
UNIVERSITY OF ILLINOIS AT URBANA CHAMPAIGN

On-Site Hotbox Calibration

System
ECE445 – Team 2

Final Report

Team Members:

Pourya Assem

Paul Lupas

TA: Rajarshi Roy

Prof. A. C. Singer

12/12/2012

1

Contents

Introduction ... 3

Title ... 3

Problem Statement .. 3

Objectives ... 4

Wheels’ Timing Calculations ... 5

High-Level System Block Diagram .. 6

Amplifiers Low-Level System Block Diagram .. 6

Transducer A/B - Signal Processing ... 7

Fuses + Transformers .. 7

Amplifiers / Clippers ... 10

Level Restorer / Slicer / Logic Converter ... 12

IR Sensor - Signal Processing ... 14

Fuses + Active Filter ... 14

TX Microprocessor ... 17

Bootloading Atmega328 – Fuse Configuration .. 17

Programming... 17

Power Supply TX/RX ... 19

TX XBEE .. 22

Network ID Configuration .. 22

RX XBEE ... 24

Network ID Configuration .. 24

Multiplexer .. 24

GLCD .. 26

SD Card ... 28

Keypad .. 29

RX Microprocessor ... 30

Bootloading Atmega328 – Fuse Configuration .. 30

Programming... 30

PCB Design ... 30

Field Compatibility ... 33

Cost Analysis .. 33

2

Labor ... 33

Parts .. 33

Grand Total ... 34

Testing Results/Accomplishments .. 34

Improvements ... 34

Difficulties / Uncertainties .. 36

Conclusion .. 36

Wrap-up and future work .. 36

Ethical considerations ... 36

References –need to work on .. 37

Appendix A – TX Unit Mother Board .. 38

Appendix B – RX Unit ... 38

Appendix C – TX Unit Signal Board .. 39

Appendix D – TX Processor Program .. 39

Appendix E – RX Processor Program ... 40

Appendix F – Testing .. 41

3

Introduction

Title

This project was chosen because of a high demand and immediate need in railroad industry to

shift to an efficient and accurate heat sensor calibration procedure. Frequent inspection of train wheels

and bearings is enforced by Federal Laws. This is to prevent any malfunction that can lead to a train

accident because of overheated wheels and bearings. A massive network of reliable data acquisition

system is essential to carry out this daily inspection. A reliable

system needs a standardized reliable calibration procedure. This is

the missing tile, and we decided to make a system that aids the

industry to ease this process. We are excited to make a significant

improvement in the calibration procedure. We are convinced that

this product will be very marketable because it is a necessary piece

of equipment, which has not been implemented before.

Furthermore, CN Railroad, which we are in contact with, has

showed a high interest to buy this device upon successful

completion with rated specifications.

Problem Statement

 Figure.1 shows an ordinary heat sensor system - known as HotBox - setup on a North American

track. This system is to be tuned, employing the calibration device we have proposed. The HotBox system

consists of two gating transducers which wake the system’s

processing unit of wheel/bearing presence in the sight of IR

heat sensors. The sensors are designated to read the heat

signature of the wheel/bearing perimeters as they pass over

them.

Figure.2 shows a standard heat signature of a normal wheel. Figure.3 shows a standard heat

signature of a normal bearing. As shown, the heat levels are below the red

alarm line.

 The HotBox system goes out of calibration very often. The mean

calibration lifetime is less than a month. Sensors and transducers units are

continuously under hammering shocks exerted by the passing trains, which

displace the sensing/timing units from their designated positions. A very

common issue is that when the displaced gating transducers awake early/ late

the processing units, which results in loss of a hefty portion of heat

signature. Among other common issues:

 The heat sensors have internal faults.

 The housing connections are loose which cause abruptions in

the transmission of heat signatures.

 The heat sensors are shifted and looking at the wrong sight.

 The sensors are looking into sun.

4

These are the most critical everyday issues that railroad industry is suffering from. The proposed

calibration device will be used as an aid to visualize the heat signature signals, which are collected by the

sensors in the field to diagnose all the issues addressed above. The basic idea is to fetch/log the heat

signatures read by the IR sensors when the gating transducers are activated during the valid scanning time

window. Note that the current technology is all mechanical and does not have the ability to fetch and

generate such plots.

Objectives

Goals

 Shift the railroad industry from all mechanical to all electrical sensor calibration devices

 Guide servicemen through the calibration process by visualizing the heat signatures

 Faster and more accurate calibration process compared to the current mechanical methods

 Create a universal standard for integrating the calibration process

Functions

 Acquire data from gate opening and closing transducers

 Acquire data from the IR heat sensors

 Ensure proper timing synchronization between transducers and IR heat sensors

 Ensure proper signal level of transducers and IR heat sensors

 Ensure proper waveform read by the IR heat sensors.

Benefits

 Service time efficiency due to on-site data analysis and fast feedback

 Service cost efficiency due to time efficient method and higher calibration quality

 Less data traffic on servers because servicemen do not need to collect data from the servers

 Relatively cheap device ~$200, compared to mechanical calibration tool kit

 Wireless data transmission allows service man to keep a safe distance from traveling train

 Wireless data transmission allows the service man to collect data in critical weather conditions

and unreachable bungalow locations

Features

 Wireless data transmission

 SD card data storage

 Graphical interface

 Battery powered

 Small handheld unit

5

Wheels’ Timing Calculations

 In the Hotbox system, transducer blocks are responsible for

generating a gating signal, which indicates/times the presence of the train

wheel/bearing on top of the IR heat sensors. The transducer box is a simple

electromagnetically activated hammer, which generates/sends a short

analog pulse - one sine period - when a wheel passes over them. The

transducers’ gating pulse activates a shutter covering the IR sensors

windows. To the right is an example of transducer signal as the wheel

passes by.

Fig.7 Standards car dimensions
Car Car

920" 30" 120"48"

Inter-Truck Inter-CarInter-WheelWheel Diameter

 The picture above shows the extreme dimensions of a standard train car operated in Northern

America. There are five major sizes that characterize the metrics used in designing the system [1].

 Inter-Truck Distance 920 inches

 Inter-Car Distance 120 inches

 Inter-Wheel Distance 30 inches

 Wheel Diameter 48 inches

 Closing-Opening Transducer Spacing 50 inches

The transducers will trigger when the center of the wheel is aligned with the center of

transducers. The calculations below are carried out to find the shortest time span between the triggering

pulses coming from the transducers. The time span is a function of the train’ speed and the spacing

addressed above. The two speed extremes are 20 mph for the lower and 60 mph for the upper bound.

The shortest time is calculated for the train going at the fastest speed, when a wheel passes a

closing transducer and the next wheel passes the opening transducer. This distance is the axle to axle

spacing of the two closest wheels minus the transducers spacing, which is 24+30+24-50 = 28 inches. The

top speed is 60mph = 1056 in/sec, which means the minimum transducer timing is 26.5ms. The longest

time is calculated for the train going at the slowest speed, when the two furthest (truck to truck) wheels

pass over the transducers. The longest distance is 24+ 920+24 = 968 inches. The train’s slowest speed is

20mph = 352 in/sec. This results in 2.8sec.

As calculated, the minimum time was 26.5ms. The algorithm developed in the TX Unit should be

fast enough to distinguish transducer pulses 26.5ms apart from each other. The microprocessor used in the

TX Unit is capable of processing or reading digital pulses as short as a tenth of a millisecond.

The transducer spacing is set to 50 inches, which results in wheel scan time of 47ms for the train

going at 60 mph. A minimum number of 12 samples are needed for each wheel scan, which requires

minimum read time of 4ms for each sample. The ADC should be fast enough to handle such conversion

rate. The microprocessor ADC has conversion rate of 10 kilo samples per second which satisfies the

requirement.

Fig.6 Transducer signal

6

High-Level System Block Diagram

XBEETransducer and IR
Sensor Signals

Amplifiers

Microcontroller

Control
Systems

Transceiver Unit

Power
Supply

TX UNIT

Fig.8 TX unit, look at appendix A for circuit diagram.

Note: This block minus the Amplifiers is implemented as the Mother board.

Fig.9 RX unit, look at appendix B for circuit diagram.

Note: This block is implemented as the RX board.

Amplifiers Low-Level System Block Diagram

Transducer A
Fuse + Non-

Inverting Amp +
Clipper

Level Restorer

Combinational Logic

Transducer B
Fuse Non-Inverting

Amp + Clipper
Level Restorer AMPLIFIER

SUB LEVEL

IR Heat
Sensor

Active Filter Processor’s ADC

Processor’s Digital
Port

Fig.10 Amplifier and filter sub level, look at appendix C for circuit diagram.

Note: This block is implemented as the Signal board.

7

Transducer A/B - Signal Processing
 The mere purpose of this block is to convert the transducer signals into an acceptable waveform

than can be seen/processed by the microcontroller’s digital ports. The transducer signals will be passed

through a 1:1 transformer to meet the requirements specified by the factory, which is perfect electrical

isolation by the third party user [1]. Then the signal is passed through an amplifier which has a dual

function of both amplifying and clipping the unwanted part of the signal. The next stage consists of a

slicing and concatenating the opening and closing transducer signal. This stage also reshapes the ramps on

the output of amplifiers to a perfect TTL logic. The processed signals are then send to the processor to

indicate a change of state in either of the transducers.

It is a very common practice to use a low power fuse when sensitive electronic device is

connected to equipment with direct contact to the tracks, because of:

 Danger of lightning

 Electrical charge produced by the passing trains

 High voltage signals sent through the tracks accidentally by the crewman

Our system is highly sensitive to high voltage spikes due to usage of integrated circuits in the

main blocks of data acquisition structure. Therefore, we inserted a 0.5A fuse interconnecting the

transformers to the amplifier/clipper blocks.

Note: The heat signature circuit does not include a transformer and fuse, because it is implemented within

the breakout circuit inside the heat scanners.

Fuses + Transformers

Equation / Schematic with Components Diagram / Simulation / Circuit / Measurements / Quantitative

Results and Graphs / Interference with rest of the project

 It was decided to replace the dual line - Twisted Wire Toroid - transformer with a single line high

impedance audio transformer in order to:

 Avoid handmade component and tolerance due to inaccurate crafting process. Avoid large

magnetic field produced by the Toroid, which can tolerate nearby electronics. Reduce size.

 Provide larger input impedance at low frequencies to minimize the current drain from DUT.

Prevent signal distortion and loading effect due to large current drain.

 Provide large impedance on output node, so the transformer can be seen as a current source.

 Provide large coupling factor, and minimum phase shift.

 The audio transformer has a rated 10KΩ:10KΩ input/output impedance at desired operating

frequency, and capable of handling analog data within the range of:

 5Hz-3500Hz (this system operates on 10Hz-500Hz)

 10mVpp-10Vpp (this system operates on 50mVpp-5Vpp)

These ratings are well fitted in the operating range of this system. The loss factor and coupling

strength is proportional to input frequency range and voltage swing.

8

Transformers were tested for qualitative performance. The test setup is as follows:

 Use two function generators (uncoupled at random phase) to feed the transformers @

50mVpp Sine - 50Ω terminal. Use the following setting, and trace the output signals to check

for voltage transfer ratio + phase factor.

Fig.11 Frequency sweep 1Hz-2KHz Fig.12 Frequency sweep 1Hz-200Hz Fig.13 Frequency sweep 1Hz-20Hz

 As the measurements reflect, the coupling factor drops for frequencies below 5Hz. The drop

is not significantly large (10% at 1Hz), and follows in a slow linear trend. Even though the

system does not operate at such low rates, but it adds to the immunity of the system

performance. The coupling factor is nearly 100% for frequencies above 5Hz, so the

transformer voltage spice model can be approximated as (At all frequencies, due to large

relative input/output inductance, and consequently impedance compare to driver and load):

 | | | |

 Surprisingly the phase shift of the output signal (due to inductive behavior of transformers), is

significantly small compare to driving frequency. Additionally, this can be verified by driving

the transformer using a square wave or pulse burst, to check for input/output delay (Note: in

the measurements above, channel 2 is inverted and the signals are 180
o
 out of phase).

Following are some more measurements results showing the transformer under same setting @

10Hz (system’s typical operating frequency):

Fig14. Transformers A

and B inputs signal

Fig15. Transformers A

and B outputs signal

Fig16. Transformers A

input vs. output

Fig17. Transformers B

input vs. output

9

The transformers are:

 Fed directly by the Gating Transducer output’s

transformer (with no common ground as required by

manufacturer).

 Driving the amplifiers/clipper (fused by 0.5A glass

tube) to immune the amplifier/clipper circuit to high

voltage spikes.

Note: the transducers output signal is no more than

250mVpp [1], so the amplifiers’ input never pass the

available headroom (3.3Vp-1.3Vp = 2Vp 4Vpp limit).

 Fig18. Transformers in the system

Fig19. Transducer signal simulator (100mVpp) Fig20. Transformer’s output vs.

amplified/clipped signal (10Hz, 100mVpp)

Verification

1. Wrap the twisted wire transformer (choke) as specified by the calculations.

Make sure each leg of the twisted pair is of the same size, 1 meter. There

should be exactly 50 turns on each transformer and make sure the wires are

tightly wrapped on the core with a minimum of 30 degrees spacing between the

terminals.

Replaced with 10KΩ: 10KΩ Audio Transformer.

2. Connect the input of the transformer to a function generator @ 5Vpp - 10Hz sinusoid and trace the

output with the resolution set on averaging. This signal should be @ 3.83mVpp – 10Hz sinusoid

with maximum phase shift of 6 degrees w.r.t function generator.

Passed, with new additional testing procedures. See testing procedure.

3. Set the 2
nd

 channel of the oscilloscope to trace the input signal of the transformer. This signal

should be @ 3.83mVpp – 10Hz sinusoid. Use the Math function to subtract the input and output

signals to ensure a perfect match. This indicates a high coupling factor.

Passed, with new additional testing procedures. See testing procedure.

4. Increase the function generator frequency to 20Hz and repeat step 3 (this time @ 7.65mVpp) to

check for coupling factor.

Passed, with new additional testing procedures. See testing procedure.

5. Repeat step 3 for frequencies up to 500Hz.

Passed, with new additional testing procedures. See testing procedure.

6. If the coupling factor differs or decays over the frequency span, repeat step 1 with a core (better

low frequency handling characteristics) and ensure the twisted wires are tightly wrapped.

Replaced with 10KΩ: 10KΩ Audio Transformer.

7. Use two DMMs to monitor the current and voltage on the input of transformer and find their

10

product to ensure the drain power is below 400mW.

Passed.

8. If the specs on step 7 are not met, increase the number of turns and repeat steps 1-7 (iteratively and

calculate new voltage values on the output using the equations provided).

Replaced with 10KΩ: 10KΩ Audio Transformer.

9. If the above steps are satisfied, make a second transformer.

Replaced with 10KΩ: 10KΩ Audio Transformer.

10. For more accurate measurements, use a Network Analyzer to check for all the specs.

11. Connect the fuse to the output of the transformer and trace the output @ 10Hz and 20Hz to ensure

the values match with the voltages provided in steps 3 and 4. If not, change the fuse and repeat step

11.

Amplifiers / Clippers

The voltage directed to this block is a purely AC signal coming from the transformer output.

However, this block operates on a DC level signal, because the amplifier is biased to process the signals

ranging from 0 to 3.3V. By this mean, the negative going of

the transducer signal (half sine wave) will be clipped and the

positive going portion of the signal will be amplified near

saturation regime (for some signal levels clipped on top) to

reshape the positive going (half sine wave) of the transducer

pulse into a nearly square shape signal. The amplifier is

implemented using LM324 Quad Op-Amp chip in the non-

inverting configuration with gain approximately 41. The

circuit is tested for quality and proper signal level using a

Function Generator to generate different input signals as

specified in the Verification procedures and the measured

output is observed on Oscilloscope.

 Above is the simulation of the transducer amplifiers. The top waveform is the signal coming from

transformer (20mVpp 27Hz sinusoid signal), input signal of amplifier. The bottom waveform is the

output of the transducer amplifier. It is observed that the negative going of the input signal is clipped and

the positive going is amplified to saturation. The same results are expected from measurements.

Fig.22 Amplifiers circuit diagram Fig. 23 Output of amplifiers with 30% saturation

11

 Fig.23 Output Noise with grounded input Fig.24 Frequency Sweep 1Hz-10Hz

The saturation limit of the amplifier output is 2.3V. The amplifiers are tuned to have a 30%

saturation on the output for 100mVpp 10Hz sinusoidal input signal which is the typical transducer signal

used by North American Railroad Companies. Figure above shows that the amplified signal is 30% in

saturation. This means that the amplifier cannot amplify the signal any higher than 2V. The rail voltage is

3.3V. It can be observed that the LM324 uses around 1.3V internally since the rail voltage is 3.3V and the

amplification saturation is at 2V. To have signal amplitude of 3.3V, the output of this stage will be fed

into a level restorer circuit to be further amplified and create a proper digital signal. The signal fed to the

level restorer circuit will not exceed 2V because of the saturation limit of 2V.

Verification

1. Construct the amplifier as shown in figure and use a DMM to monitor the current being drained

by the Quad Amplifier Chip (LM324).

The resistors were implemented using 1MΩ potentiometer to adjust the gain more easily. The

current drained by the Quad Amplifier Chip measured with the DMM is 8.1mA when circuit is

driving.

2. Set the potentiometer to obtain a gain of 200 and check the input/output response as described in

the next step.

3. Set the function generator @ 20mVpp - 10Hz sinusoid. Amplify the signal using the amplifier

built and tuned in step 1-2 and trace the output on the oscilloscope to have the right frequency

and non-inverted amplitude of 2Vpp - clipped with maximum phase shift of 6 degrees.

The output signal is 30% in saturation. The amplitude is 2Vpp.

4. Repeat step 3 with 20Hz (amplifier output @ 4Vpp - clipped).

5. Change the gain to 41 and repeat steps 3 and 4, and check for output voltages of 4.01Vpp and

approximately 4.70Vpp correspondingly.

6. Note: The amplifier power rails are biased from 0 to 5VDC, and signal coming from generator is

purely AC. So the signal will be clipped (rectified) in steps 4 and 5.

7. If the voltage levels are not within the mentioned values in step 5, increase the gain above 41.

The power supply was changed to 3.3VDC. There is no need to raise the gain because the output

12

signal is already 30% in saturation.

8. Consistently, during all these steps, check for the current drained by the amplifier to ensure it

does not exceed 30mA.

A DMM was used throughout these steps and the current did not exceed 30mA.

9. Build the second branch of amplifier for the second choke and repeat steps 1-8.

10. In steps 1-9, the amplifier is driving a 1KΩ resistor (simulating a TTL Buffer).

11. In steps 1-9, check the output signal of the amplifiers when no input signal is injected to the input

terminals (tied to ground). The output signal should have a minimum noise level. Preferably for

TTL logic safety, the noise level should be less than 0.3V.

The RMS value of the noise level is 10.7mV which is less than 0.3V.

12. If any of the specs are not met, change the Amplifier Chip is a lower power noise version.

Additionally if the gain values can be redefined to meet the specifications.

Level Restorer / Slicer / Logic Converter

Equation / Schematic with Components Diagram / Simulation / Circuit / Measurements / Quantitative

Results and Graphs / Interference with rest of the project

As discussed in the amplifier/clipper section, the operational

amplifier biased at 3.3VDC (power rail) uses approximately 1.3V for

internal operation and limits the output voltage swing to maximum of

2Vpp (positive voltage with reference to ground). Unfortunately, this

voltage level does not fall within the valid region (0VDC-0.2VDC

for LOW, and 3VDC-3.3VDC for HIGH) of the TTL chip biased at

3.3VDC. TTLs’ narrow noise margins coupled with this issues

causes glitches and in some cases oscillatory behavior on the output

of TTL logics. To the right is wave presenting such a behavior.

To overcome this issue a special configuration (no bias circuit) of NPN Common Collector-

Amplifier is employed as a voltage restorer (and signal inversion). This circuit pumps up and inverts the

voltage swing to a visible range (0VDC-0.2VDC for LOW, and 3VDC-3.3VDC for HIGH) by the TTL

logics (biased at 3.3VDC). Below is a schematic of voltage restorer being derived by a costume signal

simulation. As the simulation shows, the signal is leveled and inverted properly. The slight cut-off at the

bottom of the output signal (blue) is due to high voltage swing of the input signal (yellow). By lowering

the input signal voltage (to approximately 1.9Vpp) or increasing the input resistance (to 2.2KΩ) or

increasing the pull down resistance (to 3KΩ) cut-off region will go away (as tested and verified by the

circuit measurements).

Fig.26 Level restorer Fig.27 Level restorer’s in test circuit Fig.28 input (2Vpp) vs. output (3.3Vpp)

Fig25. NOT-NAND (OR) TTL

output, driven by 2Vpp signal

13

 At this stage the voltage restorers are cascaded on the amplifiers’/clippers’ output, and tested for

rated performance. As shown in the wave captures below, the amplified /clipped signals are properly

restored and inverted from 2Vpp to 3.3Vpp. The wave captures show both channels, where one is delayed

from the other to simulate the time span between transducers gating interval.

Fig.29 Amplifiers’ clipped output Fig30. NPN’s Base voltage Fig31. NPN’s Collector voltage

 Then, this signal is fed to the TTL buffer (slicers) to trim-off the slow ramp (rise and fall) edges.

At this stage, the inverted signals are NANDed to implement the OR function. As the level restores were

used to invert the signals, there are leftover TTL gates on the Quad NAND chip, from which two can be

cascaded to implement a buffer. This buffer increases the overall gain of the slicer, which adds to the

circuit noise margin immunity (one shot, two birds).

Fig32. NANDed Fig33. First Inversion Fig34. Second Inversion

As shown above, the sinusoidal transducers’ gating signals are converted to perfectly readable

digital signals. This signal is fed directly to the TX microprocessor for timing the IR sensors’ wave

capture. These experimental results are also consistent with the simulation results.

Fig35. Transducers + Restorer Fig36. Restorer + NAND

Note: In the wave captures of output signal, the smaller interval between the gating signal pulses

represents the duration for which the microprocessor captures the heat signature data.

14

Verification

1. Use the Quad NAND gate chip (74LS00) to implement the combinational logic.

Modified to fit new circuit, Passed.

2. Use a 1MΩ resistor on the output of the combinational logic to simulate the microprocessor digital

port impedance.

Passed.

3. Use a DMM on the power line connecting to the chip to monitor the drain current. It should not

be more than 2mA. If it is not the case, replace the TTL chip with a lower power version.

Passed.

4. Connect one of the inputs of the combinational logic (OR) to a function generator set at 10Hz

square wave (0-5V swing) and the other input to ground. Trace the output signal to ensure full

swing and the pulse shape (perfect square wave) matches the input.

Modified to 3.3V to fit new circuit, Passed.

5. Repeat step 4, this time with 10Hz square wave at a lower swing (0-4V). This test should be

performed because the signals coming from the amplifier stage were calculated to have similar

values for the rated frequency.

Modified to 3.3V to fit new circuit, Passed.

6. If step 5 is not passed then reconfigure the amplifier gain (to a higher value), so the amplifier

output swing is within the acceptable TTL range.

Modified to fit level restorer, Passed.

7. Increase the frequency to 20Hz and repeat steps 4-6.

Passed.

8. In all steps, trace the noise level (tolerance) of the input signal and ensure it is not more than

0.3Vpp

Passed.

IR Sensor - Signal Processing

Fuses + Active Filter

Equation / Schematic with Components Diagram / Simulation / Circuit / Measurements / Quantitative

Results and Graphs / Interference with rest of the project

An active filter was used to filter and amplify the signal coming from the IR heat sensors. The

gain of amplifier should be adjustable in order to provide an appropriate range to the ADC of the

microprocessor which ranges from 0 to 3.3VDC. The filter is a 2
nd

 type low pass configuration with cutoff

frequency at 1 KHz, providing 40dB of attenuation. The active part was implemented utilizing a non-

inverting Op-Amp borrowed from the LM324 (used in the transducers branch). The cutoff frequency and

gain calculations are provided in the table below. The circuit was built and tested to evaluate for the rated

specifications. The two crucial test vectors are:

 1Hz-3KHz sine sweep to check for VTC.

 100Hz sine, which represents the most common bandwidth of heat signature signals, to

check for VTC and phase shift [1].

15

As the measurement results indicate, the VTC response matches with the designed parameters. It

has a flat response over the critical region of 0-500Hz and cut-off frequency at 1KHz. The 3dB bandwidth

is 800Hz and falls to a 40dB at 3KHz.

Fig.37 Circuit Diagram Fig38. Equations Fig39. Frequency Sweep 1Hz-3KHz

 =

 √

 As the measurement results indicate, the phase shift is nearly zero, when the 100Hz sine

(common bandwidth of heat signature signal) wave is injected. So there would be no delay to

desynchronize the timing between the transducers’ gating signal and heat signatures. The circuit was also

tested for noise handling by injecting a 800Hz square wave (odd harmonics at 800Hz, 2.4KHz, 4KHz,

…). The active filter attenuates all harmonics above 1KHz and the fundamental harmonic was passed to

the output (800Hz sine).

Fig40. VTC and Phase for 100Hz sine Fig41. Noise handling, 800 square

wave

 The experimental results are consistent within a close bound to the simulations, where a 2KHz

sine (noise) is mixed with the heat signature. The 2KHz sine is filtered out, and heat signature is

recovered.

Fig42. Simulation test circuit Fig43. Simulations wave capture

16

Verification

1. Build the active filter as shown in figure. Connect a 1MΩ resistor as the load to simulate the

microprocessor ADC.

The circuit was built on breadboard, Passed.

2. Use a DMM to monitor the current drain by the amplifier chip. It should be less than 30mA, while all

three (two from transducers + active filter amplifier) are loaded and running.

The maximum current measured using the DMM is 8.1mA, Passed.

3. Use the function generator to generate a 100Hz sinusoid with 1Vpp and 0.5VDC bias to simulate the

heat signature signal as read by IR sensor. Make sure the function generator is set to 50Ω mode to

simulate the IR sensor terminal impedance. Set the amplifier gain to 1 by choosing the feedback

resistance to be 0Ω. This resistance (consequently the gain) is controlled by a potentiometer (log tape

0-500KΩ).

In addition, sweep function was employed, Passed.

4. Read the signal level on the input of active filter. This signal should not be less than 0.9V. Otherwise,

the feedback loop or the filter’s resistive network has a bad connection. Double check the active filter

to ensure the right components is used.

Passed.

5. If step 4 is passed, use the function generator’s sweep mode to sweep the signal injected into the

active filter from 10Hz to 3KHz. Trace the output using an oscilloscope to ensure flat response over

the critical region 10Hz to 500Hz and 40dB attenuation over 1KHz cutoff point. If the signal is not

attenuated by the rated value at 1.2KHz then shift the cutoff point toward a lower frequency (not

lower than 800Hz). The 800Hz was chosen to satisfy the bandwidth of heat-signature signal.

There is a flat response over the frequency range from 0-500Hz, Passed.

6. Adjust the function generator to generate a 100Hz sinusoid of 0.5Vpp (a common heat-signature peak

value) with 0.25VDC bias. Change the gain (increase) using the potentiometer and trace the output

signal of the active filter to bring up the peak voltage level value to approximately 2V. The 3.3V

ADC limit is not used to provide headroom for the heat-signature to prevent clipping in case the input

signal exceeds 2Vpp limit.

Passed.

7. Inject the signal described in step 6 + a square wave with fundamental frequency at 1.5 KHz, and

trace the output signal to ensure the additive noise (in this case square wave) is well attenuated.

The input signal is 800Hz square wave 1Vpp with 0.5VDC offset. The output signal observed

presents an almost sinusoidal signal because the higher harmonics of the square wave are filtered out

which indicates that additive noise is attenuated, Passed.

8. If step 7 is not passed, repeat steps 3-7 to adjust the gain and cutoff frequency to a reasonable value

so that the output signal has a proper signal level (not higher than 4.5V) and noise level.

Specs are met, Passed.

9. Note: For reconfiguring the cutoff frequency it is easier to change the active filter resistors’ values

(utilizing a pot eases the tuning process).

17

TX Microprocessor

Bootloading Atmega328 – Fuse Configuration

Equation / Schematic with Components Diagram / Simulation / Circuit / Measurements / Quantitative

Results and Graphs / Interference with rest of the project

 Requirements [2]:

 board with DIP ATMEGA328/328P + Arduino IDE (latest version)

Pieces of jumper wires

 One 1KΩ resistor

+ One 1MHz to 20 MHz Crystal

Connect/Install Arduino Board [2]:

1. Download Arduino IDE from Arduino official website: http://arduino.cc/

2. Connect Arduino board to computer using USB cable.

3. Wait for windows to install the board

4. Start Arduino IDE, and select the board and serial port form the

Tools menu that corresponds to the board.

5. Upload the ArduinoISP sketch onto Arduino board.

6. Wire up Arduino board and microcontroller as shown in the

diagram, and connect the 110Ω to 128Ω resistor between Arduino

reset input and 5V.

7. In the Arduino IDE folder, navigate to: hardware\tools\avr\etc

8. Open avrdude.conf file, and find ATMEGA328/328P

9. Identify the microcontrollers’ signature and change it to:

[3]

 [3]

10. In the Arduino IDE folder, navigate to: \hardware\arduino\bootloaders\atmega

11. Copy all contents this folder to: \hardware\arduino\bootloaders

12. Restart Arduino IDE, and run the bootloader from Tools menu with Arduino as ISP.

13. Bootloading may take up to a minute. After you successfully burned the bootloader, change signature

back to 0x1e 0x95 0x0F.

Programming

Equation / Schematic with Components Diagram / Simulation / Circuit / Measurements / Quantitative

Results and Graphs / Interference with rest of the project

 The Atmega328 was bootloaded and programmed to implement the proposed flowchart. Slight

modifications are applied to expand, optimize and add new features to this the systems. The following

algorithm was tested individually, and in-system. For both cases the expected result was fetched and

analyzed by the algorithm. In addition, an external hard reset circuitry is implemented to reset the

Fig44. Arduino Bootloading [2]

18

processor upon successful completion of data acquisition cycle. Look at appendix D for TX processor

program.

Fig45. Flowchart

The flowchart shown is coded with slight

modification as follows:

 Timings were made smaller for testing

purpose.

 A new feature is added to the algorithm to

calculate the scan time of the first wheel/bearing, in

order to make the algorithm adaptive. This feature

utilizes the system with a ML algorithm, which

optimizes the sampling frequency, so for any train

speed the algorithm only collects 16 samples points

for each wheel/ bearing:

The number 17 was chosen because:16 (samples) + 1

(equivalent time unit for loop processing)

 The TX microprocessor was inserted in the TX system (in cascade with Amplifiers, XBEE, …)

and test vectors were injected to the system to evaluate the systems functionality. Below is the data stream

captured/analyzed by the algorithm (sent over the wireless channel and captured on the serial port of RX

XBEE). The heat signature is a 5Hz triangle wave, and the transducer signals are set to simulate a train

going 35mph (10Hz) as calculated. As shown, there are only 16 samples in each period (wow, it works).

 Note: Test vectors were simulated for trains going at different speeds (equivalent to transducers

frequency of 1Hz to 20Hz) and all processed data contained only 16 sample points per wheel/bearing.

Fig46. TX microprocessor analysis

 Note: The sample points at “500” represent the transducer signals at 30% duty cycle.

19

Verification

1. Ensure the connections from TX microprocessor to TX XBEE are correct. TX of the

microprocessor goes to the RX of the XBEE and the RX of the microprocessor goes to the TX of

XBEE.

Passed.

2. There are several triggering algorithms running in parallel which are controlled by a watchdog

timer. The watchdog timer should be reset at the beginning of each iteration. Failing to do so,

will prevent the algorithm from being reset.

Passed.

3. The main functioning trigger is the transducer detection algorithm. If in case of any malfunction,

this algorithm should be tested individually (in the first step of troubleshooting procedure) to

evaluate its proper timing and correlation to incoming transducer signals. The most important

body of this algorithm is the most frontal stage responsible to detect the first transducer followed

by the second transducer within a predefined period (as defined in the flowchart and

calculations). This stage tells the TX processor to wake up and start fetching next incoming

transducer pulses along with the heat-signature. Use a function generator to feed the transducer’s

digital port reserved on the TX microcontroller. Change the duty cycle until the low time of the

square wave is less than the specified time span mentioned in the calculations and use the serial

terminal to send checkpoints if the algorithm detected and triggers the wake-up signal. Decreases

the duty cycle until the low time is larger than the time span specified in the calculations. Use

checkpoints to be sent to serial terminal to ensure the algorithm does not trigger the wake-up

signal.

Passed.

4. The next layer of troubleshooting the TX microprocessor is to feed the data acquisition’s trigger

manually to ensure the transducers and sampled heat-signatures are mixed and saved to an array

properly. Feed the newly created array (transducers + heat-signatures) into the serial terminal (to

a computer) and verify if the signals going into the microprocessor match with data obtained on

the serial terminal.

Passed.

5. Ensure the serial transmission rate is fast enough so the data traffic will not prevent data samples

to get lost or delayed. This can be done by setting the serial baud rate to values higher than 9600.

Passed.

6. If steps 1-5 are passed, connect XBEE to the TX processor and connect RX XBEE to the

computer. Feed the TX chip with simulated signals and read the data transmitted to the computer.

Coded part of RX microprocessor algorithm to fetch the data.

Power Supply TX/RX
In the beginning stages of the design, the power supply was selected to be regulated at 5VDC

However, some later modifications and additional modules required a 3.3VDC on-board power supply as

well as the 5VDC regulator. TX/RX XBEE units, the SD Card module, combinational logic, amplifiers,

filters and level restorers are powered by a 3.3VDC supply. The 5VDC power supply is designated to run

the microprocessors, GLCD and small number of combinational logics. This voltage is regulated by the

circuits shown below. These circuits are capable of delivering 3.3VDC @ maximum drive current of

500mA, 5VDC @ maximum drive current of 1A. The input voltage – driving the regulators - can be

20

chosen from a wide range of 6V to 32V, which is suitable for running the system by a 9V battery, and 24

batteries used in HotBox systems.

Fig.47 The 5VDC power supply

 Fig.48 The 3.3VDC power supply

 TX unit at sleep mode5mA (Xbee) + 10mA(all three amplifiers) + 2mA(TTL chip) +

4mA(Level Restorer) = 21mA @ 3.3VDC = 70mW

 TX unit at sleep mode5mA(processor) = 5mA @ 5VDC = 25mW

 TX unit at active mode35mA(Xbee) + 18mA(all three amplifier) + 2mA(TTL chip) +

7mA(Level Restorer) = 62mA @ 3.3VDC = 204mW

 TX unit at active mode5mA(processor) = 5mA @ 5VDC = 25mW

 RX unit at active mode45mA(Xbee) + 8mA(SD Card) = 53mA @ 3.3VDC = 175mW

 RX unit at active mode5mA(processor) + 65mA = 70mA @ 5VDC = 350mW

The power consumption when TX circuit is active (transmitting data) is 204mW @ 3.3VDC. The

required drive current of the TX unit in active mode is 62mA which is below the maximum allowable

drive current of the 3.3VDC regulator at 500mA. The 3.3VDC regulator is the main power supplier of the

TX unit, while the RX unit is mainly supplied by the 5VDC regulator at 350mW. The critical tests are

ensuring that the variations in the output voltage are within the specified limits. These tests are presented

below.

Fig.49 Unloaded TX 3.3VDC power supply Fig.50 Loaded TX 3.3VDC power supply

21

Fig.51 Unloaded TX 5VDC power supply Fig.52 Loaded TX 5VDC power supply

As shown above, the largest voltage deviations peaks are at max 50mVpp biased at 3.23VDC,

when the power supply is driving the TX circuit at full power. These peeks occur when the transducer

amplifiers are activated, as the in phase periodic peaks match the transducer signal. The voltage variation

on the 5VDC power supply is negligible due to small driving loads.

The tolerance of the power supply when driving the circuit is

 . This

deviation is within the 2% allowable range of tolerance.

The RX unit has similar power distribution system, except the fact that 5VDC is the main power

supplier of the circuit. The limitations on power line tolerations are softer for RX unit, because of the

nature of components/blocks used in the structure of this unit. In other words, the RX unit does not have

any analog signal processing unit that requires precision on the power line.

Verification

1. Load both voltage regulators by a proper resistive load (10-12Ω) to ensure drive current of 400mA.

Specs are met.

2. Use the function generator to couple the input power supply of the voltage regulators with the 60Hz

sinusoid 0.5Vpp. Monitor the regulated signal on the output. If the voltage variation on the output of

voltage regulator is more than 0.005Vpp, then change the bypass capacitors so that the voltage

variation on the output is less than 0.005Vpp. This procedure is critical because the variation on the

power supply will modulate the amplifier stage output signal.

Adding the 60Hz 0.5Vpp source to the input of the power supply does not alter the output voltage in

any major way. The measured voltage variation is 24.303mVpp-23.146mVpp = 1.157mVpp which is

well below 5mVpp.

3. If step 2 is passed then load the voltage regulators by the actual circuit. Again, monitor the voltage

variations on the regulator’s output and the drained current to ensure the rated specs are met.

The measured tolerance is 1.5% when the power supply is driving the circuit.

4. If the power supply tolerance is not met, change the bypass capacitors. If the drain current is not

within the specs, change the voltage regulator to a higher power version.

Specs are met.

5. If the current drain problem is not resolved, connect each stage of the circuit individually to the

voltage regulator in order to find which stage is causing the problem (draining more than what is

supposed to) to troubleshoot.

22

TX XBEE

Network ID Configuration

The TX XBEE is responsible for transmitting the serial data generated by the processor block

from the TX Unit. The XBEE wireless module employs the Zigbee protocol [4] to communicate to the

receiver module. The XBEE chips used in this project are Series 1 XBEE meaning that no coordinator is

required to setup the wireless communication and both modules can act as transmitter/receiver. Arduino

Uno was used as the serial adapter to configure the XBEE modules.

Fig.53 Wiring diagram for XBEE module

configuration

Fig.54 Identify XBEE using X-CTU Serial Terminal

Fig.55 Network ID configuration menu

23

Program Arduino Uno with the program Empty.ino. This enables the Arduino Uno board to act as

USB to Serial converter to configure the XBEE. After uploading the program, with the Arduino powered

off, connect the XBEE as shown in the figure.

Identify the XBEE module [4]:

1. Plug the Arduino USB cable in the computer

2. Open X-CTU terminal

3. Click on Test/Query button

4. Ensure that the Serial Number in the window that pops up agrees with the Serial Number on the

TX XBEE (ATDH: 0013A200 and ATDL: 4081E32A). The Serial Number is on the back of the

XBEE module.

Configure XBEE [4]:

1. Plug the Arduino USB cable in the computer

2. Open the Tera Term terminal

3. Select the Serial port and click OK.

4. Navigate to Setup->Terminal, insert the following parameters and click OK.

5. Navigate to Setup tab ->Serial port, insert the following parameters and click OK.

6. Type “+++” which makes the XBEE go into command mode

7. Wait for OK. This ensures that the XBEE is responding

8. The PAN ID (Personal Area Network ID) used in this project is 2012. In the terminal type

“atid2012” and press enter. Now type “+++” and wait for OK. Type again “atid” and press

enter and the response should be “2012” which indicates the configured PAN ID is 2012.

9. ATDH is “Destination Address High”. This is the same for both TX and RX XBEEs. In

terminal type “atdh13a200” and press enter. Type “+++” and wait for OK response. Now

type “atdh” and press enter. The response should be “13a200”.

10. ATDL is “Destination Address Low”. This will be different for both XBEEs. The TX will be

configured with the ATDL of RX and the RX will be configured with the ATDL of TX. This

configuration enables the RX to receive information from TX and viceversa. In terminal type

“atdl4081e335“ and press enter. Type “+++” and wait for OK. Now type “atdl” and the

response should be “4081e335”.

11. To ensure the configuration is not lost when the XBEE is powered off, type “atwr” and press

enter. This command writes the configuration to firmware.

Verification

1. Connect RS232 serial cable to XBEE units on two separate computers and use the terminal port to

send and receive specific test vectors.

One Arduino was programmed to send character “D” through the serial port connected to TX XBEE.

Another Arduino was programmed to receive data from RX XBEE over the serial port. The data

received by the RX XBEE was monitored and transmission contained no errors.

2. If the transmitted data matches the received data, then program two microcontrollers to send and

receive a known test vector of ASCII characters over a wired channel. Check for accuracy of received

data (with 0 bit error rate).

24

One Arduino was programmed to send transducer and heat-signature data signals to TX XBEE.

Another Arduino was programmed to read the serial port data coming from RX XBEE. The data

received was monitored on the serial monitor. Transducer signals along with the heat-signature data

were received with absolutely no errors.

3. Connect the XBEE units to the programed microcontroller from step 2 and check for accuracy of data

received (ideally 0 bit error rate).

Test was performed in step 2 above.

RX XBEE

Network ID Configuration

The RX XBEE is configured the same way as TX XBEE with the exception of the following step:

 In the Configure XBEE section, in the Tera-Term Terminal in step 10, the command is

“ATDL4081E32A”. All the other steps are followed in the same order [4].

Multiplexer
The ATMEL microprocessor - ATMEGA328 - provides us with only one set of embedded

hardware serial terminal. Having only one set of serial terminal available along with multiple serial

devices trying to talk to the processor becomes problematic. There are multiple solutions to this problem

such as software serial [5] or providing an external hub. With both choices on the table, we decided to use

an external hub. Having an external hub is beneficial in many aspects, which are:

 Software serial uses a pair of pins for each additional terminal, which is not a good design

strategy to use of digital pins for a single protocol.

 Software serial driver is not as accurate as hardware serial, as we tested and analyzed the results.

 Having a hub provides the option of multiplexing/packaging data, so the processor can talk to

multiple devices at the same time using only two data pins + address bus (This is simulating an

I2C bus using serial terminal). The number of serial terminals can be extended to more number of

pins that the processor has.

 It can run at high data rates accurately than the software serial, and more importantly it consumes

less paging and CPU clock to run multiple levels of code to simulate a software serial than

basically reading off from the hardware terminals.

 Give the designer the opportunity to add more devices to later revisions with minimal hardware

modification.

25

The hub was implemented using 74LS153

which is a TTL Dual 4to1 multiplexer. In the case of

our project, we needed to connect GLCD and XBEE

wireless unit through the serial terminal to the

microprocessor. The XBEE has a TX connecting to

RX of the processor, and GLCD has both RX and TX

lines going to TX and RX of the processor. We

figured out that the GLCD RX can be connected to the

processor’s TX at all time with no problem. So, the

multiplexer is used to switch the data path from the

XBEE to GLCD whenever needed. To the right is the

schematic showing the multiplexer connections. The

GLCD is one line when the address bar is pulled

HIGH, and the XBEE connection is established when

the address bar is pulled low. Note that the GLCD and

XBEE do not need to be initialized more than once.

Verification
1. Test that the correct input is selected. Connect two LEDs to the output of the Dual 4 to 1 Mux.

For each pair of addressing bits (00, 01, 11, 10) input a HIGH Signal followed by a LOW Signal

to the corresponding input and check that the LEDS light up accordingly.

Passed.

2. Test data integrity. Refer to Figure above for connections. Input a test vector using an Arduino

Uno Serial Port to the input “From XBEE TX”. Select address 00. Observe the output “To

ATMEGA RX” on a different Arduino Uno using the Serial Terminal. Ensure that the Serial

Terminal data matches 100% with the test vector values.

Passed

3. Repeat step 2, using the same procedure, but now test the remaining inputs that correspond to the

address bits 01, 11, 10.

Passed

4. Connect the RX XBEE and GLCD and observe that after data transmission process has ended the

GLCD algorithm goes through the right sequence. This shows that the MUX successfully

switches the data line between RX XBEE and GLCD module.

Passed.

Fig.56 Multiplexer connections

26

GLCD
Equation / Schematic with Components Diagram / Simulation / Circuit / Measurements / Quantitative

Results and Graphs / Interference with rest of the project

 The system utilizes a Graphical Color LCD (128x128) as the main user interface module. This

LCD runs on SGC firmware [5 6], which enables microcontroller to control the graphical content

displayed on the screen through serial communication. The optimal serial baud rate, as suggested by the

manufacturer [5 7], is at 115200 (for fast page refreshing). However it can be run at lower rate such as

9600 for older processors. The LCD driver is taken from the open source project and slightly modified (to

work with pass by reference) to fit this application.

Note: Atmega328 has only one serial port, which should be shared between XBEE and the LCD module.

So, a multiplexer unit should be used to connect the proper module to microprocessor as needed. The

default is set for XBEE connection. The lines switch over, when the data acquisition process is over and

the algorithm provides the user access to SD Card. In addition, the microprocessor should be reset after

the connection is established (before any data transmission).

Below is the block diagram, showing the LCD’s connections to microprocessor through the data

multiplexer. Below are the programs used to test the LCD’s functionality.

GLCD test program + Waveform Simulation Fig57. GLCD144G2 SGC in system
#include <displayshield4d.h> // necessary library

DisplayShield4d lcd; // create an instance of the LCD

void setup()

{

 Serial.begin(115200); // LCD speed is very high

 lcd.Init(); // wake up LCD

 delay(20);

}

int data[26]={387,292,199,105,12,76,169,263,356,449,544,

639,731,804,710,616,523,429,336,239,147,54,33,126,220,314};

void loop()

{

 lcd.Clear(); // clear LCD

 delay(20);

 lcd.setfontmode(OLED_FONT_TRANSPARENT);

 delay(20);

 for(int i=0;i<26;i++)

 {

 lcd.putpixel(((i*5)-1),(128-(data[i]/12)),lcd.RGB(255,0,0));

 lcd.putpixel(i*5,(128-(data[i]/12)),lcd.RGB(0,255,0));

 lcd.putpixel(((i*5)+1),(128-(data[i]/12)),lcd.RGB(0,0,255));

 lcd.putpixel(i*5,(129-(data[i]/12)),lcd.RGB(0,255,255));

 lcd.putpixel(i*5,(127-(data[i]/12)),lcd.RGB(255,255,0));

 }

 delay(2000);

}

LCD with SGC firmware installed on its graphic

processor. Reinstall the SGC firmware in case of

any bad segment error. The highlighted code to the

right is inserted in the SD Card algorithm to

communicate with the LCD. The data values passed

from the SD Card are scaled (mapped to 128x128),

so they fit within the scope of the screen.

 The following state diagram presents GCLD state transition process. This algorithm is triggered

and directed by the main structure of RX microprocessor’s algorithm.

27

Fig. 58. GLCD Algorithm

Waiting and
Initiation Screen

Data
Transmission

Ended

NO

5 sec delayYES
NEXT Key
Pressed

Display Next
Signature

YES

End of FileDelete File YES Compute Average

Check critical
heat

Display alarm

YES

NO

NO

The LCD was individually tested, and passed all requirements. It was also tested in system, while

being driven by a portion of RX microprocessor algorithm responsible for communicating SD Card -

using <SD.h> library [8] - to the LCD, and simulated waveforms (sent by TX) were accurately read and

displayed on the screen (Demoed).

Verification

1. The GLCD driver is only compatible with Arduino Compiler 002X.

Passed.

2. Make sure the TX of the microprocessor is connected to RX of GLCD, and the RX of

microprocessor is connected to the TX of GLCD.

Passed.

3. The datasheet and GLCD drivers can be downloaded from the manufacturer website (included in

the references section).

Passed.

4. Make sure when the initialization process is done in the microprocessor the baud rate is set to

115200.

Passed.

5. Make sure the transparent mode is activated during initialization otherwise the GLCD will remain

black all the time.

Passed.

6. Make sure the RESET of GLCD is connected only to the RESET of microprocessor and there are

no other external analogs interfering with the RESET pin.

Passed.

7. The alphabetical print command is passed by reference type and passing strings by value will not

display anything on the screen.

Passed.

28

8. The algorithm that fetches the data from SD card and responsible for ASCII to integer conversion

is embedded within the GLCD algorithm. Any type of conversion (down sampling) should be

performed with respect to GLCD screen size with minimum loss of data.

Implemented in SD Card algorithm, Passed.

9. The most number of pixels shown on the horizontal scale is 128 so the data points for each heat-

signature which is usually in the range of roughly 300-500 should be down sampled by a factor of

2 to 4. The algorithm should calculate the exact down conversion rate (for example 2.34 for the

case of 300) so the down sampling conversion is optimized for minimum data loss.

This algorithm was implemented on the TX microprocessor for 26 points.Instead these

algorithms copies/overlays each waveform four times with different colors to provide some

volume.

10. After all the train wheels are scanned (detected by the microprocessor when a delay of 3s is seen

between the transducer pulses), the user gets access to read the SD card and activate the GLCD

algorithm. If GLCD and interference keys are not locked during that time, the writing process

gets interrupted and data samples will be lost. Therefore, check proper triggering of GLCD

algorithm controlled by the main running algorithm on RX microprocessor.

To be implemented in RX algorithm.

11. If the data on the screen has missing components that could be caused by static arrays which

should be avoided and instead utilize heap memory.

Passed.

12. The algorithm structure should allow a minimum of 5ms for each write instruction as well as

clear and refreshing signals. So displaying a full heat signature can take up to 0.6 seconds.

Checked using millis() function, Passed.

13. Reset the GLCD and microprocessor if they do not hand shake and random pixels are displayed

on the screen.

Tested.

SD Card
The memory unit of RX module

consists of a SD card (secure digital flash

memory). It is powered from a 3.3V

supply. The SD card is responsible for

storing the data sent by the RX

Microprocessor via SPI [8] (Serial

Peripheral Interface) bus. The data will be

stored in a text file. Each sample from the

wheel signature will be separated by a

comma and the data between every wheel

will be delimited by the # character. This

format makes it easier for the RX

algorithm to read the data for every wheel

and display it on the GLCD.

Writing and Reading

from SD Card

Fig.59 Wiring Diagram for

testing [8]

The Write to SD Card

and Read from SD Card

codes are included in

Appendix E.

Both codes are part of

the main code in the

RX Microprocessor.

Employing:

 <SD.h> library [8]

29

Verification

1. Connect the SD card to an Arduino microcontroller as shown in Fig. 7. Upload the ‘card info’

code and ensure the SD card is in the FAT16 or FAT32 file format. Also ensure that the SD card

memory does not exceed 8GB.

The SD card shows the correct file format:FAT32 and the memory is 8GB.

2. Using the same configuration, upload the ‘write to file’ code and check that it takes 2ms at

115200 baud rate using the serial monitor. Repeat this process 6 times to ensure full functionality.

The text file shows that it takes 2ms to write a byte on the SD card. The test was performed 6

times.

3. Using the same code as in step 2, write a predefined array of 20 digits to an empty text file.

Power off the microcontroller. Take the SD card out and check with a card reader that the 20

elements of the array were written only once. Repeat this step 6 times to ensure full

functionality.

The test was performed 6 times. Each time the data was written only once and the array elements

were separated by comma and different arrays were separated by # character.

4. To check the reading functionality, upload the ‘read from file’ code and use the serial monitor to

read serially all the data on the file. Repeat this process 6 times to ensure full functionality.

The test was performed 6 times. Each time, all the array elements included in the text file were

read successfully and the reading algorithm clearly distinguished different arrays.

Keypad
 This block consists of a keypad which will be used for going through the data collected for the

train wheels/bearing. This is connected to the Main Processor through the GUI processor. A pushbutton,

NEXT, is used to access the next heat signature data. A RESET pushbutton is also implemented to reset

the processor and GLCD unit if needed. The RESET can be used to refresh the program and delete the

contents of SD card.

Verification

1. Connect the pushbutton in series with a 1KOhm resistor and an LED. Power up the circuit by 5V

power supply. Press the pushbutton and observe the LED light up.

Passed.

2. Test the debouncer algorithm. Connect the pushbutton to digital pin 4 on Arduino Uno. Load the

program Debouncer.ino. Open the Serial Terminal. For a short press on the pushbutton only one

character should be observed. When the pushbutton is continuously held down, a string of the

same character should be observed as long as the pushbutton is kept pressed.

Passed.

30

RX Microprocessor

Bootloading Atmega328 – Fuse Configuration

Follow the procedures from TX unit.

Programming

This block uses the ATMEL328 chip to analyze the data received by the RX block. It has an

algorithm that searches for the transducer pulses. As soon as a transducer pulse is observed, a counter is

triggered which interrupts data analysis if the time between valid transducer pulses is greater than 3

seconds. Another algorithm works in parallel to check for data between the transducer pulses and send it

to the memory block. If the time between the two transducer signals is greater than 3 seconds, the user

gets the permission to access the data from the SD card. The 3 second time interval is calculated for a

train traveling at 20mph. So, if the time interval is greater than 3 seconds, it means that the train passed

over the site and all the wheels/bearings are scanned. Look at appendix E for RX processor program.

PCB Design

Eagle design tool kit [9] was used to prepare the PCB layout of this project. The design

rules followed in the design of PCBs are as follows:

 Design for one layer.

 Design for minimum area, and compact configurations.

 Design mother/daughter boards, so latter adjustments and revisions do not require change

of all parts.

Fig60. RX program follow chart

Send data to SD card

Close the text file

Open the file to be
read

Read Character

“ * ” received

YES

User requested
data

Read # and update
array

Send to GLCDEnd of fileClose file YES

NO

Write “ * ”
to SD Card

NO

Next Button
Pressed

YES

NO

RX XBEE Delete File

31

 Provide test-points for easy troubleshooting.

 Use appropriate routing size for specific currents, to increase reliability of operation in

extreme current drives.

 Placement of general purpose block near and in one board, such as power supplies,

processors and wireless units.

The boards’ layouts are shown as follows:

Fig.61 TX Signal (Daughter) Board Fig62. TX Mother Board

Fig63. RX Board

The boards were milled, components were soldered, and the sub-circuits were tested

modularly - block by block - to ensure proper operation/quality as they were functioning on the

bread board design. The following images show the finalized version of our design.

32

Fig.64 TX Mother mounted on

top of Signal Board, top view.

Fig.65 TX Mother mounted on top of Signal Board,

side view.

Fig.66 TX Mother mounted

on top of Signal Board,

bottom view.

Fig.67 RX Board, Top

view.

Fig.68 RX Board, bottom

view.

33

Field Compatibility
 The TX unit header socket (female input

connector) was designed to match the SDC2000

Hotbox series terminals [1]. In other word, this

system is ready for field operation simply by

plugging the header socket to the communication

board of the Hotbox system. As the figure below

indicates, there are two available terminals with the

described connections on the communication board

of Hotbox system. Terminal #1 is connected to the

north/west bound track, and Terminal#2 is connected

to the south/east track. Upon construction of two TX

units with their specific wireless network ID, both tracks can be monitored using the designed RX unit.

Cost Analysis

Labor

Member $/hour # of weeks hours/week Total of hours Subtotal Multiplier (x2.5)

Pourya Assem 40 13 14 182 $7280 $18200

Paul Lupas 35 13 14 182 $6370 $15925

Grand Total $34125

Parts

Parts Quantity Cost/unit Total

Atmel-Atmega328 Microprocessor 3(one burned) $6.00 $18.00

Digi-XBEE 1mW with Chip Antenna Transceiver 3(one burned) $24.00 $72.00

SD Card Slot 2(one burned) $19.00 $38.00

SD Card 8GB 1 $8.00 $8.00

GLCD 2(one burned) $29.00 $68.00

High impedance Audio Transformer (Choke) 2 $7.00 $14.00

0.5A Fuse + Holder 3 $2.00 $6.00

TTL Quad NAND 74LS00 1 $1.00 $1.00

Resistors 11 $0.10 $1.10

Capacitors 14 $0.05 $0.70

20MHZ XTAL + Isolator 2 $1.50 $3.00

Potentiometers 3 $0.50 $1.50

Connectors 8 $0.10 $0.80

Fig.69 The HotBox terminal for dual rail track

34

Transistors 3 $0.15 $0.45

IC Sockets 6 $0.05 $0.30

74HC00 1 $1.00 $1.00

74HC153 1 $1.00 $1.00

LM7805 2 $2.00 $4.00

UA78M33 2 $2.00 $4.00

LM324 1 $2.00 $2.00

Push buttons 2 $0.50 $1.00

PCB 2 $15.00 $30.00

Screws, Rubber feets, Spacers, Wires - - $4.00

Grand Total $279.85

Grand Total

Labor Parts Grand Total

$34,125 $279.85 $34,404.85

Testing Results/Accomplishments
Up to this point, we have the system fully working and tested as specified in the Design

Requirements/Verification section. The crucial tasks of this project were successfully completed:

 Identify the transducer pulses for different train speeds (20mph to 65mph)

 Collect uncorrupted heat signature data by using the Active Filter

 Process the collected information efficiently

 Create a wireless link to facilitate data acquisition in unreachable locations or critical weather

conditions

 Store the heat signature on the SD Card for further data analysis

 Create a user interface and graphical display to allow on-site diagnosis

 Make a portable RX Unit by choosing a 9V battery as the power supply

 PCB Mother/Daughter boards design to facilitate later revisions

Refer to Appendix F, for further testing results.

Improvements
The following design changes were made to improve the overall system functionality in terms of

power consumption, processing algorithms, and integrality with future sub-systems. These changes are

the following:

35

 In the TX unit: The main power was drained by the component which could be run at lower

voltages, such as amplifiers and combinational logics. Thus, we decided cut the power

consumption by adding a 3.3VDC regulator to supply the power hungry blocks. Most ICs were

replaced with their lower power package equivalent. These improvements cu the power

consumption by nearly 40%.

 Used a level restorer, so if the incoming transducer signal is low, and the amplifier does not

amplify and clip it properly, we still get a good signal level driving the combinational logic. It

also prevents possible glitches of the TTL logic family used in the design, by leveling up the

signal from 2V to 3.3V, because 2V is close to 1.8V threshold which is the known range of this

TTL family logic. This threshold can be tolerated if the power supply is not capable of handling

the circuit’s drain current or the transducers’ signals are critically low. This improvement

guarantees the quality of operation at extreme limits caused by the varying signal level of

transducers from location to location. By having a precise statistic about the ultimate bounds of

the transducer signal level, the biasing network of the level restorer can be adjusted to guarantee

proper functioning of the device

 Added a chain of inverters to increase the noise margins of combinational logic used to

concatenate/merge transducer signals into one, which increases noise immunity of the system,

and clears most of the possible glitches (noises propagated from the transducers). This is like a

digital filtering of the tolerable noises.

 A waveform analysis was added to the GLCD driver. So it calculated the plotted signal average

and compares it with the critical value. It also shows a conditional message stating result of this

comparison.

 Most of data processing was shifted to the TX processor to cut the data traffic on the wireless

module. This results in lower power consumption, less error rate and more accurate processing.

The TX processor calculates the train speed as the first wheel passes by, and times the sampling

time so only 16 samples are collected per wheel/bearing.

 Toroids replaced by transformers, so the frequency response is flatter over a wider range and

phase delay, which is critical to proper operation of the circuit, is cut to almost 0 degrees.

Furthermore, the drain current from the bungalow was tremendously reduced, because of high

AC impedance of the transformers.

 The software serial was replaced by the hardware serial, to support more devices and increase the

performance accuracy. This implementation utilizes a mux to overcome the task.

 Deleting file on SD card at the beginning of each stage, guarantees proper data logging.

 The socket connector configuration was redesigned to match the connections of the HotBox

interference. The device is ready to be directly installed in the bungalow.

 Lowered the power on the RX and do most of the processing on the TX

 Developed data transmission protocol/technique instead of using heavy programs or libraries to

package/unpackage data. This makes the circuit faster and robust.

 Going to lower use 3.3V for microcontroller as well, but the chip were already bootloaded; On

the other hand 3.3V only supports up to 8MHz.

 Added an automatic hard reset on the TX unit processor. So the timer are refreshed and prevents

the chip to reset their timer cycle in middle of processing a train, which can mess up the

calculations.

36

Difficulties / Uncertainties
A difficulty that came along the way was finding a way to simulate the transducer pulses of the

train system. After many considerations, we have chosen the function generator as the transducer signal

simulator. This works as follows: the square wave is set at a certain frequency that corresponds to the

train’s speed (3Hz for 20mph and 10Hz for 65mph). To generate an active pulse (showing a passing train)

the duty cycle is set between 25% - 40%.

Conclusion

Wrap-up and future work

 All the progress stated in the presented report is considered fully tested (under extreme

conditions, to provide reliability) and functional. Some items/units are added to increase the compatibility

of the systems, and some to resolve unpredicted design flaws.

The overall system was designed to allow upgrades and easy replacement if components are not

functional. As it is the case with electronic systems, this project can also benefit from extra features as

follows:

 Increase the wireless range (if necessary) by using a higher power TX XBEE

 Upgrade the user interface by adding a touchscreen which also replaces the GLCD

 Time stamp the data collected for each train, using a time stamp IC/Algorithm

 Save a multitude of train signatures on the SD Card and navigate through them

 Collect data from multiple tracks using only one TX unit by extending the daughter board

 Implement a Bluetooth Module to connect to an Android App and analyze the data on a mobile

device as the train passes by

Ethical considerations

We adhered to the statements of the IEEE Code of Ethics in designing and testing each subsystem

as follows:

 “3.to be honest and realistic in stating claims or estimates based on available data”

We ensured that all calculations are accurate by consulting the referenced books. All the

conclusions drawn from experimental procedures are supported by data calculations and graphs

obtained from measurements.

 “6. to maintain and improve our technical competence and to undertake

technological tasks for others only if qualified by training or experience, or after full

disclosure of pertinent limitations;”

We applied our analytical and technical skills learned thus far to the best of our abilities

in creating a product that will promote railroad safety. Moreover, we sought professional help

from TAs and instructor when our experience was limited for a certain task. We continuously

upgraded and refined the system, based on what we learned.

 “7. to seek, accept, and offer honest criticism of technical work, to acknowledge

and correct errors, and to credit properly the contributions of others.”

37

In this group project, each person communicated his ideas on improving the design and

provided feedback on the other person’s work in terms of quality and things that needed

improvement. We cited and credited all outside sources. We developed and own the IP, it is a

new idea and there is no similar comparable work available on the market. We modified and

updated our design based on the guidelines provided by our advisers to improve functionality,

rationality, safety, and reliability.

References –need to work on
[1] Courtesy of CN RR authorized by Pourya Assem

[2] Boot loading procedures for the ATMEL328 microprocessor: Courtesy of CN RR, authored by Pourya

Assem

[3] "ATmega328." - Atmel Corporation. N.p., n.d. Web. 23 Oct. 2012.

<http://www.atmel.com/devices/atmega328.aspx>.

[4] Faludi, Robert. Building Wireless Sensor Networks: With ZigBee, XBee, Arduino, and Processing.

Farnham: O'Reilly, 2010. Print.

[5] "T R O N I X S T U F F." T R O N I X S T U F F. N.p., n.d. Web. 23 Oct. 2012.

<http://tronixstuff.wordpress.com/2011/02/18/tutorial-arduino-and-tft-lcd/>.

[6] "ÂµLCD-144(SGC)." ÂµLCD-144(SGC). N.p., n.d. Web. 23 Oct. 2012.

<http://www.4dsystems.com.au/prod.php?id=121>.

[7] "Downloads - Displayshield4d - Arduino Library for the 4Display-Shield by 4D Systems - Google Project

Hosting." Downloads - Displayshield4d - Arduino Library for the 4Display-Shield by 4D Systems - Google

Project Hosting. N.p., n.d. Web. 23 Oct. 2012. <http://code.google.com/p/displayshield4d/downloads/list>.

[8] "Micro SD Card Tutorial - Using SD Cards with an Arduino!" Micro SD Card Tutorial - Using SD Cards

with an Arduino! N.p., n.d. Web. 29 Sept. 2012. <http://www.ladyada.net/products/microsd/>.

[9] "Downloads." N.p., n.d. Web. 09 Dec. 2012. <http://www.cadsoftusa.com/download-eagle/?language=en>.

38

Appendix A – TX Unit Mother Board

Appendix B – RX Unit

39

Appendix C – TX Unit Signal Board

Appendix D – TX Processor Program

Program Continued Continued

unsigned long timer = 0;

unsigned long halt = 0;

boolean flag = true;

int counter = 0;

int gate_open = 0;

int gate_close = 0;

unsigned long time = 0;

int array[16] = {

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0 };

void setup() {

 pinMode(2,INPUT);

 pinMode(3,OUTPUT);

 Serial.begin(115200);

}

void loop()

{

 digitalWrite(3,LOW);

 if(digitalRead(2) && (counter < 2))

 {

 timer = millis();

 while(digitalRead(2))

 {

 }

 if((millis() - timer) > 15)

 {

 counter++;

 if(counter == 1)

 {

 gate_open = millis();

 }

 if(counter == 2)

 {

 gate_close = millis();

 }

 }

 else

 {

 counter = 0;

 }

 }

 if(counter == 2)

 {

 int sample_time = (gate_close -

gate_open) / 17;

 for(;;)

 {

 while(digitalRead(2))

 {

 if(flag)

 {

 halt = millis();

 flag = false;

 }

 }

 time = millis() - halt;

 if((time <= 7))

 {

 Serial.print('*');

 delay(1000);

 digitalWrite(3,HIGH);

 }

 else

 {

 flag = true;

 for(int i = 0; i < 16; i++)

 {

 array[i] = analogRead(A0);

 delay(sample_time);

 }

 for(int i = 0; i < 16; i++)

 {

 Serial.print(array[i]);

 Serial.write(',');

 }

 Serial.write('#');

 //Serial.println(' ');

 flag = true;

 }

 }

 }

}

40

Appendix E – RX Processor Program

RX Program Continued Continued
#include <SD.h>
#include <displayshield4d.h>
DisplayShield4d lcd;
File myFile;
//Variables for NEXT key
const int next = 2;
int previous = LOW;
long debounce = 0;
long time = 50;
//
void setup()
{
 Serial.begin(115200);
 delay(20);
 pinMode(next, INPUT); //the next key is
DIGITAL PIN 2
 pinMode(10, OUTPUT);
 pinMode(7, OUTPUT); //the select bit of data
path
 if(!SD.begin(4))
 {
 return;
 }
 //remove the file upon RESET or Power-ON
 myFile = SD.open("ADATA.txt", FILE_WRITE);
 myFile.close();
 SD.remove("ADATA.txt");
}
void loop()
{
 digitalWrite(7,LOW);
 //remove the file upon RESET or Power-ON
 myFile = SD.open("ADATA.txt", FILE_WRITE);
 delay(10);
 myFile.close();
 SD.remove("ADATA.txt");
 delay(10);
 myFile = SD.open("ADATA.txt", FILE_WRITE);
 //Serial.println("file created");
 // if the file opened okay, write to it:
 if (myFile)
 {
 //Serial.println("file confirm");
 char temp = '@';
 while(temp != '*')
 {
 //Serial.println("waiting for input ...");
 if(Serial.available())
 {
 //Serial.println("The data is");
 temp = Serial.read();
 //Serial.println(temp);
 myFile.write(temp);
 }
 }
 //Serial.println("start closing");
 myFile.close();
 //Serial.println("end closing");
 }
 //Serial.println("start");
 delay(1000);
 digitalWrite(7,HIGH);
 delay(1000);
 //Serial.println("end waiting");
 //Serial.println("here");
 //delay(3000);
 lcd.Init();
 delay(2000);
 lcd.Clear();
 delay(50);
 lcd.setfont(OLED_FONT5x7);
 delay(50);

 //lcd.Clear();
 //delay(50);
 //int data_lcd[18] =
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
 myFile = SD.open("ADATA.txt");
 if (myFile)
 {
 //Serial.println("start");
 while(myFile.available())
 {
 //Serial.println("here");
 int data_lcd[50] =
{0,
0,0};
 int number = 0;
 char data =(myFile.read());
 int k = 0;
 int total = 0;
 while (data != '#' && data != '*')
 {
 //Serial.println("here");
lcd.drawstringblock(5, 106, 0, lcd.RGB(255, 0,
255), 1, 1, "THANKS FOR A+");
 delay(5000);
 int new_data[3]= {
 0,0,0 };
 int count = 0;
 while (data != ',')
 {
 new_data[count] = int(data)-48;
 //Serial.println(new_data[count]);
 count++;
 data =(myFile.read());
 }
 if(count == 1)
 {
 number = new_data[0];
 }
 if(count == 2)
 {
 number = new_data[0]*10 + new_data[1];
 }
 if(count == 3)
 {
 number = new_data[0]*100 + new_data[1]*10
+ new_data[2];
 }
 total = total + number;
 //Serial.println(number);
 data_lcd[k] = number;
 k++;
 data =(myFile.read());
 }

 //THE DEBOUNCE KEY

 boolean ready = false;

 while(ready != true)
 {
 int switchstate;

 int reading = digitalRead(next);

 if (reading != previous)
 {
 // reset the debouncing timer
 time = millis();
 }

 if((128 - total) <= 76)
 {
 lcd.drawstringblock(5, 31, 0, lcd.RGB(255, 0, 0), 1,
1, "AVG ABOVE HEAT ALARM");
 delay(50);
 }
 else
 {
 lcd.drawstringblock(5, 31, 0, lcd.RGB(0, 255, 0), 1,
1, "AVG BELOW HEAT ALARM");
 delay(50);
 }
 lcd.drawstringblock(5, 63, 0, lcd.RGB(255, 0, 0), 1,
1, "HEAT ALARM");
 delay(50);
 lcd.line(0, 76, 127, 76, lcd.RGB(255, 0, 0));
 delay(50);
 lcd.drawstringblock(100, 128 - total - 13, 0,
lcd.RGB(255, 0, 255), 1, 1, "AVG");
 delay(50);
 lcd.line(0, 128 - total, 127, 128- total, lcd.RGB(255,
0, 255));
 delay(50);
 for(int i=0;i < 16;i++)
 {
 //Serial.print(data_lcd[i]);
 //Serial.print(" ");
 //Serial.println();
 lcd.putpixel(((i*8)-1),(128-
(data_lcd[i]/8)),lcd.RGB(255,0,0));
 lcd.putpixel(i*8,(128-
(data_lcd[i]/8)),lcd.RGB(0,255,0));
 lcd.putpixel(((i*8)+1),(128-
(data_lcd[i]/8)),lcd.RGB(0,0,255));
 lcd.putpixel(i*8,(129-
(data_lcd[i]/8)),lcd.RGB(0,255,255));
 lcd.putpixel(i*8,(127-
(data_lcd[i]/8)),lcd.RGB(255,255,0));
 }
 delay(100);
 //Serial.println("next wheel");
 }
 //Serial.println("hello");
 lcd.Clear(); // clear LCD
 delay(50);
 lcd.drawstringblock(5, 5, 0, lcd.RGB(255, 255, 255),
1, 1, "FILE TO BE CLOSED");
 delay(50);
 myFile.close();
 delay(1000);
 lcd.Clear(); // clear LCD
 delay(50);
 lcd.drawstringblock(5, 5, 0, lcd.RGB(255, 255, 255),
1, 1, "FILE IS CLOSED");
 delay(50);

 //Serial.println("final close");
 }
 //Serial.println("end");
 delay(1000);
 lcd.Clear(); // clear LCD
 delay(50);
 lcd.drawstringblock(5, 5, 0, lcd.RGB(255, 255, 255), 1,
1, "FILE TO BE DELETED");
 delay(50);
 SD.remove("ADATA.txt");
 delay(1000);
 lcd.Clear(); // clear LCD
 delay(50);
 lcd.drawstringblock(5, 5, 0, lcd.RGB(255, 255, 255), 1,
1, "FILE IS DELETED");
 delay(50);

41

 lcd.setfontmode(OLED_FONT_TRANSPARENT);
 delay(50);
 lcd.drawstringblock(5, 5, 0, lcd.RGB(255, 255,
255), 1, 1, "HOTBOX CAL SYS");
 delay(50);
 lcd.drawstringblock(5, 18, 0, lcd.RGB(0, 255, 0),
1, 1, "VERSION 1.0");
 delay(50);
 lcd.drawstringblock(5, 31, 0, lcd.RGB(255, 0,
255), 1, 1, "ECE445 DEMO");
 delay(50);
 lcd.drawstringblock(5, 44, 0, lcd.RGB(255, 0, 0),
1, 1, "Design Team:");
 delay(50);
 lcd.drawstringblock(5, 57, 0, lcd.RGB(255, 0, 0),
1, 1, " *Pourya Assem");
 delay(50);
 lcd.drawstringblock(5, 70, 0, lcd.RGB(255, 0, 0),
1, 1, " *Paul Lupas");
 delay(50);
 lcd.drawstringblock(5, 93, 0, lcd.RGB(255, 0,
255), 1, 1, "GIVE US A+");
 delay(50);

 if ((millis() - time) > debounce)
 {
 switchstate = reading;
 if (switchstate == LOW)
 ready = true; //next key has been pressed
 }
 previous = reading;

 }
 //Display the next wheel signature

 total = total / (15 * 8);
 //Serial.println("here");
 lcd.Clear(); // clear LCD
 delay(50);
 lcd.drawstringblock(5, 5, 0, lcd.RGB(255, 255,
255), 1, 1, "HEAT SIGNATURE");
 delay(50);
 lcd.drawstringblock(5, 18, 0, lcd.RGB(255, 0, 255),
1, 1, "ALARM STATUS:");
 delay(50);

 //Serial.println("remove");
 //delay(1000);
}

Appendix F – Testing
Below is a sample data logged by the system into the SD card. As shown, the window’s length is

16 for all heat profiles. Each profile is distinguished by ‘#’ and each sample point within the profile is

distinguished by a ‘,’. The file is ended by ‘*’. These are the handles which RX unit uses to fetch, access

and analyze the data received from the TX unit. As shown on the right, the heat

301,237,176,120,72,35,10,0,2,19,50,91,143,

201,264,329,#417,47542,563,565,546,508,4

53,387,313,237,164,100,48,14,0,4,29,#198,2

73,349,420,481,528,557,567,556,525,477,41

5,343,267,193,123,#3,0,17,52,105,170,244,3

20,394,460,512,548,566,563,539,495,#298,2

22,151,88,41,10,0,8,37,83,144,215,291,366,

435,491,#566,551,517,465,400,327,251,177,

111,57,19,0,2,24,64,118,#336,409,472,521,5

54,567,559,532,487,427,356,281,205,135,76

,31,#12,45,95,159,231,307,381,449,504,543,

564,564,544,506,451,382,#162,98,47,14,0,5,

30,74,133,203,277,353,424,484,530,555,#52

3,475,412,264,190,121,65,24,2,0,18,55,108,

174,247,#*

