value:
61
        buttonState = digitalRead(buttonPin);
        buttonState2 = digitalRead(buttonPin2);
62
      // lcd.setCursor(15, 1);
63
      // lcd.print("0");
64
65
        // check if the pushbutton is pressed.
        // if it is, the buttonState is HIGH:
66
67
    if (buttonState == HIGH) {
         // turn LED on:
68
69
          lcd.setCursor(15, 1);
lcd.print(buttonState);
70
71
          // serial output for gui
72
73
         Serial.println("e");
        3
74
    else if (buttonState == LOW) {
75
76
        // lcd.setCursor(15, 1);
        // lcd.print(buttonState);
          // serial output for gui
78
          Serial.println("f");
79
        3
        // second button at input pin 10
80
81
        if (buttonState2 == HIGH ) {
82
         // lcd.setCursor(15, 1);
```

```
83
        // lcd.print(buttonState2);
84
         Serial.println("g");
       3
85
     else if (buttonState2 == LOW) {
86
87
         Serial.println("h");
88
      // lcd.setCursor(15, 1);
      // lcd.print(buttonState2);
89
       }
90
91
92
93
94
       //6-way switch (B)
95
       SixWayPos2 = analogRead(SixWayPin2);
    ______if((SixWayPos2 <171)){
96
        lcd.setCursor(5, 1);
97
98
        lcd.print(" ");
99
        lcd.setCursor(5, 1);
100
        lcd.print("HR ");
        Serial.println("b1");
       }
102
    else if (SixWayPos2 < 342 ) {
103
104
        lcd.setCursor(5, 1);
105
        lcd.print(" ");
106
        lcd.setCursor(5, 1);
        lcd.print("ABP ");
107
108
        Serial.println("b2");
109
       3
   else if (SixWayPos2 < 513) {
110
111
        lcd.setCursor(5, 1);
112
        lcd.print(" ");
        lcd.setCursor(5, 1);
113
        lcd.print("NBP");
114
115
        Serial.println("b3");
116
       }
    else if (SixWayPos2 < 684) {
117
118
        lcd.setCursor(5, 1);
        lcd.print(" ");
119
        lcd.setCursor(5, 1);
120
121
        lcd.print("Sp02");
122
        Serial.println("b4");
123 - }
```

```
124 else if (SixWayPos2 < 855) {
          lcd.setCursor(5, 1);
lcd.print(" ");
125
126
          lcd.print("
          lcd.setCursor(5, 1);
         ____print("AWRR");
Serial.println("b5");
}
128
129
130
131 🛱 else {
132
          lcd.setCursor(5, 1);
          lcd.print(" ");
lcd.setCursor(5, 1);
134
135
          lcd.print("EC02");
136
          Serial.println("b6");
137
138
         }
139
         //6-way switch (a)
         SixWayPos = analogRead(SixWayPin);
141
     if((SixWayPos <171)){
142
          lcd.setCursor(0, 1);
143
          lcd.print("
                           ");
          lcd.setCursor(0, 1);
144
145
          lcd.print("Snus");
          Serial.println("a1");
146
     else if (SixWayPos < 342 ) {
148
          lcd.setCursor(0, 1);
lcd.print(" ");
149
          lcd.print("
151
          lcd.setCursor(0, 1);
152
153
          lcd.print("Afib");
          Serial.println("a2");
154
     else if (SixWayPos < 513) {
         lcd.setCursor(0, 1);
lcd.print(" ");
156
          lcd.setCursor(0, 1);
lcd.print("SVT ");
158
160
          Serial.println("a3");
161
         }
162 else if (SixWayPos < 684) {
163 lcd.setCursor(0, 1);
164 lcd.print(" ");
```

165		<pre>lcd.setCursor(0, 1);</pre>
166		<pre>lcd.print("VT ");</pre>
167		Serial.println("a4");
168	-	}
169	þ	else if (SixWayPos < 855) {
170		<pre>lcd.setCursor(0, 1);</pre>
171		<pre>lcd.print(" ");</pre>
172		<pre>lcd.setCursor(0, 1);</pre>
173		<pre>lcd.print("VF ");</pre>
174		<pre>Serial.println("a5");</pre>
175	-	}
176	白	else {
177		<pre>lcd.setCursor(0, 1);</pre>
178		<pre>lcd.print(" ");</pre>
179		<pre>lcd.setCursor(0, 1);</pre>
180		<pre>lcd.print("Asys");</pre>
181		<pre>Serial.println("a6");</pre>
182	-	}
183		
184		//Keyboard
185		<pre>keyboardValue = analogRead(keyboardPin);//read the keyboard value (0 - 1023)</pre>
186		
187	白	if (keyboardValue > 25) {
188		<pre>readkeyboard(); //get the value of key being pressed "keypressed" i.e. 0-9</pre>
189	-	}
190		
191		//Rot
192		<pre>static uint8_t counter = 0; //this variable will be changed by encoder input</pre>
193		int8_t tmpdata;
194		
195		<pre>tmpdata = read_encoder();</pre>
196	P	if(tmpdata) {
197		<pre>Serial.print("r");</pre>
198		Serial.println(counter, DEC);
199		counter += tmpdata;
200		//LCD
201		<pre>// (note: line 1 is the second row, since counting begins with 0):</pre>
202		
203		<pre>lcd.setCursor(11, 1);</pre>
204		<pre>// print the number of seconds since reset:</pre>
205		lcd.print(" ");

```
206
        lcd.setCursor(11, 1);
207
         lcd.print(counter);
208
         //Serial.println("r"+counter);
209
210
211
212
213
      - 1
214 Fint8 t read encoder(){
215
216
         static int8_t enc_states[] = {0,-1,1,0,1,0,0,-1,-1,0,0,1,0,1,-1,0};
         static uint8_t old_AB = 0;
218
        1441
219
         old_AB <<= 2; //remember previous state</pre>
         old_AB |= ( ENC_PORT & 0x03 ); //add current state
         return ( enc_states[( old_AB & 0x0f )]);
221
      L,
      //read the keyboard routine
223
224
    void readkeyboard() {
         int long temp_val = 0;
226
         for(int i = 0;i<1000;i++) {</pre>
227
     ¢
228
           temp_val += analogRead(keyboardPin);
          1
229
230
         keyboardValue = temp_val/1000; // read the value (0-1023)
232
          // Change to integer values but we could make these values strings
233
          // that make more sense
234
          if (keyboardValue <25) {keypressed = 11;}//0</pre>
235
          if ((keyboardValue >25) && (keyboardValue < 67)) {keypressed = 12;}//1
          if ((keyboardValue >67) && (keyboardValue < 108)){keypressed = 13;}//2</pre>
236
          if ((keyboardValue >108) && (keyboardValue < 162)) {keypressed = 14;}//3
237
          if ((keyboardValue >162) && (keyboardValue < 253)) {keypressed = 15;}//4
          if ((keyboardValue >253) && (keyboardValue < 361)) {keypressed = 16;}//5
239
240
          if ((keyboardValue >361) && (keyboardValue < 479)){keypressed = 17;}//6
241
          if ((keyboardValue >479) && (keyboardValue < 619)){keypressed = 18;}//7
242
          if ((keyboardValue >619) && (keyboardValue < 700)){keypressed = 19;}//8
243
          if ((keyboardValue >700) && (keyboardValue < 800)){keypressed = 20;}//9
          if ((keyboardValue >800) && (keyboardValue < 865)) {keypressed = 22;}//*
244
          if ((keyboardValue >865) && (keyboardValue < 910)) {keypressed = 11;}//0
246
         if (keyboardValue >910) {keypressed = 21;}//#
          //NOTE: the values used above are all halfway between the value obtained
247
248
          //with each keypress in previous test sketch
249
          // Serial.println(keyboardValue);
250
      Ē
           while (keyboardValue > 25) {
251
             delay (100);
252
             kevboardValue = analogRead(kevboardPin); // read the value (0-1023)
253
           // Serial.println(keypressed);
254
           }//wait until key no longer being pressed before continuing
255
256
           Serial.println(keypressed);
257
          // lcd.clear();
258
               //LCD
259
          // (note: line 1 is the second row, since counting begins with 0):
260
          lcd.setCursor(15, 1);
261
          // print the number of seconds since reset:
262
      Ē
         if (keypressed == 22) {
263
            lcd.print("B");
264
265
      Ė
         else if (keypressed == 21) {
            lcd.print("E");
266
267
          }
268
      Ē
           else {
269
            lcd.print(kevpressed= 11);
270
          3
271
           delay(250);
                          // wait 1000 milliseconds before the next loop
272
273
         1
        //end of read the keyboard routine
274
275
276
277
        /* returns change in encoder state (-1,0,1) */
278
279
```

Appendix F GUI layout and Processing code

newestece445_backup	And and a second	
Ports PORT: COM5 COM Initialized = COM5	Heart Rhythm	Vitals
	4.00 SVT	2.00 AWRR
ENTERTEXTTOSEND		
SEND_A	1 Unpressed	253 Vitals Value
	2 Unpressed	
ĸ	445	Keypad

Figure E.1: GUI layout

Figure E.2: Processing code

45		size(700,400);
46		frameRate(30);
47		
48		controlP5 = new ControlP5(this); // initialize the GUI controls
49		
50		<pre>println(Serial.list()); // print the comm ports to the debug window for debugging purposes</pre>
51		
52		// make a listbox and populate it with the available comm ports
53		<pre>commListbox = controlP5.addListBox("myList",5,25,120,120); //addListBox(name,x,y,width,height)</pre>
54		commListbox.captionLabel().toUpperCase(false);
55		commListbox.captionLabel().set("Ports");
56	白	<pre>for(int i=0;i<serial.list().length;i++) pre="" {<=""></serial.list().length;i++)></pre>
57		<pre>commListbox.addItem("port: "+Serial.list()[i],i); // addItem(name,value)</pre>
58	-	}
59		
60		// text label for which comm port selected
61		<pre>txtlblWhichcom = controlP5.addTextlabel("txtlblWhichcom","No Port Selected", 122,20); // textlabel(name,text,x,y)</pre>
62		txtlblWhichcom.setFont(label);
63		//More Text labels
64		<pre>Switch1 = controlP5.addTextlabel("Switch1", "Heart Rhythm", 305,10); // textlabel(name,text,x,y)</pre>
65		Switch1.setFont(label);
66		<pre>Switch2 = controlP5.addTextlabel("Switch2", "Vitals", 530,10); // textlabel(name,text,x,y)</pre>
67		Switch2.setFont(label);
68		<pre>keyPadLbl = controlP5.addTextlabel("keyPadLbl", "Keypad", 600,350); // textlabel(name,text,x,y)</pre>
69		keyPadLbl.setFont(label);
70		<pre>rotEnclbl = controlP5.addTextlabel("rotEnclb1", "Rotary Encoder", 500,255); // textlabel(name,text,x,y)</pre>
71		rotEnclbl.setFont(label);
72		// when triggered, write the text over the serial line
73		<pre>controlP5.addTextfield("EnterTextToSend",5,170,200,20); // addTextfield(name,x,y,width,height)</pre>
74		
75		// when new info comes into the serial port, write it to this text area
76		<pre>commTextarea = controlP5.addTextarea(// addTextarea(name,text,x,y,width,height)</pre>
77		"labelltextarea",
78		"No data yet",
79		310,215,80,40);
80		commTextarea.setColorBackground(0xffff0000);
81		commTextarea.setFont(commTextFont);
82		
83		<pre>commTextarea2 = controlP5.addTextarea(// addTextarea(name,text,x,y,width,height)</pre>
84		"label1textarea2",
85		"No data yet",
86		310,270,80,40);
87		commTextarea2.setColorBackground(0xffff0000);
88		commTextarea2.setFont(commTextFont);

```
89
 90
         Vitals = controlP5.addTextarea( // addTextarea(name,text,x,y,width,height)
 91
         "label1textarea3",
         "No data yet...",
 92
 93
         310,135,80,40);
 94
         Vitals.setColorBackground(0xffff0000);
 95
         Vitals.setFont(commTextFont);
 96
         HRtm = controlP5.addTextarea( // addTextarea(name,text,x,y,width,height)
 97
 98
         "label1textarea4",
99
         "No data yet...",
100
         510,135,80,40);
101
         HRtm.setColorBackground(0xffff0000);
102
         HRtm.setFont(commTextFont);
103
104
         Rotenc = controlP5.addTextarea( // addTextarea(name,text,x,y,width,height)
105
         "label1textarea5",
106
         "No data yet...",
107
         510,215,80,40);
108
         Rotenc.setColorBackground(0xffff0000);
109
         Rotenc.setFont(commTextFont);
110
111
         //commTextarea2.setColorBackground(0); Black
112
         // a button
113
         controlP5.addButton("Send_A",1,5,210,80,19); // buton(name,value,x,y,width,height)
114
115
         // 6- way switch
116
         //create 6-switches
117
         myKnobA = controlP5.addKnob("")
118
                      .setRange(1,6)
119
                      .setValue(1)
120
                      .setPosition(300,30)
121
                      .setNumberOfTickMarks(5)
122
                      .setTickMarkLength(4)
123
                      .snapToTickMarks(true)
124
                      .setRadius(50)
125
                      .setDragDirection(Knob.HORIZONTAL)
126
127
                      2
128
         myKnobB = controlP5.addKnob(" ")
129
                      .setRange(1,6)
130
                      .setValue(1)
131
                      .setPosition(500,30)
132
                      .setNumberOfTickMarks(5)
```

```
133
                      .setTickMarkLength(4)
134
                       .snapToTickMarks(true)
135
                       .setRadius(50)
136
                       .setDragDirection (Knob.HORIZONTAL)
137
138
         myKeypad = controlP5.addSlider(" ")
139
                     .setPosition(400,355)
                     .setWidth(200)
140
                     .setRange (11,0)
141
142
                     .setValue(0)
                     .setNumberOfTickMarks(12)
143
                      .setSliderMode (Slider.FLEXIBLE)
144
145
                     ;
146
147
         // Keypad text box
148
         keypadText = controlP5.addTextfield( // addTextarea(name,text,x,y,width,height)
149
          "keypad text",
150
         280,335,100,50);
151
         keypadText.setColorBackground(0xffff0000);
152
          keypadText.setFont(p);
153
        //controlP5.addTextfield("EnterTextToSend", 5, 170, 200, 20);
154
155
      L,
156
157
158
       // infinite loop
      _____uraw() {
    background(128);
}
159 - void draw() {
160
161
162
163
       // print the name of the control being triggered (for debugging) and see if it was a Listbox event
     public void controlEvent(ControlEvent theEvent) {
164
165
         // ListBox is if type ControlGroup,
     if (theEvent.isGroup()) {
166
167
           // an event from a group
168
           if (theEvent.name()="myList") {
             InitSerial(theEvent.group().value()); // initialize the serial port selected
169
170
             //println("got myList"+" value = "+theEvent.group().value()); // for debugging
171
           3
         1
172
173 🖨 else {
174
           //println(theEvent.controller().name()); // for debugging
175
         }
      L,
176
```

```
177
178
     // run this when there is an enter in the textfield
179 _public void EnterTextToSend(String theText) {
       myPorts[0].write(theText+"\n"); // write the text in the field
180
181
        println("sent "+theText); // print it to the debug screen as well
     L,
182
183
184
       // run this when buttonA is triggered, send an a
185 _public void Send A(int theValue) {
186
       myPorts[0].write("a\n"); // write an a
187
       println("sent a"); // print it to the debug screen as well
188
189
190
       // initialize the serial port selected in the listBox
     Proid InitSerial(float portValue) {
191
192
        println("initializing serial " + int(portValue) + " in serial.list()"); // for debugging
193
194
        String portPos = Serial.list() [int(portValue)]; // grab the name of the serial port
        txtlblWhichcom.setValue("COM Initialized = " + portPos);
195
196
         myPorts[0] = new Serial(this, portPos, 115200); // initialize the port
197
198
         // read bytes into a buffer until you get a linefeed (ASCII 10):
199
       myPorts[0].bufferUntil('\n');
       println("done init serial");
200
201
202
203
       // serial event, check which port generated the event
204
       // just in case there are more than 1 ports open
205
     -void serialEvent(Serial thisPort) {
206
        // variable to hold the number of the port:
207
         int portNumber = -1;
208
209
        // iterate over the list of ports opened, and match the
210
       // one that generated this event:
     for (int p = 0; p < myPorts.length; p++) {</pre>
211
          if (thisPort == myPorts[p]) {
212
     Ē
213
           portNumber = p;
214
           }
215
        }
216
217
         // read the serial buffer until a newline appears
218
        String myString = thisPort.readStringUntil('\n');
219
       myString = trim(myString); // ditch the newline
220 //println("got: " + myString); // print to debug window
```

```
221
     if (myString.equals("e") || myString.equals("f")){
222
      Ē
          if(myString.equals("e")){
223
             commTextarea.setText("Next State");
224
             commTextarea.setColorBackground(0);
225
           3
     226
          else{
227
            commTextarea.setText("1 Unpressed");
228
             commTextarea.setColorBackground(0);
229
           }
230
         3
231
     if (myString.equals("g") || myString.equals("h")){
    if(myString.equals("g")){
232
233
          if(myString.equals("g")){
234
             commTextarea2.setText("Waiting Rhythm");
235
            commTextarea2.setColorBackground(0);
236
          - }
     Ē
         else{
237
            commTextarea2.setText("2 Unpressed");
238
239
            commTextarea2.setColorBackground(0);
240
           }
241
242
         3
243
         char test1 = myString.charAt(0);
244
        String test = String.valueOf(test1);
     println(test);
    if (test.equals("a") || test.equals("b")){
245
246
247
         // for changing switch position (switch A)
248
         // If we can use string manipulation we can make this shorter
249
         int len = myString.length();
250
         int i:
251
         String charstring = myString.substring(1);
252
         Integer temp2;
253
         charstring = trim(charstring);
254
         println(charstring);
255
         temp2 = Integer.valueOf(charstring);
256
     if (test.equals("a")){
257
258
          println(myString);
259
           temp2 = abs(temp2 - 6) + 1;
260
           myKnobA.setValue(temp2);
261
     Ē
           switch(temp2) {
                            Vitals.setText("Snus"); // put it in the text area
262
            case 6 :
263
                           Vitals.setColorBackground(0);
264
                           break;
```