

Solar Drone
ECE445 Final Report

Team 3
Jinming Zhang
Jie Wang
Yingkan Ni

TA: Ryan May
Prof. A. C. Singer
December 11, 2012

2

Table of Contents

I. INTRODUCTION .. 3
A. PROBLEM DESCRIPTION ... 3
B. OBJECTIVES .. 3
C. SYSTEM BLOCK DIAGRAM .. 4

II. DESIGN .. 4
A. POWER MANAGEMENT SYSTEM ... 4

1. Circuit Diagram ... 4
2. Components Selection ... 5
3. Circuit Schematic ... 6
4. Control Algorithm .. 7

B. ELECTRICAL COMPONENTS .. 8
1. Motor .. 8
2. Electronic Speed Controller (ESC) ... 8
3. Battery .. 9

C. FLIGHT CONTROLLER AND INTERFACE .. 9
1. Overview ... 9
2. Motion Update Loop .. 10
3. Communication With Ground Station .. 11

III. REQUIREMENTS AND VERIFICATIONS ... 11
A. POWER MANAGEMENT SYSTEM ... 11

1. Requirements ... 11
2. Test Cases and Procedures ... 12
3. Results .. 12
4. Discussion ... 12

B. ELECTRICAL COMPONENTS .. 13
1. Requirements ... 13
2. Test Procedures .. 13
3. Results .. 14
4. Discussion ... 16

C. FLIGHT CONTROLLER AND INTERFACE .. 16
1. Test Procedures and Results .. 16
2. Discussion ... 17

IV. COSTS .. 17
A. PARTS .. 17
B. LABOR .. 18

V. CONCLUSION .. 18
A. ACCOMPLISHMENT ... 18
B. DIFFICULTIES AND UNCERTAINTIES ... 19
C. ETHICAL CONSIDERATIONS .. 19
D. FUTURE WORK .. 20

VI. REFERENCES .. 20

VII. APPENDIX ... 21

3

I. Introduction

A. Problem Description

Unmanned Aerial Vehicle (UAV), or commonly known as drone, is a type of aircraft

without a human pilot on board, as the name suggested, but controlled

autonomously by computers and/or taking commands from remote stations. The

UAVs are perfect candidates for tasks that are tedious or dangerous for human, for

example, patrolling along boarder lines, wild fire control, aerial surveillance and etc.

The applications of UAV, as described above, generally require long flight time and

reliable power supply. However, current UAV designs utilizing traditional battery or

fuel cells usually struggles to meet such requirement.

B. Objectives

This project aims to provide an innovative solution to this problem by introducing

the current popular photovoltaic system into the UAV power system design. It

focuses on the electrical system design and the product will be a platform for future

development on solar powered UAVs. The design is to be modular for easy module

upgrade and replacement.

The UAV has a vast variety of configurations. The type of UAV chosen for this

project is quadrotor helicopter, or called quadcopter, for its benefit as being easy to

configure and having space for solar panel placement.

A prototype software flight controller will also be designed to be the interface

between human and the electrical system.

4

C. System Block Diagram

Figure 1 Top Level System Block Diagram

II. Design

A. Power Management System

1. Circuit Diagram

Since the input voltage from the solar module is between 6V to 11V and the required

output voltage is 12V with variations less than 8%, a boost converter is proposed. For

a boost converter, the relationship between the input and output voltage is as follows:

Vout

Vin

= 1
1− D

 [1]

where D is the duty ratio of gate control signal to the MOSFET switch.

5

Circuit diagram is shown in Figure 2 below.

Figure 2 Power Management System Circuit Diagram

2. Components Selection

To ensure the proposed converter work in continuous conduction mode under all

conditions, the inductance needs to be larger than the maximum value of critical

inductance.

It can be determined as shown below:

Lcrit =

D ⋅Vin

fsw ⋅ Iripple

 [2]

Switching frequency is about 50kHz, and ripple current is set to 0.3A. Lcritical is

maximized to be 120µH. In the circuit, 330uH inductor was used.

Since the peak-to-peak output voltage ripple should be 0.5V. Capacitance can be

calculated as:

C ≥

D ⋅ Iripple

Δv ⋅ fsw

 [3]

6

The capacitor needs to be at least 1.5 µF to keep the voltage ripple within 0.5V. In

this converter, the capacitor is chosen to be 470 µF to filter out additional high

frequency noise.

As to the other components, the voltage and current requirements for them are 12 V

and 20A.

Below is a table of other components used in the circuit and their ratings:

Table	
 1.	
 MOSFET	
 and	
 Diode	
 Rating	

Components	
 Model	
 Voltage	
 Rating	
 (V)	
 Current	
 Rating	
 (A)	

Diode	
 B40250TG	
 240	
 40	

MOSFET	
 IRFPS3810	
 100	
 170	

Apparently, components have ratings higher than required.

However, a basic boost converter itself cannot be used to function as a MPPT.

Voltage sensors, current sensor, MOSFET driver and microcontroller should be

added to the circuit. Sensors are used to sense voltage and current so that the

microcontroller can calculate the power based on the values from the sensors.

Voltage divider circuit was used to function as a voltage sensor since the Arduino can

only take up to 5V as input signal. Current sensor was built by using a current sensor

chip.

3. Circuit Schematic

A fully functional MPPT circuit built in the project is shown in Figure 3, where the

top yellow box shows input voltage sensor and red box shows the input current

sensor.

7

Figure 3 Power Management System Circuit Schematic

4. Control Algorithm

Since the output voltage is fixed by the battery, according to equation 1, input

voltage can be swept by changing duty ratio which can be done by using the

Arduino. [1] Based on the readings from the input sensors, powers input from solar

panel can be calculated at different input voltages. The maximum power then can be

found by doing the comparison between powers at different input voltages. I-V curve

and P-V curve of a solar module are shown in Figure 4.

Figure 4 I-V and P-V curve of solar modules.

Battery voltage sensor

Input voltage sensor

Input current sensor

Solar
input To

Battery

8

From the figure, it can be seen that the algorism of the MPPT looks like climbing a

hill. According to equation 1, if the input voltage is low, it will keep increasing by

decreasing the duty ratio until the power hits its maximum value.

Sample codes are shown below:

If (old_power < power) {
 duty_ratio -= 1;
}
else duty_ratio += 1;

B. Electrical Components

1. Motor

A lightweight yet powerful DC motor is desired for this application. The motor

needs to have low KV rating, thus higher torque capability, for heavy payload

carrying. The specific motor chosen is Turnigy Aerodrive SK3 1185kv Brushless

Outrunner Motor [2]. And the detailed specifications are tabulated in Table 2.

Table 2 Specifications for Turnigy Aerodrive SK3 1185kv Brushless DC Motor
Name Value

RPM/V 1185kv
Internal resistance 0.024Ohm

Max Voltage 15V
Max Current 49A
Max Power 730W

Shaft Diameter 5.0mm
Weight 141g

2. Electronic Speed Controller (ESC)

The electronic speed controller functions as the motor drive and the speed is set by

50Hz 1ms to 2ms square wave signal, which could be obtained from Arduino. The

ESC for this project is required to carry 15A, including ripple current, without

overheating. The specific ESC chosen is Turnigy dlux 40A SBEC Brushless Speed

9

Controller. [3] This model has large heat sink for heat dissipation, high current rating

and low battery protection function. The specifications for this ESC are tabulated in

Table 3 below.

Table 3 Specifications for Turnigy dlux 40A SBEC Brushless Speed Controller
Name Value

Max Cont. Current 1185kv
Max Burst Current 0.024Ohm

Max Voltage 24V
Size 45.5 x 33 x 23mm

Weight 54g

3. Battery

The battery is required to have high current capability and large capacity. The

specific battery chosen for this project is Turnigy nano-tech 5000mah 65~130C Lipo

Battery. [4] The battery contains three LiPo in series, each having 3.7V. And the

battery can output maximum current of 325A.

C. Flight Controller and Interface

1. Overview

This prototype flight controller is built on iOS platform based on Objective-C

language and is object-oriented. Four main objects are constructed till the date this

report is written. They are Central Intelligent Unit, Motion Assistant,

Communication Assistant and Arduino Assistant, as shown in Figure 5.

At the startup of the application, Central Intelligent Unit will be automatically

allocated and initialized. Then it will allocate and initialize all the other three objects

and connect them accordingly. All the objects operate independently while

occasionally communicating with each other if necessary.

10

Figure 5 Flight Controller Block Diagram with Interface and Ground Station

2. Motion Update Loop

The information flow from Motion Assistant to Flight Controller Interface through

Arduino Assistant creates the Motion Update Loop. This process is characterized by

the flow chart depicted in Figure 6.

Figure 6 Motion Update Flow Chart

The feedback loop consists of one PI controller for attitude and one PID controller

for rotation rate. [5] This feedback loop is experimental and is not part of this project.

After the stable control inputs are generated, they will be mixed into four throttle

values for four motors according to equation 4, assuming X-mode configuration.

Obtain Device
Motion Data
(Attitude and

Rotation Rate)

Generate Stable
Control Input

Through
Feedback Loop

Mix Control
Inputs into

Throttle Values
for Four Motors

Write to Motors
Through Serial

Cable

11

Motorfront−left = constrain(throttlecontrol + sin(45°) pitchstable + sin(45°)rollstable − yawstable ,throttlemax ,throttlemin)

Motorfront−right = constrain(throttlecontrol + sin(45°) pitchstable − sin(45°)rollstable + yawstable ,throttlemax ,throttlemin)

Motorback−left = constrain(throttlecontrol − sin(45°) pitchstable + sin(45°)rollstable + yawstable ,throttlemax ,throttlemin)

Motorback−right = constrain(throttlecontrol − sin(45°) pitchstable − sin(45°)rollstable − yawstable ,throttlemax ,throttlemin)

 [4]

Finally, the motor throttle values will be packed using the predefined protocol, as

shown in Table 4, and sent to Arduino.

Table 4 Protocol for Transmitting Motor Throttle Packets

3. Communication With Ground Station

The communication with ground station is based on iOS GameKit framework and

utilizes Bluetooth for transmitting packets. This function is easily achieved through

implementing encoding and decoding protocols required by GameKit framework.

For detailed explanation on GameKit framework, refer to reference [6].

III. Requirements and Verifications

A. Power Management System

1. Requirements

(1) The system bus voltage should be constant at 12V, with variations less than ±5%.

(2) It should enable charging to the battery when there is power surplus in the system

and stop charging when the battery is full.

(3) PV modules output maximum power possible at any time.

12

2. Test Cases and Procedures

20W, which is under the irradiance of 1000W/m2, PV module was connected to the

MPPT circuit input connectors. Output connectors of the MPPT circuit were

connected to a constant current of 2A electronic load. Additionally, a DC power

supply with 12 V simulating the battery was connected to the electronic load. A

1200W lamp was used to simulate sunlight. The PV module, which was borrowed

from power lab, tested on was labeled to have a maximum power voltage of 9.5V

3. Results

The data recorded by Arduino are tabulated in Table 5 and shown below

Table 5 Maximum Power Point Tracking Test Results

4. Discussion

As it can be seen from the table above, power output from the solar module kept

increasing as duty ratio deceased until it hit 7.5W. Then the duty ratio stabilized

around 20%. This confirmed the fact that our circuit was able to find the maximum

power. Furthermore, the input voltage stabilized at 9.8V which is very close to the

labeled value, which is 9.5V. This is also an evidence to prove that our MPPT circuit

was able to find the maximum power of the solar module.

Time (s) D (%) Vpv (V) Ipv (A) Pout (W) Vout (V)

0 100 0.29 0 0 11.88
5 96 5.19 0.53 2.75 11.84
10 90 5.34 1 5.34 11.84
15 84 5.36 1.02 5.47 11.88
20 69 5.54 1.02 5.65 11.88
25 47 6.94 1 6.94 11.91
30 32 8.47 0.87 7.37 11.95
35 20 9.76 0.77 7.52 11.95
40 19 9.89 0.75 7.42 11.91
45 20 9.76 0.77 7.52 12.06

13

The reason for not getting rated power at 20W may come from the non-ideal light

source. The reason may be the fact that the lamp was consuming 1.2 kW of input

power but was producing much less power in the form of visible light than that since

an incandescent light bulb is not very efficient. Thus, it would not be surprising to

find that the power output was much lower.

B. Electrical Components

1. Requirements

(1) The battery should be able to provide 600W power output when the PV module is

completely offline.

(2) Four motors when paired with 15inches propeller with 4inches pitch should be

able to provide more than 2kg of thrust with less than 600W of power consumption.

(3) Each ESC should be able to handle 15A of continuous current without failing

when the power system is operating at max power condition (600W).

2. Test Procedures

Step 1: Install each motor on testing bracket, which is placed on weigh scales

respectively.

Step 2: Setup the ESC according to user manual so that the propeller would generate

a force downward, pushing the weight scale.

Step 3: Load Servo testing program onto Arduino Mega, which allows user to control

the throttle output via computer.

14

Step 4: Connect the battery to power distribution board through a watt meter, which

then connects to the four ESCs through watt meters measuring individual current

flowing in each channel.

Step 5: Connect JR connectors on ESCs to pin2, pin5, pin12 and pin13 on Arduino

board.

Step 6: Record readings from weigh scale and wattmeter.

3. Results

Figure 7 Current vs Throttle

Figure 7 shows the current flowing into the ESC at 10% to 60% throttle. 4 motors

behave almost the same with minor variations. Maximum current motor draws at

60% throttle is 11.7A

0

2

4

6

8

10

12

5% 15% 25% 35% 45% 55% 65%

C
ur

re
nt

 (
A

)

Throttle (%)

Motor 1

Motor 2

Motor 3

Motor 4

15

Figure 8 Thrust vs Throttle

This figure shows the thrust each motor can generate from 10% to 60% throttle. 4

motors behave almost the same. Thrust each motor can generate at 60% throttle is

approximately 1kg, which is equal to 10N.

Figure 9 Power from battery vs power consume by motor

This Figure shows power coming out from battery collected from reading of

wattmeter and power consumed by four motors using P=VI.

0	

0.1	

0.2	

0.3	

0.4	

0.5	

0.6	

0.7	

0.8	

0.9	

1	

5%	
 15%	
 25%	
 35%	
 45%	
 55%	
 65%	

Th
ru
st
	
 (K

g)
	

Thro?le	
 (%)	

Motor	
 1	

Motor	
 2	

Motor	
 3	

Motor	
 4	

0	

100	

200	

300	

400	

500	

600	

5%	
 15%	
 25%	
 35%	
 45%	
 55%	
 65%	

Po
w
er
	
 (W

)	

Thro?le	
 (%)	

Pin	

Pout	

16

4. Discussion

The ESC has a continuous current rating at 40A so that 12A of current is safe for the

ESC to handle. The quadcopter has an approximate weight of 2kg, so that 1 kg thrust

at 60% throttle per motor is capable of lifting up the quadcopter. The efficiency of

power flowing in and power consumed is approximately 90% when throttle is at

60%. With these verifications, ESC, motor and battery are able to provide enough

thrust and the quadcopter can hover for 15 minutes only with battery power supply.

C. Flight Controller and Interface

1. Test Procedures and Results

a. Measure Loop Time on iOS Side

Step 1: Connect iPhone 4 to a computer running Mac OSX 10.8.0 or above, with

Xcode 4.5.1 or above.

Step 2: In define.h, add #define mode profiling. Compile and run SolarDrone project

on the connected iPhone 4

Step 3: The loop time will be displayed on iPhone 4 and time is averaged to be 1.1ms

b. Measure Loop Time from iOS to Arduino

The time it takes to transfer data from iOS to Arduino is hard to measure due to

large lag time for acknowledgement packet transferred from Arduino back to iOS.

But this lag could be negligible if acknowledging every 100 packets transferred.

Step 1: Add #define mode profiling to Arduino Program. Compile and run on

Arduino Mega 2560.

17

Step 2: Similar to part a above, compile and run SolarDrone project on iPhone 4, all

the acknowledgement packet sent from Arduino will be logged in log console with

accurate time stamp.

Step 3: Take neighboring two logs, calculate the time difference and divided by 100,

the result will be transfer time plus 10ms loop interval. And the final result is

averaged to be 0.3ms.

2. Discussion

The results from both part a and part b add up to 1.4 ms, which is far less than 10ms

individual loop time. This guarantees that the loop will be completed on time before

the next invocation. This proves the iPhone 4 is capable to stabilize the quadcopter

and be the flight controller.

IV. Costs

A. Parts

Item	
 Quantity	
 Unit	
 Price	
 (US$)	
 	
 Total	
 Price(US$)	

Turnigy	
 Talon	
 Carbon	
 Fiber	
 Quadcopter	
 Frame	
 1	
 28.78	
 28.78	

Brushless	
 Speed	
 Controller	
 Programming	
 Card	
 	
 1	
 3.32	
 3.32	

Slow	
 Fly	
 Electric	
 Prop	
 12x4.5R	
 SF	
 (4	
 pc	
 Right	
 Hand	
 Rotation)	
 1	
 4.26	
 4.26	

Hobby	
 King	
 Quadcopter	
 Power	
 Distribution	
 Board	
 1	
 3.99	
 3.99	

Male	
 XT60	
 connectors	
 (5pcs/bag)	
 GENUINE	
 1	
 2.44	
 2.44	

Female	
 XT60	
 connectors	
 (5pcs/bag)	
 GENUINE	
 1	
 2.35	
 2.35	

Turnigy	
 nano-­‐tech	
 5000mah	
 65~130C	
 Lipo	
 Battery	
 1	
 33.7	
 33.7	

Adruino	
 MEGA	
 2560	
 Board	
 1	
 49.99	
 49.99	

Arduino	
 UNO	
 	
 2	
 21	
 42	

19%	
 4.5w	
 6"	
 156mm*156mm	
 Mono	
 solar	
 cell	
 45	
 3.79	
 170.55	

Propeller	
 4	
 24.62	
 98.48	

iPhone	
 4	
 1	
 499	
 499	

AttoPilot	
 Voltage	
 and	
 Current	
 Sense	
 Breakout	
 -­‐	
 90A	
 	
 1	
 19.95	
 19.95	

TMP36	
 -­‐	
 Temperature	
 Sensor	
 10	
 1.35	
 13.5	

18

Ultrasonic	
 Module	
 HC-­‐SR04	
 Distance	
 Sensor	
 For	
 Arduino	
 1	
 6.8	
 6.8	

MBRB4030-­‐D	
 4	
 2.94	
 11.76	

Turnigy	
 Aerodrive	
 SK3	
 -­‐	
 3542-­‐1185kv	
 4	
 31.27	
 125.08	

Turnigy	
 dlux	
 40A	
 SBEC	
 Brushless	
 Speed	
 Controller	
 4	
 20.29	
 81.16	

Capacitor:	
 470	
 uH	
 	
 2	
 0.62	
 1.24	

Resistor:	
 4.1kΩ	
 1	
 0.07	
 0.07	

Resistor:1.5kΩ	
 1	
 0.07	
 0.07	

Capacitor:	
 0.1uH	
 	
 4	
 0.83	
 3.32	

Connector:	
 WM7853-­‐ND	
 2	
 2	
 4	

Inductor:	
 330uH	
 2100LL-­‐331-­‐H-­‐RC	
 1	
 2.63	
 2.63	

Resistor:	
 5mΩ	
 12FR005E-­‐ND	
 3	
 5.19	
 15.57	

Resistor:	
 10kΩ	
 10KQBK-­‐ND	
 2	
 0.14	
 0.28	

Heat	
 Sink	
 HS106-­‐ND	
 3	
 1.35	
 4.05	

MOSFET:	
 IRFPS3810	
 1	
 11.94	
 11.94	

DIODE:	
 B40250TG	
 1	
 2.02	
 2.02	

MOSFET	
 Driver:	
 MIC	
 4420CT	
 1	
 2.94	
 2.94	

Current	
 Sensor:	
 MAX4173H	
 1	
 2.81	
 2.81	

Total	
 Cost	
 	
 	
 	
 	
 1248.05	

B. Labor

Name Salary($/hr) Hours Total Total * 2.5

Jie Wang 40 180 7200 18,000

Jinming Zhang 40 180 7200 18,000

Yingkan Ni 40 180 7200 18,000

Total $54,000
	
 	
 	

Labor (US$) Parts(US$) Grand Total(US$)

	

54,000 1248.05 55,248.05

	

V. Conclusion

A. Accomplishment

A working power management system is designed, fabricated and tested in this

project. Such power management system is able to prolong the flight time of

quadcopter, as opposed to that with only battery on board. The electrical system is

19

also designed and assembled for functionality testing. Besides, a prototype software

flight controller is designed for future development.

B. Difficulties and Uncertainties

(1) Mounting solar panels onto the quadcopter is hard to achieve since solar panels

are fragile and vulnerable, it is easy to cause damage to the solar panels.

(2) Currently, the best solar cells available in the market possess an efficiency of

approximately 20%, which is only able to prolong the flight time.

(3) The PID system embedded in the quadcopter is hard to tune due to lack of

modeling information for the .

C. Ethical Considerations

We abide to the IEEE code of Ethics in designing and testing the system as follows:

1. to accept responsibility in making decisions consistent with the safety, health,

and welfare of the public, and to disclose promptly factors that might endanger the

public or the environment;

3. to be honest and realistic in stating claims or estimates based on available

data.

7. to seek, accept, and offer honest criticism of technical work, to acknowledge

and correct errors, and to credit properly the contributions of others

9. to avoid injuring others, their property, reputation, or employment by false or

malicious action.

Since each motor is able to spin at 11850 rpm at full throttle, it turns out to be very

dangerous incase it lost control. So we start with using three motors to test the self-

20

balancing system and hangs the quadcopter to a rod to make sure it would not fly all

around and cause damage.

D. Future Work

We have achieved most of goals we set at the beginning of the semester. There are

still some issues regarding stability of the quadcopter. We need to set up a model for

this system to model the behavior of in-flight characteristics of the quadcopter so that

we will be able to find the right pole locations for the PID system.

Since we used iOS as our developing language, we are able to build a platform for

other developers to join us, who can contribute more features.

VI. References

[1] Buckley, Bryan. “mppt: a maximum power point tracking photovoltaic system.”

<http://bama.ua.edu/~bwbuckley/projects/mppt.html>

[2] Hobbyking “Turnigy Aerodrive SK3 - 3542-1185kv Brushless Outrunner Motor”

<http://www.hobbyking.com/hobbyking/store/uh_viewItem.asp?idProduct=30851 >

[3] Hobbyking “Turnigy dlux 40A SBEC Brushless Speed Controller”

<http://www.hobbyking.com/hobbyking/store/uh_viewItem.asp?idProduct=18922>

[4] Hobbyking “Turnigy nano-tech 5000mah 3S 65~130C Lipo Pack”

<http://www.hobbyking.com/hobbyking/store/uh_viewItem.asp?idProduct=19153>

[5] ArduCopter <http://code.google.com/p/arducopter/>

[6] Apple Documentations for GameKit
<http://developer.apple.com/library/ios/#documentation/GameKit/Reference/GameKit_Collectio

n/_index.html >

21

VII. Appendix

Servo Testing Program
void setup(){
 Serial.begin(57600);

 pinMode(2, OUTPUT);
 pinMode(5, OUTPUT);
 pinMode(11, OUTPUT);
 pinMode(12, OUTPUT);

 initPWMs();
 i = 0;
 //Serial2.flush();
 Serial.println("..Type \"v\" and number between
2000 to 4000, e.g. v2500");

 delay(500);
 //sensor

}

void loop (){
 //sensor
// float temprature0 = (analogRead(sensorPin) *5
/1024.0-0.5)*100.0;
// if(temprature!=temprature0){
// Serial.println(temprature0);
// temprature=temprature0;
// }

 if (Serial.available() >0) {

 buffer[i++] = Serial.read();
 if (buffer[0] != 'v'){
 i = 0;
 }
 if (i>4){
 char cmd[4];
 cmd[0] = buffer[1];
 cmd[1] = buffer[2];
 cmd[2] = buffer[3];
 cmd[3] = buffer[4];
 int value = atoi(cmd);
 OCR1A = value;
 OCR1B = value;
 OCR3A = value;
 OCR3B = value;
 Serial.println(String(value));
 i = 0;

 }
 }
}

void initPWMs(){
 TCCR1A
=((1<<COM1A1)|(1<<COM1B1)|(1<<WGM11)
); //Please read page 131 of DataSheet, we are

changing the registers settings of
WGM11,COM1B1,COM1A1 to 1 thats all...
 TCCR1B =
(1<<WGM13)|(1<<WGM12)|(1<<CS11);
//Prescaler set to 8, that give us a resolution of
0.5us, read page 134 of data sheet
 OCR1A = 0x0000; // Init ODR registers to nil
output signal
 OCR1B = 0x0000;
 ICR1 = 40000; //50hz freq...Datasheet says
(system_freq/prescaler)/target frequency. So
(16000000hz/8)/50hz=40000
 TCCR3A
=((1<<COM1A1)|(1<<COM1B1)|(1<<WGM11)
);
 TCCR3B =
(1<<WGM13)|(1<<WGM12)|(1<<CS11);
 OCR3A = 0x0000;
 OCR3B = 0x0000;
 ICR3 = 40000;
}

Flight Controller Interface
#define Serial0 Serial
#define isCommand(onebyte) (0x80&onebyte==0)
? false:true

int byteCount = 0;
char rxBuffer[128];
int rxIndex = 0;
uint32_t motor[4];

void setup(){
 Serial2.begin(57600);
 Serial1.begin(9600);
 Serial0.begin(115200);
 pinMode(2, OUTPUT);
 pinMode(5, OUTPUT);
 pinMode(11, OUTPUT);
 pinMode(12, OUTPUT);

 initPWMs();
 //Serial2.flush();
 Serial0.println("Initialization Done.");

 delay(500);

}

void loop (){
 if (Serial1.available() >0){
 Serial1.flush();
 Serial2.write("a");
 }
 if (Serial2.available() >0) {
 uint8_t firstByte = Serial2.peek();
 if(0x80&firstByte){

22

 uint8_t cmd = firstByte & 0x7;
 switch(cmd){
 case 0:
 break;

 case 1:
 if (Serial2.available() >=6) {
 uint8_t packet[6];
 Serial2.readBytes((char*)packet,6);
 //sanity check?
 motor[0] = ((uint32_t)((packet[0]&0x60)<<2 |
packet[2]))*125/32+2000;//*2000/512
 motor[1] = ((uint32_t)((packet[0]&0x18)<<4 |
packet[3]))*125/32+2000;//might use look up table
to trade memory for speed (2kb)
 motor[2] = ((uint32_t)((packet[1]&0x60)<<2 |
packet[4]))*125/32+2000;
 motor[3] = ((uint32_t)((packet[1]&0x18)<<4 |
packet[5]))*125/32+2000;
 OCR1A = motor[0];
 OCR1B = motor[1];
 OCR3A = motor[2];
 OCR3B = motor[3];
 //Serial0.println("CMD
1:"+String(motor[0])+" "+String(motor[1])+"
"+String(motor[2])+" "+String(motor[3]));
 byteCount += 6;
 }
 break;
}
// if(byteCount >= 1000){
// byteCount = 0;
// Serial2.write(18);
// }
 }
 else{
 //byte lost somewhere?
 //Serial0.println("---Detected Lost Byte---");
 Serial2.read();
 }
 }
 if(Serial2.available()>=128){
 //Serial0.println("---Challenge---");
 }
}

void initPWMs(){
 TCCR1A
=((1<<COM1A1)|(1<<COM1B1)|(1<<WGM11)
); //Please read page 131 of DataSheet, we are
changing the registers settings of
WGM11,COM1B1,COM1A1 to 1 thats all...
 TCCR1B =
(1<<WGM13)|(1<<WGM12)|(1<<CS11);
//Prescaler set to 8, that give us a resolution of
0.5us, read page 134 of data sheet
 OCR1A = 0x0000; // Init ODR registers to nil
output signal
 OCR1B = 0x0000;
 ICR1 = 40000; //50hz freq...Datasheet says
(system_freq/prescaler)/target frequency. So
(16000000hz/8)/50hz=40000

 TCCR3A
=((1<<COM1A1)|(1<<COM1B1)|(1<<WGM11)
);
 TCCR3B =
(1<<WGM13)|(1<<WGM12)|(1<<CS11);
 OCR3A = 0x0000;
 OCR3B = 0x0000;
 ICR3 = 40000;
}

