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Abstract

In order to fight water insecurity around the world and global warming, Professor Jont
Allen of the ECE Department has proposed a system to desalinate seawater with minimal
power.

In order to test his hypothesis, he has built a prototype and enlisted out help to make his
prototype more user-friendly, and to display any data gathered in a manner that is easy
to understand.

Our project can be split into three major parts: the hardware, firmware and the software.
With some fixes to our PCB design and implementing some changes to help the firmware
and software communicate via serial USB, our project should be able to completely con-
trol his prototype system.

The hardware design issues prevented us from being able to collect temperature data
from all but two of the nine temperature sensors. However, it is able to accurately collect
humidity and level sensor data. It is also able to automatically control the safety features
of the prototype when needed.

The software design allows the system to graph all data in real-time, however due to com-
munication issues with the ESP32 microcontroller, it is unable to receive or send signals
through serial USB.
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1 Introduction

1.1 Problem Overview

The Sahara desert is the only region in the world where water insecurity amongst the
local communities is steadily increasing. The region has also grown 10% in size since the
1920s and on wards, due to global warming [1]. Access to clean drinking water is a basic
human right, and this is a problem that must address as soon as possible.

Professor Jont Allen from UIUC proposes a solar-powered desalination system, pumping
ocean saltwater into a desert tank. Solar heat evaporates water, separating salt, and the
vapor condenses in a colder tank for clean water [2]. The prototype, with over 50% yield,
awaits modifications. However, separate components and a lack of user-friendly controls
pose efficiency risks in future adjustments to the system.

Professor Allen faces challenges with his prototype: separated components cause setup
issues, and some require manual adjustments, impacting experiment reliability. Stream-
lining and storing experiment data lack an efficient method. Lastly, improving system
efficiency is hindered by a lack of easy variable control, making enhancements more chal-
lenging.

1.2 Solution

We will work along side Professor Jont Allen in his research to develop and improve upon
current issues in his prototype. Helping him be able to run experiments more easily and
concise along with data collection will allow him to further drive his research for potential
upscale. This includes creating a control system to access and control the lab setup more
easily for use in testing and experimenting. We will also be measuring the status of the
system with the help of sensors to be able to understand, predict, and act on that status
to ensure safety and efficiency in the system.

To address the current issues in his current prototype of organization we plan to consoli-
date and house all the components into a single place. This will allow for a more central-
ized way to interact with each component, from sensors to heater, and radiators. As for
data collection and testing we plan to set up an algorithm that will take time and a flow
rate as inputs to be able to autonomously run the lab setup with redundancies for faults,
failure, safety, and termination so that each individual component does not need to be set
or initialized by the user. As for the visualization we will process and collect the data and
make it readable, presentable, and usable for the user to digest and understand.

1.3 Project Overview

Our solution can be broken down into three high level requirements that allow us to quan-
tify the success of our project. Those are to consolidate and house all the components into
one cooperative system, automate the system from read data to control power devices,
and lastly store and present the data graphically for user readability. The three high level

1



requirements split off into three main subsystems which entails of reading data from sen-
sors, controlling the power of the system, and the user interface for starting experiments
and collecting and presenting data.

Reading data from the sensors is our sensing subsystem which reads the temperature,
humidity and, level sensors. The sensing subsystem allows us to observe the experiment
while its running and detects any safety concerns for us. The sensing subsystem then
interacts with the power and control subsystems, where the power subsystem regulates
power to the different components to ensure power operation of 3.3v, 5v, 12v, or 120v and
ensures stability in power flow. As for the control subsystem it controls the voltage to the
higher power devices so to not harm other subsystems for operational or safety reasons.
The control and power subsystems allow us to control when power supply turns on and
off to ensure that the system operates safely and efficiently. The three subsystems then
interact with our ESP32 microcontroller which interacts with the UI via USB to allows
users to input arguments and automate, read, and control the system. This then gives the
user a graph of the data that is understandable.1

Figure 1: Block Diagram
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2 Design

Table 1 outlines the values associated with all components in our control and sensing
subsystem. The configuration of Sensing Board for collecting temperature and humidity
data is given in Figure2 and the configuration of Control Board for controlling various
components is given in Figure3.

Table 1: Desalination System: Component Values

Component Voltage Input Rated Current Connection

Temperature Sensors [3] 3.3VDC 0.9mA SPI

Humidity Sensors [4] 3.3VDC 1.5mA MSB

Microprocessor [5] 3.3VDC 500mA USB-B

Heater 120VAC 4A AC wall power + Relay

Solenoid Driver 12VDC 540mA AC/DC Adapter

Cooling Fan 12VDC 300mA AC/DC Adapter

Air Pump 12VDC 300mA AC/DC Adapter

Figure 2: Low Power/Sensing Board

Figure 3: High Power/Control Board
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2.1 Power Subsystem

2.1.1 Voltage Regulator

Figure 4: LM1117DT-3.3 Voltage Regulator

LM1117IMPX-3.3/NOPBTR-ND voltage regulator in Figure4 was chosen because it con-
sistently provides a fixed output of 3.3VDC when the input voltage is 5VDC, which per-
fectly aligns with the power supply sourced from the USB port’s VBUS. The 3.3VDC out-
put from this regulator is ideal for providing power to 9 temperature sensors, 2 humidity
sensors, and the microprocessor. Additionally, a crucial consideration was its capability to
deliver a current output of 800mA[6], which perfectly suited the needs of the temperature
sensors drawing 900uA, the humidity sensors drawing 1.5mA, and the microprocessor
drawing 500mA.

2.2 Sensing Subsystem

2.2.1 Temperature Sensors

Figure 5: MAX31855JASA+T

MAX31855KASA+T temperature sensor in Figure5 was selected for several reasons. First,
it offered a significantly more cost-effective solution compared to the MAX6659 used
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by Professor Allen. Secondly, its voltage supply range falls within 3.0VDC to 3.6VDC,
perfectly matching the output voltage of our voltage regulator and other components,
eliminating the need for an additional voltage regulator to accommodate varying volt-
age supplies. Moreover, its temperature measurement capabilities span a wide range
from +1800°C to -270°C, which more than adequately covers the requirements of our ex-
periment. Additionally, the sensor provides temperature data in a signed 14-bit format,
which is compatible with SPI and read-only. This format can be easily interpreted by our
microprocessor [3].

2.2.2 3:8 MUX

SN74HC138DR in Figure6was selected as the logic chip for selecting temperature sensors
because it offers a broad operating voltage range, spanning from 2V to 6V. This flexibility
allows us to use the same voltage supply provided by our voltage regulator [7]. A de-
coder MUX was also used to allow us to use fewer pins on our board to access the many
temperature sensors.

Figure 6: SN74HC138DR
Figure 7: Connection for DHT22

2.2.3 Humidity Sensors

It was not necessary to pick humidity sensor on our own because Professor Allen already
provided one. Therefore, we chose to connect it using an available 01x03 connector in the
ECE 445 lab. The circuit diagram for humidity sensor connection is in Figure7The value
for resistor was from the provided diagram on the data-sheet [4].

2.3 Control Subsystem

2.3.1 Microprocessor

Initially, our decision for selecting the ESP32 in Figure8 was driven by its Wi-Fi capabili-
ties. However, as we progressed, we continued to use it primarily because it operated on
the same 3.3VDC voltage supply [5]. Regarding the strapping pin, we devised a method
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to connect them to a voltage source through a resistor. This allowed us to toggle between
high and low states by attaching and detaching the resistor.

Figure 8: ESP32-S3-WROOM-1-N16

Figure 9: Pin header for GPIOs

2.3.2 Pin header

We selected a 10-pin header in Figure9 to ensure there were enough GPIOs available for
communication with the high power board responsible for the control subsystem.

2.3.3 USB Port

Figure 10: Connection for USB bridge/port

The circuit for USB Port in Figure10 was already provided at ECE 445 website. For the
BJT, we selected the SS8050-G, and for the button, we selected the PTS 647 SM38 SMTR2
LFS. Our choices were primarily based on their appropriate size and the fact that they
had readily available KiCad symbols and footprints on SnapEDA.
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2.3.4 Relay/BJT

Figure 11: Relay and BJT

We selected the G5LE relay in Figure11 due to its rated coil voltage of 5VDC [8]. This
implies that the must-turn-on voltage, which is 75% of the rated coil voltage, is 3.75VDC.
This voltage is sufficient for control using a GPIO that outputs 3.3VDC, facilitated by a
BJT and a 5VDC external voltage supply from the USB. Specifically, we chose the SS8050-
G BJT to govern the relay with a 3.3VDC GPIO. In this setup, the emitter is grounded, the
base is linked to the GPIO, and the collector is connected to the relay, which is powered by
a 5VDC source. When the GPIO at the base is in a high state at 3.3VDC, current will flow
between the collector and emitter, delivering 5VDC to the relay, meeting the must-turn-on
voltage requirement of 3.75VDC.

2.3.5 MOSFETs/Power Supply

Figure 12: MOSFETs and 12VDC Power Supply

AC/DC converter from the power subsystem has been substituted with a 12VDC adapter.
This change was necessary to convert the 120VAC wall power into 12VDC, specifically
for the fan, solenoid driver, and air pump. This modification was made for ease of imple-
mentation and to eliminate unnecessary components on the PCB. We selected the IRF540
MOSFETs in Figure12 for controlling the ON/OFF functions of our fan, solenoid driver,
and air pump. The decision was based on the fact that these MOSFETs have a minimum
Gate-source threshold voltage of 2.0VDC [9], which is sufficient for allowing current to
flow between the drain and source when the GPIO is set high at 3.3VDC. Furthermore,
despite the fact that our fan, solenoid driver, and air pump operate at a common voltage
of 12VDC, it was essential to fulfill their distinct current specifications. The fan requires a
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current of 300mA, the solenoid driver requires 540mA, and the air pump requires 300mA.
Ensuring a minimum drain current of 540mA was critical if we intended to control all of
them using a single MOSFET. According to a typical characteristic provided in data-sheet
at Figure13,

Figure 13: IRF540 Typical Characteristics

the IRF540 is expected to exhibit a drain current exceeding 1A when the gate-source
voltage is 3.3VDC, little below 4.5VDC and the drain-source voltage is 12VDC, which
meets the requirements for the all components when connected to a 12VDC power sup-
ply from the adapter through 2 pin connector. Finally, it was essential to evaluate whether
a heat sink was required for our MOSFET by measuring the increase in temperature when
power was applied to the MOSFET. The maximum power transistor can dissipate com-
pare to actual power transistor can dissipate can be modeled by the following equation
:

PL = RDS,on × I2L ≤ PD =
Tmax − Tamb

Rth,JA

[10] where:

PL = Actual power transistor dissipate [W]

RDS,on = Drain-source on-state resistance [Ω]

IL = Whatever our load draws [A]

PD = Maximum power transistor can dissipate [W]

Tmax = Maximum junction temperature [◦C]

Tamb = Ambient temperature [◦C]

Rth,JA = Maximum junction-to-ambient [◦C/W]

For the MOSFET, Tmax is 175◦C, Tamb is 25◦C, and Rth,JA is 62◦C/W [9].

PD =
175− 25

62

Resulting PD of 2.4W. For our system, the maximum RDS,on is 0.077Ω and the maximum
IL is 540mA from the solenoid driver which makes PL clearly below PD indicating that
the system is safe to operate without a heat sink.
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2.4 External System

2.4.1 Software

We decided to use a Flask app as it is straight-forward and easy to implement. Python
also has a lot of libraries to select from and the code would be easier to write than in other
lower-level languages.

3 Design Verification

3.1 Power Subsystem

3.1.1 Voltage Regulator

The requirement and verification for voltage regulator is given in Table 4. For the voltage
regulator, it was essential to accurately generate a 3.3VDC output from the 5VDC input
provided by the USB, as it supplies voltage to all components on the low-power/sensing
board. When the voltage was examined using a voltmeter, the reading was 3.42VDC,
falling within the acceptable range of 3.3VDC with a tolerance of +5%. Although we
couldn’t identify a temporary load equivalent to the circuit’s load for current testing,
connecting all sensors and the microprocessor to the voltage regulator demonstrated that
they operated without any issues, indicating sufficient current output.

3.2 Sensing Subsystem

3.2.1 Temperature Sensor

The requirement and verification for temperature sensor is given in Table 5. In our sys-
tem we had to deal with two versions of the temperature sensors, those which had their
chip select pin (CS) connected to the MUX and the single sensor connected directly to our
microcontroller. After connecting the sensors to our board and ensuring that they were
properly set and powered we began test reading with the lone directly connected sensor.
Adafruit provides a library for being able to read their sensors which deals with SPI com-
munication between the sensor and microcontroller allowing for us to simply call on that
function by using the cs pin, sck pin, and data pin with the main focus being control of
the cs pin. Since the ESP32 has direct access to the cs pin on the single sensor reading
from this sensor caused no issue.

As for the sensors connected to the MUX, one sensors was initially tested and worked by
simply setting the cs pin in the function to an unconnected pin and manually enabling the
MUX and setting the desired pin to output low for the CS. This initial testing allowed us
to read one sensor that was connected to the MUX, however after attempting to establish
a connection with the remaining sensors cause issues. These issues relate to the timing
differences between the MUX and the sensor as well as clobbering in the data bus once
the other sensors were connected. This then impacted every temperature sensor and pre-
vented us from properly reading values. In order to fix this issue would require fixing the
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MUX since it is the root of the issue.

3.2.2 3:8 MUX

The requirement and verification for 3:8 MUX is given in Table 6. In our initial PCB
design we had mistakenly forgotten to connect the enable pins of the MUX to our board,
this would prevent us to properly read the temperature sensors since they could never
be set low. This mistake was fixed in our second PCB design and allowed us to have
proper control. Once the MUX was connected onto our PCB we had first powered our
board and connected to an oscilloscope to ensure that the MUX was properly connected
and powered. After the chip was connected and powered we simply tested it by setting
its enable pins to allow us to read from the select pins and then use an oscilloscope again
and read if the pins were outputting the correct voltage. For this the enable pins had to be
set to either 0V or 3.3V and the select pins would be 0V or 3.3V depending on the desired
output at which point the selected output would read 0V while the remaining outputs
read 3.3V.

Once the MUX was set up we further tested it by trying to read from one of the sensors
connected to it, which was reading correctly to our tolerance for the temperature sensor.
However after connecting the remaining temperature sensors we ran into the issue of not
being able to read any of the temperature sensors and the data line having a zero value.
We had discovered that this was a timing issue between the output of the MUX’s selected
pin once enabled and the expected timing for the MAX31855 chip after the CS is low an
when the clocking begins. This was known since the data bus for the sensors would only
read a value after the lone sensors directly connected to the ESP32 was read and data was
still on the line. This issues all stems from the fact that the temperature sensors function
requires direct access to the cs pin which causes our timing issue. We believe that a fix to
this issue would be rather than have the CS pins on the MUX, connected them directly to
the ESP32 and use a 8:1 MUX for the data bus to avoid the clobbering issue.

3.2.3 Humidity Sensor

The requirement and verification for humidity sensor is given in Table 7. Before testing on
any physical system started, testing began using an online emulator of our ESP32 board
and a DHT22 humidity sensor[11]. This emulator allowed us to test how to read the hu-
midity sensor and the necessary set up so that once we moved to a physical prototype
the written code would translate without issue. The initial physical testing was accom-
plished via an ESP32 dev board where humidity sensor was tested by moving out of a hot
room and into the cold of the night. The readings of this testing lied within our required
tolerance and thus allowed us to move to testing on the final product. Once the sensor
was connected to our board it had worked as intended like previous test and present the
humidity data fro us to read and process.
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3.2.4 Level Sensor

The requirement and verification for level sensor is given in Table 8. By connecting the
level sensors through a pin on our board we can read signals being passed. The level
sensor is a simple magnetic switch so by continuously feeding it a value we know if the
switch has been turned off if no signal is read.

3.2.5 Microprocessor

The requirement and verification for microprocessor is given in Table 9. Before testing
our ESP32 microcontroller we had test code that worked on a developer board that set
the values of pins and reads humidity sensor. After ensuring that the pre-established
code worked we translated it over to our board. After setting the strapping pins to be
floating or hard set and enable having a button to ground we could upload code to our
microcontroller via USB from a host computer. Once a connection was established and
we could flash programs to our board we started with the aforementioned reading of the
humidity sensor, thus we were able to read data from the sensor. This later expanded to
at least be able to read 2 temperature sensors as well, one connected to the MUX and the
other directly connected to the ESP32. After this point our software was set up to be able
to automatically control the power flow in our daughter board containing the 12V and
120V power components. Lastly we weren’t able to connect our board to our UI and read
its inputs and send data for visualization which is expanded on in the external system
section. As for the automation aspect since we did not have enough time to connect our
board with the prototype we could not test out entirely if the project could truly run
autonomously and independent.

3.3 Control Subsystem

3.3.1 MOSFET

The requirement and verification for MOSFET is given in Table 10. The footprint chosen
for the MOSFET in our custom PCB order had a different pin configuration compared to
the actual MOSFET received. The footprint had the Drain on the first pin and the Gate on
the second pin, whereas the MOSFET we obtained had the Gate on the first pin and the
Drain on the second pin. To address this mismatch, it was necessary to manually bend
the pin using pliers to align with the correct configuration, ensuring that the Drain and
Gate pins did not touch each other.

Following the pin adjustment, three MOSFETs and two-pin connectors for the fan, solenoid
driver, and air pump were soldered onto the control board, and a verification test was
conducted. For the solenoid driver and air pump, which couldn’t be connected to the
actual components, two fans provided by Prof. Allen were used as replacements. Since
all components operate at a common voltage of 12VDC, as long as the current flow meets
the minimum requirement of 540mA, they should function similarly when connected to
the real components.

During the test, the three fans alternated between ON and OFF states every 5 seconds.
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The assessment for the minimum current requirement was omitted as it was evident from
the data-sheet that our MOSFET has the capacity to output a current exceeding 1A. This
verification process guarantees the consistent operation of our components when the gate
is connected to our microprocessor that outputs 3.3VDC.

3.3.2 Relay

The requirement and verification for relay is given in Table 11. The relay was required to
have a must-turn-on voltage below 3.3VDC (a voltage that would definitely turn on the
relay) in order for our microprocessor that outputs 3.3VDC to be able to control ON/OFF
of the relay. When the test was conducted, the relay successfully toggled ON/OFF every
1 second. Additional requirements for the relay included its high-voltage section being
suitable for 120VAC and capable of delivering 5A. Ultimately, our goal was to have the
microprocessor manage the activation and deactivation of the heater by toggling the re-
lay ON and OFF through GPIO input. This requirement was for our heater that operates
at 120VAC and required minimum current of 4A. In the testing setup, when the relay is
switched on, there should be a current flowing through pin 1 and pin 3, supplying a volt-
age of 120VAC. To test this configuration, we used the other end of our AC cord, a monitor
power cable. This end was connected to our existing 12VDC adapter. The adapter, a 12V
5A 60W Power Supply Adapter designed for charging computers, demonstrated its ca-
pability to use the 120VAC from the relay to output 12VDC and a current of 5A when
successfully charging the computer.

3.3.3 BJT

The requirement and verification for BJT is given in Table 12. Initially, when designing the
circuit for the G5LE-1A4 Relay, we believed the rated coil voltage to be 5VDC based on
the specifications in the data-sheet [8]. This implied a must-turn-on voltage of 3.75VDC
(75% of the rated coil voltage), which is above the 3.3VDC output capability of our micro-
processor, the ESP32. Consequently, we decided to incorporate a BJT for controlling an
external 5VDC power supply with the 3.3VDC output from the ESP32. This was possible
by connecting the base to the ESP32’s GPIO, the emitter to ground, and the collector to
pin 5 of the relay along with connecting pin 2 to the 5VDC power supply.

In this common emitter configuration, BJT will be at saturation mode when the base is set
to a high state of 3.3VDC, a forward biased, allowing the collector current to flow through
the relay supplying 5VDC. However, during soldering, a need arose to switch the emitter
and collector sides due to a mismatch between our footprint and the actual component.
Since our BJT had a surface-mount design instead of a through-hole design, a simple
solution like bending the pin was not possible. Consequently, we attempted to address
this by using insulation tape to cover the emitter and collector sides on the PCB. We then
rewired it to the correct configuration by soldering wires directly onto the BJT.

Following all the adjustments, the test outcomes indicated that our BJT was unable to
effectively control the relay using the 3.3VDC output from the ESP32. This failure could
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be attributed to the insulation tape melting during the soldering of the wire, leading to a
short circuit where unintended electrical connections between components.

Later on, we found out that the relay we obtained was actually a G5LE-1A4 DC3 with a
rated coil voltage of 3VDC. This allowed us to control the relay directly using the 3.3VDC
output from the with 3.3VDC output from the ESP32. A circuit design enhancement could
be done by eliminating the BJT and direcltly connecting the GPIO to pin 5 of the relay and
pin 2 to ground. This modification would eliminate unnecessary components on the PCB,
making it simpler and easier to operate.

3.4 External System

3.4.1 Software

The requirement and verification for software is given in Table 13. The frontend was de-
signed using a Flask with jinja2 templating. To connect to the the micro-processor through
USB we used pyserial and to implement live-graphing, we used the FuncAnimation func-
tion from the Animation class in the Matplotlib library.

We successfully managed to implement the real-time plotting using FuncAnimation. Ini-
tially we ran into a threading issue, however using FuncAnimation relieved that issue.
Unfortunately, the frontend failed to communicate successfully with the micro-processor.
We believe this was because the software and the firmware were improperly handling the
reading and writing of the necessary signals.

4 Cost

4.1 Parts
1

1Resistors and capacitors not mentioned as they were given to us for free by the ECE department
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Table 2: Parts list

Description Manufacturer Quantity Price Link

ESP32-S3-WROOM-1-N16 Espressif Systems 1 $3.48 link

amplifier Adafruit MAX31855 adafruit 10 $7.579 link

LM1117IMPX-3.3/NOPB Texas Instrument 1 $1.14 link

K-type thermocouple Smartsails 1 $9.99 link

PTS 647 SM38 SMTR2 LFS C&K 2 $0.20 link

SN74HC138DR Texas Instrument 1 $0.42 link

5100H1FL VCC 3 $7.02 link

SS80580-G Comchip Tech. 3 $0.29 link

G5LE-1A4 DC3 Omron Electronics 1 $1.64 link

PRT-12796 SparkFun Electronics 2 $2.10 link

302-S101 On Shore Tech. inc. 2 $0.33 link

PPTC051LFBN-RC Sullins Con. Sol. 1 $0.48 link

Waterproof box Diivoo 1 $26.99 link

IRF540NPBF Vishay Siliconix 4 $0.91 link

4.2 Labor

The average ECE graduate from UIUC makes about $51 per hour. working at 40hrs/week
for 3 team members working for 9 weeks, $51/hr × 40hrs/week × 3 × 9weeks = $55, 080
in labor costs
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4.3 Schedule

Table 3: Schedule for Project Progression

Week Task Person

Oct. 2nd - Oct. 9th Identify the electronic components required for our project Everyone

Build circuit schematic for the sensing PCB Everyone

Design the sensing PCB Everyone

Oct. 9th - Oct. 16th Revise circuit schematic Everyone

Revise PCB design Everyone

Oct. 16th - Oct. 23rd Order the sensing PCB Alan

Order electronic components for the sensing PCB Seunghwan

Build circuit schematic for the control PCB Everyone

Design control PCB Everyone

Revise circuit schematic for the sensing PCB Seunghwan & Alan

Revise the sensing PCB design Seunghwan & Alan

Oct. 23rd - Oct. 30th Order the control PCB and the revised sensing PCB Alan

Order electronic components for the control PCB Seunghwan

Requirement & verification for the sensing PCB on breadboard Seunghwan

Program Microprocessor with Dev Board Alan

Oct. 30th - Nov. 6th Solder components on the sensing PCB Alan

Solder components on the control PCB Seunghwan

Requirement & verification on the sensing PCB Alan

Requirement & verification on the control PCB Seunghwan

Develop Software Kinjal

Nov. 6th - Nov. 13rd Continue requirement & verification on the sensing PCB Alan

Continue requirement & verification on the control PCB Seunghwan

Continue developing Software Kinjal

Prepare for Mock Demo Everyone

Nov. 13rd - Nov. 20th Mock Demo Everyone

Bug fixing Everyone

Nov. 27th - Dec. 4th Final Demo Everyone

Mock Presentation Everyone

Dec. 4th - Dec. 7th Final Presentation Everyone

Final Paper Everyone

5 Conclusion

5.1 Accomplishments

Our project succeeded in reading the humidity data, the binary level sensor, and two of
the nine temperature sensors. It also succeeded in controlling the fan, and the solenoid
driver.

The micro-controller successfully parses the data from the sensors and decodes it in way
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that is easy to interpret. It is also able to send the appropriate signals to the fan and the
solenoid driver to turn them on and off.

Within the software component, real-time graphing was successfully implemented. The
graph is able to update automatically with new values every five seconds.

5.2 Uncertainties

Unfortunately, we were unable to accomplish all the goals we set out initially. On the
hardware side, the BJT and the MUX was does not work as intended. On the software
end, the frontend is incapable of communicating with the micro-processor.

Our PCB footprint for the BJT and the actual BJT we used are not compatible. Since
the BJT was a surface-mount design, there was no simple solution to this issue, and we
attempted to address this by using insulation tape. Unfortunately, this short-circuited the
BJT module and we were unable to fix the design in the given time.

While we were designing our PCB, we failed to connect the EN pin for the MUX. This
resulted in the micro-processor not having any access to the data the thermocouplers are
reading. This means that eight of the nine thermocouplers could not be read.

Another issue with the MUX was the timing issue between the MUX’x selected output
time and the temperature sensors read timing after its CS pin were set low. This issue
caused clobbering in our data bus for the temperature sensors as well as not being able
to read seven of the nine the sensors. We were only able to read one sensor connected to
the mux by hard setting the MUX’s values and the lone sensor directly connected to the
ESP32

The frontend software was unable to communicate with the micro-controller as it was not
able to read any data sent through serial USB. In addition the micro-controller was unable
to read the data the software was attempting to write to it. We think the issue with this
lies in how the software connects to the micro-controller.

5.3 Ethical considerations

Our project involves electronics in close proximity with water, so there are a few measures
to take to ensure that no component that should not get wet comes in contact with water.
The testing will take place in a room in the ECEB that Professor Allen has stored his
prototype. In order to ensure that no water comes into contact any of the electronics, we
will only connect the PCB to the prototype when the lid of the compartments are closed.
In addition, the PCB will also be stored in a closed compartment away from the water
enclosures to prevent any possibility of contact if there is spillage.

The heater used to raise the temperature of incoming water to 40 ◦C within the evapora-
tion chamber has the potential to result in system damage by overheating if not properly
controlled. To address this concern, we are implementing a control system where the
heater will automatically switch off without any manual interference once the lower wa-
ter level is triggered.
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On the other hand, the full scale solution can potentially have a few ethics and safety
issues. One such potential issue would be siphoning too much salt water from one spe-
cific place, thus disrupting the environmental balance of that ecosystem. This would be
in direct violation of ACM 1.2 [12]. Any real-life instance of this project must consider
rotating between multiple sources and saltwater ecosystems in order to keep disruption
as minimal as possible. Another potential concern could be securing the perimeter of the
aquifer and all other water deposits to minimize injury to any on-site engineers and any
others.

5.4 Future work

In the future, we can redesign the PCB using the correct footprints and removing the BJT.
We also inadvertently forgot to connect the EN pin for the MUX, so the next design can
fix that as well. We would also select a different relay with the appropriate specifications
for our needs.

We would also work on helping the software communicate with the micro-controller
through serial USB. This would involve changing how the software and firmware sends
and receives signals from the micro-controller. After fixing the existing issues with the
project, we can implement it into Professor Allen’s prototype to control the system and
enforce safety features at the touch of a button.

In regards to ways to improve our system, one possible improvement would be to add
bluetooth capability. Due to the nature of Professor Allen’s vision, our system would
need to be implemented near water; making it wireless would make the experiment safer
to run. From a user’s perspective, it would make it much more convenient.
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Appendix A Requirement and Verification Tables

Table 4: Voltage Regulator - Requirement & Verification

Requirements Verification

• Use the voltage input of 5VDC
and set it to a constant level of
3.3VDC to be utilized by temper-
ature sensors, humidity sensors,
MUX, and microprocessor.

• Connect input of the regulator to 5VDC volt-
age supply from the USB.

• Check that the input voltage and output volt-
age using an oscilloscope to ensure volt-
age was properly converted from 5VDC to
3.3VDC +5%.

• The output current from the
voltage regulator must meet the
minimum current requirement of
800mA for microprocessor.

• Connect input of the regulator to 5VDC and
connect the output of the converter to a tem-
porary load that equivalent to the circuit’s
load.

• Check the output current using ammeter to
ensure output current is 800mA +5%.

Table 5: Temperature Sensor - Requirement & Verification

Requirements Verification

• The temperature sensor must op-
erate at a minimum of 3VDC

• Connect the VCC of the IC to a 3.3VDC used
to power our board along with other compo-
nents

• Using a multi-meter read the voltage of the
IC by connecting to the VCC and GND
pins. Reading a value between 3-5V ensures
proper powering.

• Accurately read the 14-bit data
within a tolerance of +2◦C of the
actual value

• Ensure that power is connected to input of IC
to be able to read data.

• Test with a known ambient temp, set CS to
low and call read function. Compare reading
to known expected value.
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Table 6: 3:8 MUX - Requirement & Verification

Requirements Verification

• MUX operates at a 2-6V

• Connect VCC and GND pins of the IC to the
3.3VDC power supply on our board

• Using a multi-meter ensure the voltage read
between GND and VCC is 3.3V

• Correctly set one of the 8 output
pins from a given 3 bit input

• Correctly set the enable pins to output a low
signal to corresponding output from the in-
put

• Reading the set value with a multi-meter
should read 0V while the rest read read 3.3V

Table 7: Humidity Sensor - Requirement & Verification

Requirements Verification

• The humidity sensor must oper-
ate with a minimum voltage of
3.3VDC

• Connect the VCC pin to a 3.3VDC power
supply used to power our board with other
components

• Using a multi-meter read the voltage of the
IC by connecting the leads to the VCC and
GND pins. a reading around 3.3V ensures
proper powering.

• Read the 16-bit humidity data
from the humidity sensor prop-
erly

• Ensure that power is connected to the input
of the sensor.

• Using a known humidity for the space the
sensor is in, use DHT read function. Com-
pare the humidity data to the known humid-
ity. reading must be within a tolerance of
+2%.
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Table 8: Level Sensor - Requirement & Verification

Requirements Verification

• Able to read a signal that was
passed in

• Send out a high signal through a pin and read
through another pin that high value

Table 9: Microprocessor - Requirement & Verification

Requirements Verification

• Decode data from the sensors to
use in our algorithm for self run-
ning experiments.

• Setting the values of the sensors inputs to
set value and ensuring that the processor is
properly reading the data correctly from the
sensors.

• Utilize our software and algo-
rithm using the data read from
the sensors and UI to be able to
run experiments autonomously
by powering relays.

• Continuously feeding the processor data on
possible different sensor reading connect an
oscilloscope to the output pins connected to
the relays to see if the change when neces-
sary.

• Process and send data it gath-
ers about the sensors to the com-
puter to be used for visualization
for user interface.

• Save the data gathered by the microprocessor
in a csv file format by hard setting the sensors
to known values to ensure proper data trans-
mission.
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Table 10: MOSFET - Requirement & Verification

Requirements Verification

• The minimum drain current of
540mA should flow between
drain and source when drain to
source voltage is set to 12VDC
and gate to source voltage is set
to 3.3VDC.

• Connect drain to fan/solenoid driver/air
pump that requires current of 540mA series
with 12 VDC voltage supply.

• Connect gate to red probe of oscilloscope and
source to black probe of oscilloscope.

• Generate a square wave with a peak-to-peak
voltage of 3.3VDC, DC offset of 1.6VDC, and
a frequency of 0.1Hz.

• Check whether fan/solenoid driver/air
pump turns ON/OFF every 5 seconds.
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Table 11: Relay - Requirement & Verification

Requirements Verification

• The relay should switch ON with
a 3.3VDC voltage input.

• Connect one pin 5 of relay to red probe of os-
cilloscope and pin 2 of relay to black probe of
oscilloscope.

• Generate a square wave with a peak-to-peak
voltage of 3.3VDC, DC offset of 1.6VDC, and
a frequency of 0.5Hz.

• Check whether relay switches ON/OFF ev-
ery 1 second.

• The high-voltage section of the
relay should be suitable for
120VAC.

• Cut the AC cord that supplies 120VDC into
two segments.

• Reconnect neutral and ground wires to-
gether.

• Connect one end of power wire to pin 1 and
other end of power wire to pin 3 using screw
terminal.

• Connect the AC cord to the wall outlet and
verify if it can produce 120VAC.

• The relay needs to be capable of
delivering a minimum current of
5A.

• Cut the AC cord that supplies 120VDC into
two segments.

• Reconnect neutral and ground wires to-
gether.

• Connect one end of power wire to pin 1 and
other end of power wire to pin 3 using screw
terminal.

• Connect the AC cord to the wall outlet and
verify if it can deliever 5A.
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Table 12: BJT - Requirement & Verification

Requirements Verification

• Collector current should flow
when base-to-emitter voltage is
set to 3.3VDC.

• Connect the base to a GPIO pin on the ESP32.

• Connect the emitter to ground.

• Connect the collector to pin 5 of relay.

• Connect pin 2 of relay to 5VDC voltage sup-
ply.

• Generate a 3.3VDC output using the GPIO
on the ESP32.

• Verify whether relay turns on, indicating that
collector current is flowing through relay,
supplying 5VDC.

Table 13: Frontend Software - Requirements & Verification

Requirements Verification

• The software must be able to
connect to the micro-processor
through serial USB.

• Set the properties for the COM port in use.

• Check if signals can be sent and if the micro-
processor responds appropriately.

• Check if data sent by the micro-processor can
be interpreted accurately.

• The software must be able to
graph the data in real-time for a
specified amount of time.

• Print the data received and the data point
graphed and check if it makes sense.

• Check if the graph updates automatically
when another data point is received.

• Check if the plotting stops after the specified
time has elapsed.
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