A PARALLELIZED ALGORITHM FOR
HYPERSPECTRAL BIOMETRICS

By

Christopher Baker
Timothée Bouhour

Akshay Malik

Final Report for ECE 445, Senior Design, Fall 2012

TA: Lydia Majure

10 December 2012

Project No. 1

Abstract

The parallelized algorithm for hyperspectral biometrics uses the processing power of a GPU (Graphical
Processing Unit) to compare hyperspectral images of people’s faces. The feature extraction algorithm
first retrieves uniquely identifiable features from raw hyperspectral data from 64 bands and creates
both a database and individual target files. Using these files, the comparison algorithm written in CUDA
C compares a given target against the database and returns the top five matches, their calculated
distance from the target, and their security clearance level. A wireless door locking mechanism can be
engaged to simulate unlocking and re-locking any of four doors based on the given security rating. The
feature extraction algorithm is accurate to within 2% of actual location and the comparison algorithm
returns the target in the top 5 matches 65% of the time. The wireless door locking assembly works as
expected although it occasionally has packet corruption errors in its communication. Improvements can
also be made in the range of data that the feature extraction algorithm accepts and in the accuracy and
speed of the comparison algorithm.

Contents

L INEFOAUCTION ettt sttt s e e s e s e s e e s et e st e s e e e sanes 1
1.1 Feature EXtraction AlZOMITNM ... e e e e e e e e s s e e e e e e e e s ennnnnes 1
1.2 Parallel Comparison AlZOrthm . ..o e e e e e e e e e e e sannes 2
1.3 Wireless Door LOCKING ASSEMDIY ..ot e e e e e e e e s s s e er e e e e e eeaeeessnnnnnnns 2

B B T E] =4 o T TP PPN 3
2.1 Feature EXtraction AIZOIERMcciiiiii e e e e s s e a e e e e e s 3

2.1.1 I1dentification Of fEATUMEScocvii i 4
2.1.2 Feature EXTraCtioNccooiiiiiiiiiiiieiiiic et 4
2.1.3 Building the Database and Target files ... 6
2.2 Parallel Comparison AIZOTItMiciii i e e e e e s e s s brreereeaaaeeee s 6
2.2.1 Method Of COMPAIiSON......uuiiiiiiiiie et e e re e e e e e e e e s saberteeeeeeeeeeessssnnsenrereeeeaaesees 7
2.2.2 Sequential Algorithm IMplementation ... 8
2.2.3 Optimization of Loop Order and IMEMOIYcceiiiiiiiiiiiiiiitieee e e e e e eesrierrree e e e e e e e s s svarrrreeeeeaeeee s 8
2.2.4 Thread ParalleliSmm ..c..eii it 10
2.2.5 CONCUITEINCY uuttetttttiieeeeeetttteseeeettte e e seettatasaeseetaasaasseeeaeernnsnsseeranssnssseesessnnnseeeseessnnnseeerensnnsesenns 11
2.2.6 Final IMplementation. ... e e e e e e e e e e s e s aee e 12
2.3 Wireless Door LOCKing MEChaniSMcoccuiiiiiiiiieiee et e e e e s s s e s saabe e neeeeaeeeeenan 13
2.3.1 Overall fuNCHIONATILY cooeeeeeeeee e e e e e e e s e aee e 14
2.3.2 PCB Design and H-bridge functionalityuueeeeeiiiiiiiie e 15
3.1 Feature EXtraction AIZOIERMceiiiiiii e e e e e a e e e e e e e ean 16
3.2 Parallel Comparison AlZOIthMc.ciii i e e e e e s e s aereeaeeeeeean 16
3.2.1 Accuracy and Output Verificationsooieeciiiiiiiieccc e e 16
3.2.2 Algorithm SPEEA ANAIYSIS .o es e e e e e e e e s s e e e e e e s e e e e nrarrereees 17
3.3 Wireless Door LOCKing MEChaniSMoocvuiiiiiiiiieeee ettt e e e e e s s e s s saabereeeeeeaeeeeeean 18

L 0 3 PPN 19
Lt T (PP 19
L I | oo T LT TP PR PP PP 19

5. CONCIUSION ettt st e e e e s e et esab e e e sar e e e sar et e sane e e snreeesanee s 20

2] LT = Tl OO PP PP PP PR OPRPPPPPTR 21

Appendix A Requirement and Verification Table........uiiiiiiiiccieece e 23

FaY o] o1 oo LDt = T o 01 3 - YoYU PP 26

1. Introduction

In the modern world unique person identification has become an increasing challenge, central to
strategies in combating terrorism and crime to provide global security. Recent research has shown that
hyperspectral imaging provides new and improved biometric data, which can be leveraged to meet this
challenge by examining features in different spectral bands.

Hyperspectral imaging provides light intensity information on a spectral band of different wavelengths,
as opposed to a regular image that only typically provides R, G and B values for each pixel. For this
project, the database of hyperspectral data includes information from 65 bands spaced evenly (every 10
nm) in a spectrum of wavelengths from 450 nm to 1100 nm. It has been obtained from Carnegie Mellon
University [1]. This visual data shows much promise because near infrared bands have been proven to
gather data past 1cm into subcutaneous (below the skin) tissue [2]. A method that can effectively use
this type of biometric data would be much harder to counteract than a standard facial recognition
system.

Despite its promise, this method of identification still has some challenges, which must be addressed
before it can be applied in the real world. One of those challenges is dealing with the massive amount of
data that a hyperspectral sensor generates. Another is implementing a reliable algorithm to successfully
run comparisons and putting together a useful package able to interpret hyperspectral sensor data.

The system described in this document successfully implements a feature extraction algorithm that is
2% accurate over our testing database, a reliable algorithm for feature extraction that returns the target
in the top 5 matches 65% of the time, and a wireless door locking assembly that successfully simulates
the locking and unlocking of four doors wirelessly from a web browser. The door locking assembly does
suffer from packet corruption and could be made more robust. Further improvement could be made in
the range of inputs the feature extraction algorithm can take as well as in the precision of the
comparison algorithm.

Though some implementation decisions have changed, these three main blocks and their functionalities
have remained the same throughout the development process.

1.1 Feature Extraction Algorithm

The system described in this document addresses these engineering issues by combining three major
blocks shown in Figure 1. The first block is a feature extraction algorithm, which selects the most useful
bands and points of a hyperspectral image. This algorithm selects an optimal group of nine by nine pixels
in the regions of the forehead, lips, right cheek, left cheek, and hairline. For pixel in a batch, the
intensities for the 30 bands found to be the most useful are stored. The entire collection of data thus
created is then either stored in an individual file to be used as a target for comparison, or added into a
large database.

Feature Extraction Parallel Comparison Wireless Door

Algorithm Algorithm Locking Mechanism

Figure 1 - Design Block Diagram

The performance requirements for the feature extraction algorithm are to use hyperspectral data,
identify the position of features in an image within 10% accuracy, and output a database of at least 20
real subjects and 180 generated normalized subjects with intensities in the same range as the real
subject intensities for each band.

1.2 Parallel Comparison Algorithm

The second block is a fully parallelized algorithm written in CUDA C (a parallel programming language).
This algorithm leverages the Kepler architecture of CUDA GPUs (Graphical Processing Unit) to optimize
the comparison of all intensities and achieve higher performance than a functionally identical sequential
algorithm running on a CPU (Central Processing Unit). The algorithm compares all the features included
in a target subject file against the features of the subjects in the database. It outputs an ordered list of
the top five matches in the database, along with the calculated distance and their security level. At this
point, the security level is randomly generated for each subject and stored in a separate database.

The performance requirements for the algorithm are to be able to run compare any target with every
entry in the database, output the top 5 matches in order, and have the target within these top 5
matches 50% of the time.

1.3 Wireless Door Locking Assembly

The third block is a door locking mechanism composed of a wireless router, microcontroller, and a PCB
hooked up to four motors. The motors are used to simulate the operation of door locks disengaging and
re-engaging. The purpose of this block is to provide a real-life example application of the algorithm. The
microcontroller hosts an http web server that a user can access through any browser connected to the
same wireless network. In the browser, the user can select to simulate the unlocking of any four doors
by clicking links. The microcontroller will then use digital outputs to rotate one of the four motors one
way for three seconds, and the other way for three seconds after a one second pause.

The performance requirements for the door locking assembly are to receive and act on signals from the
computer, correctly engage the desired motor when requested, and properly rotate this motor for three
seconds in one direction followed by three seconds in the other with a one second pause in between.

2 Design

2.1 Feature Extraction Algorithm

The purpose of this module is to extract the spatial locations of features from a subject’s face and obtain
the relevant information for each feature for every subject. This algorithm is used to build the database
and also obtain the radiance information for a target subject that is compared against the database. By
storing only specific information for each subject, there is minimization of the amount of memory
required to store data for a large set of people. Figure 2 shows the flowchart design for this algorithm.
The data obtained from a research project at Carnegie Mellon University [1] contains 46 subjects. Out of
these, 10 had one session only, 10 were used for training purposes, and 26 were used for testing the
final algorithm. Each session information contained image files built from radiance information for each
of 65 bands of wavelengths ranging from 450 nm to 1100 nm. These were converted into a single
MATLAB file for each session for every subject in a format that contained 65 radiance numbers for each
pixel in the 640*480 pixel image.

Identify features for
unique recognition

A 4

Extract handler features to

locate comparison

|

Pick an area of N*N pixels

features

around each feature

l

Store a set of M vectors
derived from the N*N
square to the database; or

use for comparison against
the database

Figure 2 - Feature Extraction
Algorithm Flowchart

2.1.1 Identification of features

The first step was to identify the features that would be easy to extract and a combination of which
would be sufficient to uniquely identify a person. After extensive research and literature review [1][3],
we decided to use the hyperspectral information from the cheek tissues, lips, forehead and hair for each
subject to store and compare. It should be noted that some features may have been left unexplored,
and as a design alternative different features could have been picked.

2.1.2 Feature Extraction

The next step was to extract the positions of these comparison features. To achieve this, we realized
that it was more appropriate to extract the positions of the eyes, lips and hair, because of the gradient
between the radiance information for these attributes and the skin tissue, as demonstrated in Figure 3.
These ‘handle features’ are then used to geographically map out the face of the subject and extract the
positions of the comparison features (cheeks, lips, forehead and hair). The highlighted band in Figure 3
was used to perform the extraction of these features.

140 F L L L L L L
& Skin
1201 Lips
\ Eyes
L ‘ VA SR ‘ |
100 [" - iy
Q) "‘I‘ ‘L‘\\ //, \'. ““ “‘\
2 80 [/ 4 AV |
S ‘(\\/‘/ \2\) /
2 60 | ANA,)
(a4 \ | Ll ‘; | \ _“v 9
40 ‘V/\ | aﬂ \ / 7
{ /X N_A J) A /g/\\\ - /,/A\ //’\\V A/ N
20 K [\ \ / N _/_/—\«/,;\//\/ \/ V |
\\ ;/ \ N NS |
0, - V i I\V/\/ - . £ r r r -
450 550 650 750 &850 950 1050 1150
Wavelength(nm)

Figure 3 - Chart of the Radiance versus Wavelength for the handler features and skin tissue of subject 2

4

The algorithm uses the gradient between the radiance from the background and the hair to find
coordinates for the left, right and upper bounds of the face. These coordinates are used to find the
center of the face, which is located somewhere in the nose area. Since the orientation is fixed for all
faces in the data set, the left eye is always in the upper left region (Quadrant 1), the right eye is in the
upper right region (Quadrant Il) and the lips lie somewhere below the center of the face. To extract the
pixel locations relevant to the left eye, the algorithm performs a modified version of breadth-first search
in Quadrant I, considering each pixel on the upper and left edges of squares growing outwards in
Quadrant | as shown in Figure 4. The information for this pixel is compared to the pixel at the center of
the face and pixels sufficiently above and below (approximately 1/10th the total length of the face). If
the current pixel intensity is sufficiently different (60-70% less) as compared to these three pixels, a test
is performed in a small square centered at the current one to re-affirm that the current pixel is actually a
part of the left eye rather than an inconsistent data point. This test includes checking all the pixels in the
small square and ensuring that at least 60% of these have radiance values within 20% of the pixel under
consideration. The dimensions of the face determined the size of this square (1/30th the width of the
face).

The algorithm continues a search in the rest of the first quadrant and picks other pixels that satisfy the
criteria. Pixels which are further than 1/10*width of the face from the first pixel picked are discarded to
ensure that none of the pixels in the hair or eyebrows are picked. Since the left eye is the first feature
with sufficient gradient encountered from the center of the face which performing such a search, all
pixels that are considered are part of the left eye. The center coordinates of the left eye are calculated
by averaging over the coordinates of all the pixels that were picked. The same algorithm is applied in
Quadrant Il to calculate the coordinates of the center of the right eye. For the lips, the area below the
center of the face lying between the centers of the eyes is considered, and a similar search is performed.

Once these three handler feature positions are extracted the x-coordinates of the cheeks are
determined as the x-coordinates of the eyes and the y-coordinates of the cheeks are found by averaging
the y-coordinates of the center of the eyes and lips. The forehead x-coordinate is the x-coordinate of the
lips and its y-coordinate is determined to be at a distance equal to half the x-distance between the eyes
above the center of the eyes. The hair position is considered as the location for the upper bound of the
face.

Thus, this algorithm extracts the locations of the features needed to uniquely identify a person from an
input image of a person’s face.

Our algorithm works well for data where the entire face is captured from a front view, as was the case
with the data from CMU. Alternatively, more advanced image-processing techniques such as eigenfaces
[4] or linear discriminant analysis [5] could be used for real world data and further improvements could
be made to increase the robustness of the current algorithm.

Figure 4 - demonstration of feature extraction on subject 2

2.1.3 Building the Database and Target files

The next step is to build a binary file for each subject. This is done by considering squares of size 9*%9
pixels centered at the extracted coordinates for the hair, lip, cheeks and forehead, normalizing radiance
across all 65 wavelength bands for each pixel in those squares and inserting this in a specific format into
a binary file. Since the near IR region is the one most relevant for facial recognition, only the information
for the 30 bands from 700 nm to 1000 nm was stored in the binary files for every subject. For building
the database, binary files built from session 2 of the data set we had obtained from Carnegie Mellon
University were used for each subject and combined into a single database file. Session 1 binary files
were used as targets for comparison in the identification algorithm. The demo database had entries for
26 real subjects from the Carnegie Mellon University data and a variable number of randomly generated
subjects for timing measurements for the parallel algorithm.

A more extensive analysis might reveal the dominance of other bands and features, which can be used
in the database. There could also be different formats for developing the database that might lead to
further compression of information.

2.2 Parallel Comparison Algorithm
The Parallel Comparison Algorithm, as described previously in section 1.2, handles the comparison of
target data to a database in order to identify the target.

This section will first discuss the chosen method of comparison (2.2.1) and the serial algorithm
developed for benchmarking (2.2.2). It will then move on to discuss the development of the parallel
algorithm from the serial algorithm (2.2.3 — 2.2.5) and finally conclude with an overview of the final
implementation (2.2.6).

2.2.1 Method of Comparison

The direct method of comparison between one subject and another rests at the core of the comparison
algorithm. This piece of the design was created first, since its validity and accuracy are what make the
algorithm useful. Inspiration for the design presented here came heavily from the successful algorithm
presented in “Face Recognition in Hyperspectral Images” [3].

In choosing how to compare subjects were compared, the following aspects were considered:

1. Use of hyperspectral data
2. Accuracy
3. Data storage
The use of hyperspectral data and accuracy are intuitive, since the system is designed to demonstrate

the potential to use hyperspectral data as a biometric. The data storage aspect is less intuitive but
carries high importance. All data used for comparison must be stored, and storing more data leads to a
greater requirement for memory space. This data must also be copied many times in the process of
comparison and larger copy operations would significantly increase the runtime of the algorithm.

To address our considerations, the method of comparing the hyperspectral content of a set of features
at fixed positions was adopted from “Face Recognition in Hyperspectral Images” [3]. This allowed for the
algorithm to use a greatly compressed database, since it only needed to store the data for the relevant
features. The method of taking the distance summed over multiple features had also been shown to be
accurate previously and entirely reliant on the hyperspectral content of the feature rather than any
gradients or spatial data [3].

The features (storage previously defined in 2.1.3) each consisted of nine by nine pixel boxes defined
around five locations (see 2.1.2) where each pixel was represented as a vector of intensities in the
various hyperspectral bands.

To compare the features, the algorithm would first average the vectors for each three by three square of
pixels (resulting in nine vectors total) to attempt to reduce the affect of outliers. After obtaining these
nine vectors, a distance would be calculated by taking the Mahalanobis distance between each of the
nine vectors from each of the two features being compared (resulting in 81 distance calculations). The
result of each Mahalanobis distance would then be summed to form the total distance for the given
feature as another attempt to reduce the affect of outliers. Once a distance was calculated between
each of the features in the two subjects with the same spatial location, the five feature distances were
summed to obtain the final distance between two subjects.

In the vector distance calculations, the algorithm uses Mahalanobis distance calculation (see below) as
opposed to Euclidian distance because the data varies differently in different bands as observed by
Zhihong, Healey, Prasad, and Tromberg [3]. The Mahalanobis distances takes into account the expected
variance of intensity in each band individually by using a precision matrix in the calculation. The
precision matrix forms by using the data from the database as a sample of variation in different bands
across the facial tissue.

dZ,5) = V@ —PTS 1 - 7)

Equation 1 — Mahalanobis Distance calculation where S is the covariance matrix and x and y are the column vector results of
averaging boxes of 3 by 3 pixels

2.2.2 Sequential Algorithm Implementation

In developing the Parallel Comparison Algorithm, it was first necessary to create a simple sequential
algorithm for benchmarking and to use as a starting point for parallelization. Figure 5 depicts how the
algorithm progresses through the comparisons, which define its runtime.

The sequential algorithm progresses in a logically straightforward manner, comparing the target passed
to it against each subject in the database one at a time and storing the distance if it is one of the
shortest five distances seen so far along with the name and access level of the potential match. Within
the comparison of each database entry to the target, all features are compared in a set order with the
distance between features being calculated by the two innermost loops.

For large datasets, the runtime of this algorithm, defined by the outermost loop, is on the order of O(n)
where n is the number of entries in the database (linear time increase for additional subjects added to
the database). This runtime could of course greatly increase or decrease if the algorithm was modified in
further work to compare more features or do a more detailed comparison of features since this would
result in many more iterations of the inner loops. The algorithm is thus relatively slow for extremely
large databases and poorly scalable. The parallel algorithm will focus on improving these flaws.

2.2.3 Optimization of Loop Order and Memory

The first consideration in converting the sequential algorithm to a parallel algorithm focused on
removing the O(n) runtime caused by the outer loop iterating over each entry in the database. It would
be ideal to achieve O(c) runtime (no time increase for additional subjects added to the database except
from hardware constraints), but even O(log(n)) runtime would be a vast improvement (logarithmic time
increase for additional subjects added to the database).

Database Entries }

AN

Features |

Entry Vectors |

<Target Vectors

Y
—»{ | H H ||| }>

Figure 5 - Sequential algorithm loops

Features |

Database Entries

PANVEN

Target Vectors

Entry Vectors |

AVAN

—>{ I | | | >

Figure 6 - Changing of loop order from the sequential algorithm to the parallel algorithm

The seemingly logical way to overcome this problem is to parallelize all the loops. This would in theory
solve the problem and yield O(c) runtime, but in practice it does not allow for enough data granularity to
optimize performance on the hardware. The GPU hardware used by the parallel algorithm has special
memory caches (discussed later in this section) that are of limited size. In order to optimize use of these
caches, we would like to break the data into its smallest comparable segments, which are features. This
desire results in the inversion of the “Feature” and “Database Entries” loops from the serial algorithm

The loop implementation in Figure 6 now calculates the distances from all features of one type to that
feature of the target for each iteration of the outer “Features” loop. The distances are stored into arrays
and summed later in parallel to calculate the distance between each subject and the target at time cost
O(c) (not displayed in figure), which is insignificant in dealing with large data sets.

The above implementation also yields another novel result by putting the features loop on the outside.
Since there are a fixed number of features to be compared, the runtime of the “Features” loop is O(c)
and therefore does not need to be parallelized as it is only repeated once. We now only need to
parallelize the three inner loops to achieve a great speed up.

Returning to the topic of data granularity and hardware memory cache constraints, the data, now in
more granular form, needs to be fitted to memory caches in the hardware to optimize read and write
times. There are two kinds of caches that we will use. Constant memory can be read rapidly from
anything executing on the GPU and is read only. It will remain having whatever value is loaded into it
until the host (computer controlling the GPU) loads something different into it. Shared memory is
specific to a group of threads executing on the GPU referred to as a block (512 threads in this
implementation). The shared memory can be read and written to rapidly.

For the implementation preformed here, the feature of the target and the precision matrix used will be
constant for all Mahalanobis distance calculations preformed, so they will be loaded into constant
memory. Since the feature data for each database entry is only used once, this will be stored into the
shared memory specific to each block.

The implementation done in this project used a GeForce GT 650M GPU made by NVIDIA, which has
65536 bytes of constant memory and 49152 bytes of shared memory per block.

Performing calculations to validate implementation:

(bytes floats 9vectors> (bytes floats

= 4680 byt
float i vector i feature) ytes

4 * — -
float precision matrix

Equation 2 - calculation of the bytes required for constant memory

4670 is inferior to 65536 so constant memory will fit the precision matrix and target feature data easily.

49152 bytes

bytes floats vectors bytes floats)
(4 float *30 vector 9feature) + (4 float *81 feature

= 35 features

Equation 3 - calculation of the number of features per block based on memory limitations

Therefore each block of threads has enough memory to handle up to 35 features.

The constant memory has ample memory space for the feature from the target we want to store along
with the precision matrix for that feature type. We also see that each block we schedule can have a
maximum of 35 features from database entries based on the size of shared memory.

2.2.4 Thread Parallelism
Having addressed the memory concerns and loop ordering, this section moves on to discuss how groups
of parallel threads are scheduled to preform operations.

When using CUDA to program a GPU, processes are written as kernels since they interact directly with
the hardware rather than interfacing through an operating system. Each kernel in the case of our code
schedules one block of 512 threads. This thread number was chosen since either 256 of 512 threads per
block are considered to be optimal for NVIDIA’s Kepler architecture (the most recent GPU hardware
architecture supporting CUDA).

Thread limit on features that can be processed by one kernel/block:

threads

512 “block 6features
threads ~ = block
feature

Equation 4 - calculation of the number of features per block based on thread limitations

After preforming this calculation, it is clear that the number of threads and not the memory size will be
the limiting factor for this dataset in calculating the number of features to be processed per block. It is
important to note that the additional granularity of data allowed six features to be processed per block

10

still as opposed to the five that belong to a single entry, resulting in more optimal hardware resource
usage.

Before deciding on the one block per kernel implementation, there was a decision to make between
scheduling multiple blocks in one kernel and scheduling multiple kernels to deal with each feature. The
choice to schedule only one block per kernel was decided upon to achieve better granularity for
hardware concurrency that will be discussed in the next section.

2.2.5 Concurrency

Concurrency exploits the GPU hardware’s ability to preform multiple operations at the same time [6]. In
the case of the Kepler architecture, data can be simultaneously copied to and from the GPU while many
separate kernels run at the same time.

Referring to the previous section, we chose the approach of multiple kernels as opposed to multiple
blocks so that we could optimize hardware memory bandwidth and processing power. The smaller
kernel size allows the hardware to begin processing the first kernel more quickly, and the scheduling of
multiple simultaneous kernels allows us to overlap memory copy and processing to achieve a greater
speedup and flatten the loop over the database. Without concurrency, each row in the Figure 7 would
have to be placed end to end in one row, resulting in a much longer processing runtime. The current
implementation only uses five instances of the same kernel, since this should be more than enough to
saturate the memory copy bandwidth while maximizing the use of GPU processing power although
Kepler can handle up sixteen concurrent kernels (same as older Fermi Architecture) [6].

Execution Time

Figure 7 - Diagram of the concurrent kernel and memory copy pattern

11

In order to implement the concurrency used in this algorithm, it was necessary to map five buffers from
the host memory into the memory space of the GPU as input buffers and another 5 buffers for output,
which are pinned memory. The input buffers are one per kernel and allow the implementation of
asynchronous memory copies of the data for each kernel run onto the GPU. The output buffers are
implemented to hold the outputs of each kernel until the parallel sum is done to calculate the total
distance for each subject.

2.2.6 Final Implementation

With concurrency included in the final implementation shown in Figure 8, the only loop still remaining is
the constant size loop across the five features. Examining the expected runtimes, we now have the
“Features” loop which O(c), the parallel processing of feature comparisons O(c), and the summing to
come to a final subject distance O(c).

This gives us a final runtimes of O(c) for filling an array with the distances of all subjects. From here, a
variation of a CUDA parallel reduction algorithm is used to select the closest five matches and they are
ordered and output. This algorithm has a runtime of O(log(n)) and is well documented on the internet in
many places [7].

This gives our algorithm a final runtime complexity of O(log(n)). Much of the runtime will however be
determined based on the hardware used. Memory transfer bandwidth is generally the major issue and
in large data systems, the theoretical speed of the algorithm will be bounded by the data transfer rate of
the hard disk holding the database. Smaller databases may be preloaded in host RAM in which case the
memory transfer rater between the GPU and host is likely to become the limiting action in processing
data. This makes calculations other than the big O calculations useless, as hardware will vary widely by
system.

Features |

Database Entries j————

Target Vectors

<Entry Vectors |

Flattened
Through
Concurrency

Flattened Inside Kernel

Figure 8 - Final parallelization of the algorithm

12

It is important to note that the algorithm presented here was designed to be scalable. More kernels,
features, feature vectors, etc. could easily be added easily in any dimension since these numbers were
all purposely defined as preprocessor macros in the implementation. The hardware specifications were
accounted for in macros similarly meaning that by simply putting in the memory constraints and target
threads per block of the hardware, the algorithm will optimize the number of features being processed
per block. All numbers given in the previous descriptions were specific to the hardware and data used in
the work done for testing later presented in this paper.

2.3 Wireless Door Locking Mechanism

The door locking mechanism operates with five major blocks as can be seen on Figure 9: an Arduino Uno
R3, a wireless interface (Arduino WiFi Shield), a wireless router, a computer wireless module, and a PCB
(Printed Circuit Board) containing 4 H-bridges, each connecter to one of four motors. The original design
of the door locking mechanism included a single electric strike, but was replaced by motors because the
scope of the project only required the simulation of door locking and unlocking and the motors were
much cheaper than an electric strike. Four motors give a more accurate representation of the
application of the design to a security system with more than one level of security.

The Arduino can take power inputs from 5 to 15V, with an ideal range of 7-12V. The original design had
a 9V power input, but this lead to inconsistencies in the amperes released to the digital output pins. This
resulted in inconsistent operation of the motors, so the design now uses a 12V power input to the
Arduino from the lab bench. The WiFi shield is powered through the Arduino and plugs straight on top
of for communication efficiency.

12V power 5V power
input input
H-bridge Motor
H-bridge Motor

Computer

: Arduino Uno R3
wireless module

H-bridge Motor
é H-bridge Motor
Y I PCB
Arduino
Wireless router |« - - - - - »| Wireless SD
Shield

Figure 9 - Block diagram of the Wireless Door Locking Mechanism

13

The motors and PCB are both powered by a 5V input. The original PCB design required a 12V input,
however this was not needed for the revised design explained in section 2.2.2. Finally, the PCB’s H-
bridges power the motors.

2.3.1 Overall functionality

The underlying element in the wireless door locking mechanism is the wireless network, which enables
communication between the Arduino and Computer. In this design, a Netgear Wireless-G Router (model
WGR614) sets up the wireless network. However, the design will function with any type of wireless
network with minor modification of the Arduino program.

The Arduino acts as a basic HTML (HyperText Markup Language) web server using the WiFi Arduino
library. Through this server, it outputs one web page called the Motor Control Page. This page includes
four links, one for each motor. When a link is clicked, it sends a GET request (HTTP method to retrieve
information from a server) to the server running on the Arduino through a packet. The Arduino then
reads four characters of the packet indicating which motor should be operated and acts accordingly.
This design choice was made over other protocols because other attempts (using an HTML web form
and the POST HTTP protocol) proved to create excessive packet corruption that made the design nearly
inoperable.

To run the motors, the Arduino switches one of its eight digital output pins to high (5V) from low (0V) as
can be seen on Figure 10. The motors are then run using electronic circuits called H-bridges. H-Bridges
are circuits that allow a voltage to be applied across the motors in either direction. For each motor, the
Arduino can enable forward and backward operation. To meet requirements, the Arduino outputs a high
voltage to the forward direction pin of the motor for three seconds, waits for one second, and then
outputs a high voltage to the reverse direction pin of the same motor. The delay() function of the basic
Arduino programming library is used to accurately follow this timing.

Arduino Wireless SD Shield

2 JP1 PAD1 [— + Motorl
3 JP4 PCB PAD2 —-
Arduino UNO R3 4 JP5 PAD3 | 1+ Motor2
5 JP8 PAD4 | .
6 JP9 PAD5 [1+ Motor3
7 Jp12 PAD6 | |-
8 JP13 PAD7 | Iy Motor4
Vcc Ground 9 JP16 PAD8 [_|.
12V GND 1P6
5V JP7
Lab bench

Figure 10 — Pin out of the Arduino and PCB

14

2.3.2 PCB Design and H-bridge functionality

The H-Bridge PCB plays the essential role of controlling the simulated locks (motors) of the Wireless
Door Locking Mechanism. Since the Arduino can only 30-50mA of current, it cannot properly turn the
motors using its own power. This results in a need for at minimum an amplifier to turn the motors.

An H-bridge was chosen over a simple transconductance amplifier since it allows the Arduino to turn the
motor in both directions (open and close the lock). An H-bridge circuit can take a nearly infinite number
of forms choosing between different types of transistors, layouts, and other functionality and parts. In
the implementation used with the Wireless Locking Mechanism, the simplest, most robust, and
cheapest possible H-bridge was constructed. Any safety features, additional functionality, etc. could
more easily and cheaply be implemented in the Arduino program than in the PCB hardware.

The Figure 11 design implements an H-bridge using four general purpose BJTs (two NPN, 2PNP), and
four 10kQ resistors. Al 1 and Al 2 represent inputs from the Arduino logic pins; Ml 1 and MI 2 are the
two leads of the motor. These parts were selected for our prototype model since they had low cost and
were easily accessible. The BJTs were used over CMOS transistors since they are more tolerant of
heating and static, making them easier to prototype with. The resistors were already a sunk cost from a
past design so it was cheaper to use four rather than finding two resistors with half the resistance value.
The resistors functioned to ensure the base current and voltage of the BJTs could not easily exceed the
rated values for the BJTs although this was already unlikely given the Arduino’s output specification
[8][9][10]. The details of the general functioning of a H-bridge are well described in many Internet
sources, which may be consulted for further detail [11]. After designing the H-bridge that would be used
in the Wireless Door Locking Mechanism, four H-bridge circuits were placed on a PCB to make the
design compacted. Please refer to Appendix B for the PCB layout.

vcc
10 kOhm 10 kOhm
——| PNP PNP.
Al1 Al 2
) p——X Xt X
M1 M2
10 kOhm .y 10 kOhm
—’WW—I;NPN NPN'
I " Al1 Al2 Motor control
Low Low None
Low High Reverse
GND High Low Forward

High High None

Figure 11 - Single H-bridge circuit and truth table

15

3. Design Verification
The detailed requirements and verifications table can be found in Appendix A.

3.1 Feature Extraction Algorithm

The data obtained was hyperspectral with radiance information for each pixel for 65 wavelength bands
ranging from 450 nm-1100 nm. A sample of the locations of the extracted features for one particular
subject can be seen in Figure 12. As seen from the Figure, the locations of the extracted features
(marked with +), are quite accurate and well within a 10% error range. This algorithm was run on 36
subjects, and was successful 34/36 times with an error of less than 2% from the actual position obtained
by observation. The unsuccessful runs were due to some inconsistencies in the data and improvements
can be made to make the algorithm more robust and improve its capability to resolve such conflicts. The
database was built for demo with 26 subjects, using the information from the pixels in the yellow
squares in Figure 12, and a variable number of randomly generated entries (208-1000) for parallel
algorithm benchmarking.

3.2 Parallel Comparison Algorithm
The requirements placed on the Parallel Comparison Algorithm during the design phase dealt only with
specifying accuracy and output.

3.2.1 Accuracy and Output Verifications

The high level requirements for the Parallel Comparison simply required that the algorithm output the
top five closest matched for a target in order and that the target appear within the top five at least fifty
percent of the time to prove the algorithm was functioning better than random chance.

Left cheek |x | 285
y | 248
Right X 382
Cheek y | 249
Lips x | 331
y | 300
Forehead x | 332
y | 248

Figure 12 - Sample results obtained from the feature extraction algorithm

16

Figure 13 - Program output screenshot for subject 001

As can be seen from Figure 13, the algorithm output is in an acceptable format. First, the name field of
the match is printed (50 characters that were numbers 000-234 followed by forty-seven zeros for the
test preformed). The next line contains the distance of the subject followed by the access level
associated with that subject.

The algorithm’s accuracy identifying a subject was tested against a database of 234 subjects. It identified
the target in the top five results 65.38% of the time, exceeding the minimum required performance by
fifteen percent.

3.2.2 Algorithm Speed Analysis

In addition to our requirements, we benchmarked the algorithm speed up for the parallel algorithm by
running it multiple times against a database and measuring the real time using the “time” command
from the command line [12]. The same was done with our originally develop sequential algorithm and
then the two were compared to compute the speed up as can be seen in Table 1.

Table 1 - Algorithm runtimes benchmarks

Database Avg. Serial Avg. CUDA Avg.
Size Runtime (ms) Runtime (ms) Speedup
26 325.2 124.34
234 1066.2 321.80
1000 5588 1197.46

17

The results show a significant and increasing speedup with datasets of increasing size. This speed up
should peak eventually based on the data transfer rate of the hard disk where the database is stored.
This peak will be variable based on the computer hardware used and the speed up achieved on smaller
data sets will also vary with GPU hardware. The testing computer was a laptop so it is likely speed ups
seen may be significantly better than those seen in testing.

3.3 Wireless Door Locking Mechanism

The door locking mechanism has to properly receive positive signals from the computer block. To test
this, a simple program was loaded onto the Arduino that would output 5V to a pin whenever a certain
signal was received through a packet. This was the only requirement that was not completely met. There
are packet lot issues with this method of communication. Over multiple tests, we have found that the
Arduino will receive the correct packet 70-80% of the time. This depends on the location of the wireless
router and how much interference is present from other 802.11 devices.

The second requirement is that if a positive signal is received, the door locking mechanism must engage
the motors. The Arduino program detects correct and incorrect packets and writes this out to the serial
line connected to the computer. We were therefore able to identify when a motor should be rotating
and when it should not. Every motor rotates successfully whenever a correct packet is sent, over a series
of 10 tests per motor.

The final requirement is that the motors rotate the correct amount. Over all performed tests, the
motors all had a proper rotation sequence of three seconds in one direction, a one-second pause, and
three seconds in the other direction.

18

4. Costs

4.1 Parts

Table 2 includes the costs of the necessary parts to build our project. Quantities do not include any

additional parts we had to purchase for testing purposes. Additionally, the actual and retail costs do not

include shipping prices that were paid on any of the items.

Table 2 - Parts costs

Part Manufacturer Amount | Retail Cost Actual Retail Actual
per part Cost per Cost Cost
part
Arduino Uno R3 Arduino 1 $29.95 $23.76 $29.95 $23.76
Microcontroller
Arduino WiFi Arduino 1 $84.95 $84.95 $84.95 $84.95
Shield
PNP BJTs (8) On Semiconductor 8 $0.46 $0.34 $3.69 $2.72
(2N4403)
NPN BJTs (8) On Semiconductor 8 $0.043 $0.15 $0.34 $1.20
(2N4401G)
10 kQ resistors TE Connectivity 16 $0.41 $0.41 $6.56 $6.56
(16)
Motors (4) NMB Technologies 4 $6.44 $6.44 $25.76 $25.76
Corp.
Total $151.25 $144.95
4.2 Labor

Table 3 shows the labor costs associated with each member of the team and the total labor cost

resulting from this. The overhead cost was used to estimate the real value of work.

Table 3 - Labor Costs

Name Rate/Hour Overhead(x2.5) Hours Total
Chris $45 $112.5 240 $27,000
Timothee $45 $112.5 240 $27,000
Akshay $45 $112.5 240 $27,000
Total Labor Cost: $81,000

19

5. Conclusion

We have demonstrated the potential of using hyperspectral information for facial recognition using
GPUs to perform comparisons with large databases. Most of the requirements were met. The Feature
extraction module extracted the correct locations of the features for 34/36 subjects over multiple
sessions (within the error range) and constructed a database well suited for comparison. The
comparison algorithm was quite successful and exceeded requirements. The target was in the top five
for 65% of the subjects and the top match for 20% of the subjects. There were significant speed-ups
obtained for larger databases proving the potential of GPU processing to perform the computations
required for hyperspectral facial recognition. The wireless door locking mechanism was fairly successful
except for the packet loss issue. The H-bridge circuits on the PCB and the Arduino code performed up to
specification.

Various steps were taken to maintain the integrity of our project and stay consistent with the IEEE Code
of Ethics. Our project followed the first pledge of IEEE ethics [13] by creating a technological solution
that can increase public safety in a variety of applications (crime fighting, counter-terrorism, etc.). Our
project embodies the third pledge of IEEE ethics by clearly stating the limits and range of our end result,
as well as clearly defining the scope of available data and making claims accordingly. To maintain
academic honesty and integrity of our results, the data set was divided into two- demo and training. The
demo database was never tested on during the development of the algorithm, and the training database
was not used for our final presentation of results.

Our algorithm will scale well and show even more significant speed-ups with larger data sets. For very
large data sets, the only limiting factor will be the time involved in hard disk reads instead of the
processing time related to the actual algorithm. The algorithm is thus very architecture dependent and
as computer architectures continue to improve, the algorithm will become even more viable.

Some future work that can be done with the project includes developing a more robust feature
extraction algorithm using more advanced image processing techniques, for application on more
complex real world data. Using either a feedback feature that will make the computer re-send the
packet until it is received correctly or a more robust communication system can alleviate the packet loss
issue with the door locking mechanism. We would also like to develop cheap hyperspectral cameras as
has been shown by past papers [14]. As hyperspectral sensors become cheaper, the technology has the
potential to be widely applied in commercial security settings that require facial recognition. Future
applications could also look into using data produced by our algorithm as part of a multifaceted
approach based on algorithm fusion. This has been shown to be more effective than examining a single
feature type for unique person identification [15].

20

References
[1] Denes, Louis J., Peter Metes, and Yanxi. Liu, “Hyperspectral Face Database,” Tech. Report CMU-RI-TR-
02-25, Robotics Institute, Carnegie Mellon University (October 2002)

[2] Tinsy John Perumanoor, “Visible Versus Neat-Infrared Light Penetration Depth Analysis In An
Intralipid Suspension As It Relates To Clinical Images”, The University of Texas at Arlington (August 2008)

[3] Zhihong Pan; Healey, G.; Prasad, M.; Tromberg, B.; , "Face recognition in hyperspectral images,"
Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.25, no.12, pp. 1552- 1560, Dec.
2003

[4] D. Pissarenko, "Eigenface-based Facial Recognition." Eigenface-based Facial Recognition., Feb. 13,
2003 Available: http://openbio.sourceforge.net/resources/eigenfaces/eigenfaces-
html/facesOptions.html [Dec. 1, 2012].

[5] W. Zhao, R. Chellappa, and P. J. Phillips. "Subspace Linear Discriminant Analysis for Face
Recognition." Technical Report CAT-TR-914, Center for Automation Research, University of Maryland,
1999

[6] Rennich, Seteve. “CUDA C/C++ Streams and Concurrency,” NVIDIA, [online] 2012,
http://developer.download.nvidia.com/CUDA/training/StreamsAndConcurrencyWebinar.pdf (Accessed:
12 December 2012)

[7] Harris, Mark. “Optimizing Parallel Reduction in CUDA,” University of Oxford, [online] 2012,
http://people.maths.ox.ac.uk/gilesm/cuda/prac4/reduction.pdf (Accessed: 10 December 2012)

[8] PNP General Purpose Amplifier, datasheet, Fairchild Semiconductor Corporation, 2001. Available at:
http://inst.eecs.berkeley.edu/~eel105/fa07/labs/2N4403.pdf

[9] General Purpose Transistors NPN Silicon, datasheet, Semiconductor Components Industries, LLC,
2010. Available at: http://www.onsemi.com/pub link/Collateral/2N4401-D.PDF

[10] Arduino ™ Uno Rev 3, schematic, Arduino 2012. Available at:
http://arduino.cc/en/uploads/Main/Arduino_Uno_Rev3-schematic.pdf

[11] H-Bridge Motor Driver Using Bipolar Transistors., Robot Room, [online] 2012,
http://www.robotroom.com/BipolarHBridge.html (Accessed: 5 December 2012).

[12] time(1) - Linux man page., die.net, [online] 2012, http://linux.die.net/man/1/time (Accessed: 11
December 2012).

[13] "IEEE Code of Ethics." IEEE Available: http://www.ieee.org/about/corporate/governance/p7-8.html
[Dec. 12, 2012].

21

[14] R. Habel, M. Kudenov and M. Wimmer, "Practical Spectral Photography", Computer Graphics Forum
(Proceedings EUROGRAPHICS 2012), vol. 31(2), pp 449-458, May 2012

[15] David M. Ryer, Trevor J. Bihl, Kenneth W. Bauer, and Steven K. Rogers. “Quest Hierarchy for
Hyperspectral Face Recognition”, Hindawi Publishing Corporation, Advances in Artificial Intelligence,
Volume 2012, Article ID 203670, 7 February 2012.

22

Appendix A Requirement and Verification Table
Table 4 - Requirements and Verifications
Block Requirement Verification Status
Feature Data must be hyperspectral - Testing Procedure: Plot a sample |Y
Extraction - Wavelength of data of the data with reflectance as a
Algorithm between 400 and 1200 function of wavelength. Ensure
nanometers. that the data has intensity
- Intensity information is information present across a
present in different range of at least 300nm of
bands. wavelengths between 400 and
1200nm.
Feature Data can be recognized by the - Testing procedure: Write a Y
Extraction computer simple CUDA program that
Algorithm - Datais in a file format opens a file from the data’s
readable by the Linux format, reads the content of that
operating system file and prints these contents in
- Data can be read and any form to the screen.
used by a CUDA
program
Feature Databases are sufficiently and - Testing Procedure: Open each Y
Extraction | correctly populated. database on the computer. For
Algorithm - Each database (testing each database:
and demo) has at least - Use the computer’s database
20 unique entries. software to output the total
- Each entry has number of elements and ensure it
hyperspectral intensity is greater than 50.
information for each - Also output the number of unique
feature. elements and ensure it is greater
- Each Database includes than 20.
at least 50 total entries - Finally, run a database query to
including automated output the number of elements
generated data. with incomplete fields. Ensure
that this returns 0.
Feature Features are extracted correctly - Testing procedure: run the Y
Extraction following test 5 times: (need 4
Algorithm positive results)

Input a hyperpectral image to the
algorithm. Pre-identify locations
of comparison and handler
features to be extracted by the
algorithm. Use print statements
in the code to output the
algorithm’s identified location of
these features. Verify that
handler and comparison features
identified by the algorithm are
within a 10% of image dimension
range from the pre-identified

23

locations.

Parallel Comparison of a new picture of Testing Procedure: Run the Y

Comparison | an individual with an old, following test 10 times:

Algorithm | existing picture in the database Obtain two hyperspectral images
of the same individual under of an individual with the same
similar lighting/orientation facial orientation and lighting.
conditions should ideally yield Place one in the database, with at
that individual as best match least 19 other unique photos also

in the database. Run the second
test image with the program.
Make sure the right photo is
selected in the top S at least S0%
of the times.

Parallel The algorithm should output its Testing Procedure: Output the Y

Comparison | top 5 matches in order and the subject number of the target.

Algorithm subject numbers of the people Output the subject numbers of
associated with them. The the people associated with the top
target should be in those top 5 5. Use an indicator on the screen
matches 50% of the time. to indicate if the target is in the

top S or not.

Door The door locking mechanism Testing Procedure: Pass through | Y

Locking gets the required information 20 photos to test.

Mechanism | from the wireless packet for the Run the algorithm with an image
access level of the top detected that exists in the database. Use a
match. print statement in the code to

output the user’s access level to
the screen. Make sure the correct
motors have rotated based on the
access level.

Door The door locking mechanism Testing Procedure: Write the Y/N

Locking must properly receive positive Arduino with a simple program

Mechanism | signals from the computer that outputs a 5V voltage to pin 1
block. when a signal is received. Send

the signal through the computer,
use a voltmeter at pin 1 to verify
the voltage switches to 5V.

Door If a positive signal is properly Testing procedure: Pass a signal |Y

Locking received from the Computer corresponding to each access

Mechanism | Block, the door locking level to the door locking

mechanism must engage the
motors

mechanism; ensure that the
proper motors rotates any
amount.

24

Door
Locking
Mechanism

The motors must rotate the
correct amount

- Testing Procedure: Pass an
image that exists in the database
with security level 4. Ensure that
all four motors rotate for 3
seconds in one direction, stop,
wait for 15 seconds, and rotate
for 3 seconds in the other
direction.

25

Appendix B PCB layout

In Figure 14, the green circular pads represent where external inputs and outputs are connected. The
pads on the left represent all the Arduino inputs, the pads on the right represent the motor control
outputs, and the two pads at the top are power and ground. They are grouped in such a way to simplify
the connecting of external outputs and reduce needed wire length. It is also important to note the
increased trace thickness on board design in areas that have potential for greater current flow.
Everything on the PCB has at least a safety factor of two for handling the voltages and currents it is

expected to see.

PAD1
AD3 PN

P
Iy N
a_
- —s
&
h_ A
|

Al

PAD2
4 1

-

Al

-
R1
R16

PAD13
4 Nl

Ri14
+
)
R15

B
Al

Figure 14 - PCB layout

26

