Plant Irrigation and Monitoring System

By
Carlos Toledo
John Burns
Kevin Le

Final Report for ECE 445 Senior Design Fall 2023
TA: Sainath Barbhai

6 December 2023
Project No. 8

Abstract

Our plant irrigation and monitoring system automatically waters a series of plants using a solenoid valve
based on user input parameters of scheduled hours and maintains the plant health above its minimum
moisture level. Each of our subsystems are tested and they work independently with hardcoded data or
theoretical values, but our project ultimately fell short as the valves do not open or close as expected
when integrating everything together.

Contents

IR 12 o Yo [T n e o USSP PPR 4
=] =4 o 1P PUPOP U PPPRRRRN 5
N O T BT o 1Ay (<] o VU USUUPUURRRRRURRt 5
O R T T Y P-4 o o Yo T [U TR USRS 5

B A =Yy 14 T B L] 7 11 PP 6

B A Oo T 0 A o BTN o1 Ay (=T o o U 6
B D 1Ty F=d o T o Co Yol To 1 ¥ U PR 6

A 0 1T 14 T = - 1 P PR 7

2.3 MOIStUre SENSING SUDSYSEEM. . ciiiiiiiiiei ittt e e s e e e s ebtae e e e eenbteeeesesateeaeesssnreeeessnnes 8
G T A D TSIy 1= I o o Yol Yo [U USRI 8

2.3.2 DESIZN DELAIIS. c.ceeieeee ettt e e e et e e et r e e e e a—a e e e e e nabaeeeeennareeaaan 9

TR DT =T Y 3 ot u o o S 12
I U IR U] 1Yy =T o o TSRS 12

3.2 CONLrOl SUDSYSTEM......uuiiiiiiieiei e e e e e e e e e s s e ettt e e e e e e e aaeeessanenanbtraeeeeeeeaaeeeean 13

3.3 MOIStUre SENSING SUDSYSTEM . .eiiiiiiiiiei ittt e e et e e e et e e e eeabaeeesesasaaaeessnnneeeanas 13
o 1] (U PUPUPUPPPPRPTPPPPIR: 15
L R o T PO PPPPPPPPPPPPPTN 15

I o Yo | PRSPPI 17

LT 6o o [T o 7o FOS O PPPTRPUPPRR 17
oI Yol oo T aT'e] 1] 0 41T 0 4T PSRRI 17

I 2 d oo | I oo T] o [T i n o] T3S 18

LI B U U] IRV o PRSP 18

2] 1= =T ol SR 19
Appendix A Requirement and Verification Table........cccuviii it 20
Appendix B Custom Read/Write Communication Protocol............oocueiiiciieeiiiieeeiiiee ettt cvee e 24

1. Introduction

Gardening takes a lot of time, skill, and effort. Each plant has its own specific living conditions that can be
difficult to keep track of when taking care of many plants. The plant irrigation and monitoring system is
designed to maintain an average person's plants' health and alleviate the pressure off those lacking the
skills or time to maintain their plants themselves. The system consists of a hose connected to a series of
solenoid valves with water running through PVC pipes based on the number of desired plants, where
each plant station has two moisture sensors to detect its current health and one to detect whether it is
adequately watered. For each plant, the user just needs to do a one time configuration of specific
parameters of the plants minimum moisture level and desired scheduling times through the user
interface; the system will solely take care of maintaining the plants from here on allowing the user to
focus on their busy lives. The entire system consists of the master control subsystem which costs $34.06,
as well a user defined number of moisture sensing subsystems needed for each plant, which is $46.73
per plant. Construction materials such as PVC piping and waterproofing equipment will vary based on
the area and configuration of the user’s garden; per unit prices are provided in the cost section. In the
upcoming chapters, this report will be covering the entire design of the system from design to costs and
labor. This report will go over each subsystem in detail: Ul-Subsystem, Control Subsystem, Moisture
Sensing Subsystem, and whether these subsystems work and how we tested them for validity. The
Ul-Subsystem is where the user can control the specific parameters for each plant through a Web-App
and is how data coming from the other subsystems are displayed; we will be going over the WiFi
communication as well as the data transmission between the frontend and the microcontroller. The
Control Subsystem is the brain of our entire system and is where the communication logic is written to
pass on inputs to the Ul-Subsystem and the Moisture Sensing Subsystem; we will be going over the logic
behind the Read/Write communication protocol. The Moisture Sensing Subsystem is a modular system
that can be replicated for each number of plants and is where moisture sensors are located and is where
the solenoid valve is to water the plants; we will be going over the logic on how each value is controlled.
Upon completion of the project, we learned a lot. We were able to get each of our subsystems
individually working but fell a bit short in combining each subsystem and trying to get the system to work
as a whole. There are several features that can be integrated in the future such as complete water usage
tracking and auto detecting slave devices to name a few. Overall, our project fell a bit short in integrating
everything together, but we were successful in many other ways.

20v
WIFI J’
Ul Subsystem] -
@33V LDO |5 vmed AC/DC
- — MCU Converter,
@12v =33V
% Control |
@DATA (Wired) Subsystem | 12v
i Valve_Ctrl,Write,
@DATA (Wireless) Addr,CLK,MISO
Data, MOSI
I vl v
e R T e e s ek W S S s 1
| 1 7 i v [J !
‘ v Moisture Sensing Moisture Sensing Moisture Sensing
[1o Maisture | Drain | Subsystem Subsystem Subsystem
L Sensor [Moisture
___J | Sensor J 1 Solenoid i Solenoid B Solenoid 1
. 1 Valve i Valve i vave |4
Moisture Sensing Subsystem ' 11 1 1
1 [N} 1
1 [} 1

Figure 1: Block Diagram

2 Design

2.1 Ul Subsystem

2.1.1 Design Procedure

This subsystem is responsible for displaying the plants health data received from moisture sensors in the
Moisture Sensing Subsystem as well as allowing the user to configure specific parameters of the
minimum moisture level and scheduled times for each plant. A key part of this subsystem is WiFi
communication with the microcontroller in the Control Subsystem to the frontend. The ESP32
microcontroller was specifically chosen for this task as it allows for WiFi and Bluetooth connectivity. It
has a built-in WiFi library that lets us connect to WiFi without any hassle. The ESP32 also can act as a
station or an access point, which is what we specifically wanted because we planned to store the WiFi
credentials on the ESP32 itself instead of on the user local device for security purposes. We were
considering other microcontrollers, but quickly settled on the ESP32 for its popularity in WiFi once we
decided to use WiFi. For the user interface, we thought that a Web-App would be appropriate because it
is easy for the user to see and use without much overhead. Specifically used React.js and CSS for styling
as it is a modern javascript framework that allows for easy state management and live updates. Other
design approaches include using Angular.js which is another framework, or even a more simple interface
using buttons and LED, but a React Web-App is much easier for the user to use and the React library is
more straightforward to use compared to Angular. For the communication between the Web-App and
the microcontroller, we initially used HTTP requests but realized this was not what we needed as it is a
one way communication. We settled on using Websockets which allows for bidirectional communication
between the server and the client, which allows us to send data from the user interface to the ESP32 and
from the ESP32 back to the user interface.

2.1.2 Design Details

% React App x +

» C @ localhost:3000 e ¥ ¥ B ¥

Max Water Usage: 5

- Min Moisture Level Watering Hours Watering Days

Figure 2: Ul Snapshot

Figure 2 is a snapshot of the user interface that the user gets to see and interact with. They can click the
“Add Plant” button and then fill in the necessary parameters: plant name, Min Moisture Level, Watering
Hours, Watering Days. These parameters are the minimum parameters necessary for the functionality of
our system. It allows us to keep track of the minimum moisture level required for the respective plants to
survive, and the watering hours and days are present to allow flexibility for which days the user prefers
to water their plants. This scheduling takes secondary precedence after local watering state laws. On the
right hand side, we decided to display the feedback information on the plants’ health which also includes
its moisture level and respective slave address. The top displays the max water usage so the user knows
how much water they are using and we use this to account for any state watering laws.

2.2 Control Subsystem

2.2.1 Design Procedure
The control subsystem is the center of our decision making process for each plant. It communicates to
our Ul Subsystem via WiFi to take in parameters and display plant health. The control subsystem can
cycle a max of 15 addresses (plants) and is wired in series to our slave subsystems which encodes the
state of each plant’s two sensors. Using the information from the state of the plant and the restrictions
from the user’s input on whether watering should occur, it will send out a signal to open or close the
valve for each individual plant. The restrictions each user can configure include: allowed days, time, and
6

moisture level. Taking these into account and use of our SPI communication, configuration between each
plant must be saved into local storage. This will help with loss prevention and allow the system to power
off and power on without having to re-configure each plant. The ESP 32 is configured to be in both
access point and station mode to allow users to connect their system to WiFi by entering a SSID and
password. As for powering the whole system, we use a manufactured AC/DC converter from a 120 v
outlet, to a 12v, 5v and 3.3v output. We originally had wanted to use our 3.3v output but were required
to add a LDO to step down from 5v to 3.3v for ‘additional complexity.” The control system pcb is
programmed via USB with debounced reset and boot buttons, based on the ESP32 dev board.

2.2.2 Design Details

The control subsystem is fairly simple in terms of physical design, consisting of a 4 bit address output,
CLK, data in/out, write and our valve control signal. It accepts JSON input from the Ul subsystem that is
then saved locally with SPIFFs. This is to prevent data loss with restarting the device. Figure 4 shows a
more detailed representation of what components will be on the control system PCB. The voltage supply
connection to the ESP32 is wired in accordance with the ESP32 datasheet to operate properly. Each
pinout is needed for functionality of the whole system, with SPI communication and status LEDs for the
user and DEMO. The USB data in/out connections need TVS diodes. TVS Diodes are used to protect
semiconductor components from high-voltage transients. For the power subsystem, since we are using a
manufactured AC/DC converter, | am only stepping down from 5v to 3.3v. 12v will be passed through the
control system PCB to power the moisture subsystem. Figure 3 shows our decision making code as it
stands. It compares the current time and day with watering time/day restrictions and then makes its final
decisions based on the moisture content of the soil + drainage.

makeDecision(){
if(timeHour < Timethresh || timeHour > Timethresh2)f{]
return OJ
li
f =0;
for(i=0; i< days ; i++){
if(water_days[i] == timeWeekDay){
ER= 1
break;
)
I
if (f == 0){
return 0;
}
if (topval < thresh && drainval < drainThresh){
return 1;
}

return 0;

Figure 3: Decision Making Code

MEY — ESP32

Lebounced

U Boot Button
Reset Button Boot Button
¢ Boor
N o—l ‘ “Ez'"
L o oz
¢s l | |
nl i e

USB Programming

| Sheet: 7

File: ctoledo2_design2.kicad_sch

Title: Master PCB Deslgn

Size: A [Date: | Rev:
KiCad E.D.A. kicad 7.0.7 R

Figure 4: Final Control Subsystem PCB
2.3 Moisture Sensing Subsystem

2.3.1 Design Procedure

This subsystem is responsible for delivering data from the top and drain moisture sensors of a plant to
the master control subsystem and for modulating the state of the plant’s solenoid valve based on the
decision reached by the master control unit. There are many different ways that this communication
could be conducted. To achieve efficient scaling in both cost and power, it was decided to avoid using a
microcontroller for each moisture sensing subsystems. Thus, custom digital hardware was built on the
moisture sensing subsystem to enable the master-slave communication between the control and
moisture sensing subsystems using wired communication on data lines coming out of the control
subsystem. A wired connection is cheaper and far less complex than wireless communication, and comes
with no real downsides as there must be a physical connection of water between plants, presenting a
natural route for the wires by binding them along the side of the PVC pipes.

Shown in Figure 5 is a simplified block diagram of the moisture sensing subsystem.High-level
functionality is that during a read operation to the slave’s hard-coded internal address, the digital logic
will produce power to the sensor and pull down the CS Low signal on the ADC when appropriate. The
ADC will then communicate the moisture sensor data to the ESP32. During a write operation to the
slave’s hard-coded internal address, the digital logic will store and output the appropriate valve open

8

signal which controls a power MOSFET connected in series with the plant’s valve, opening or closing it as
necessary. Figure 6 shows within the digital logic block on Figure 5 and shows how the CS Low, Solenoid
Power, and Sensor Power signals are generated. One can see how adding plants will only involve adding
a new address pin when the number of plants is doubled; all the other pins are shared and will not
increase in number, allowing for dozens of plants to be hooked up to the same system.

"—'J Sensor 1

MOS! Sensor 2

MISO
Clk ADC

Address CS
Lo

ESP-32 Write Sigré Digital Logic
Open Valve Signal

Sensor Power

Solenocid Power

Figure 5: High Level Overview of Slave Hardware + Data Flow

AddrCheck

Open Valve

Gate of power to
Signal P

. i
Solenoid moisture sensors

Power Fet
Gate

Y

| CS low on ADC

All gates powered by 3.3V Vdd
A_i: internally saved address
A_b: address currently on the
address outputs pins of the
microcontroller

Figure 6: Digital Logic Schematic

2.3.2 Design Details

The moisture sensing slave hardware was built around the idea of being able to scale to high numbers of
plants. Having dedicated signals for each slave would have been easy to implement, but would quickly fill
up all the pins on a microcontroller. As such, the system operates with shared data lines, and it is the role
of 4 address pins to ensure only one slave is communicating at a time. 4 address pins gives 24 = 16
possible addresses, allowing for 15 plants to be connected as we reserve one address (1111) to be used

9

on no slaves for communication protocol purposes (explained below). It is trivial to increase the number
of bits here to allow for more plants if desired. Each slave will have a custom arrangement of 4 bits tied
to source or ground and these bits are XNOR’d with the respective address bits, giving a 1 if the bits
match and a 0 otherwise. These 4 bitwise checks are then AND’d together to give an output which is 1 if
the address on the address lines matches the slave’s internal address and 0 otherwise. This signal
(referred to as AddrCheck from here on) is used at every other stage of the slave hardware- if this signal
is low, nothing will happen on the slave.

Writing to the slave is implemented by ANDing the Write signal from the master control unit with
AddrCheck and using this as the clock to a flip flop, so it will take in the new Open signal value when this
write check signal rises. The output of the flip flop is the gate of a power N-Channel MOSFET positioned
between the negative terminal of the solenoid valve and ground. When this signal is 1, the FET will be on
and allow for charge to flow, letting a voltage differential develop across the terminals of the valve and
causing the valve to open. When the signal is 0, the transistor will be turned off and current will not be
able to flow across the valve, so a voltage differential will not develop and the valve will remain closed. A
flyback diode is used to avoid component damage when the gate transitions. Collin’s Lab Notes on the
Adafruit YouTube channel was essential for setting up this solenoid system correctly [1].

Reading is done from two moisture sensors, one at the top soil of the plant and one at the bottom.
These sensors give analog voltage outputs and are thus connected to an ADC for communication to the
master control unit. The communication protocol is performed by ANDing AddrCheck with Not Write to
give a read check signal which is 1 when the slave in question is being read from and 0 otherwise. This
signal is used to provide power to the moisture sensors in the same manner as power-gating the
solenoid valve, and this signal is also inverted to become Chip Select Low on the ADC. With Chip Select
Low pulled low, the ADC is now ready to communicate with the master control unit (explained in further
detail below). An example of how to connect this sensor to a microcontroller to control water for a single
plant was seen in “Automatic Irrigation System using an Arduino Uno” project by Rajesh on Circuit Digest
[2]. Although we have a much more complex read operation to perform, with multiple plants, two
sensors per plant, and digital rather than analog data communication, it was a very helpful start point to
help us see how the project’s goal is possible.

Shown in Figure 7 is the final moisture sensing subsystem schematic. The entire subsystem operates on
3.3 V except for the solenoid valve, which will either have a 12 V or 0 V differential across its terminals
depending on the state of the signal at the gate of the power MOSFET.

10

33w

[

us
MEPTaDE LA

i
W 1o Data_cul
13 1 uac ‘L:E ok oS
z CO4D&IU BE
3 uro [}
S e = e cogn CUADeUEE |
Drei ; e | 5 Mo 18 Batadn 5 fun
%KJL 7 1-202037-2 > adechi y |
T 433 FERAECT by
Added] v uy
%“9— w e TLTHHCORRP_T_ —d: o
Adirdyy |y, }_J
Addrlhz tz
= Ll Auf . P
La]a, e
drdrda 3
Arddriz ; 3 :: EH
AMArZ 3 GND P
#adr3s | sfl
TK_= s
Daiaia |, o [4330
De a4 1-282037-2 UG
430 wilkn |, GHD. 'S
Tt ale o EDA4TUEE
T 3 anp
+3.3¢
: — s
aa 416N [TEFH oy :
addih i [Er e Hig i
i e
i T [Eatis. he 1 : i sikiintd (-} unlmnﬂgunlz
Hio== | T g 14 1
I LuF I' GND UZ\F;WENQ n RS o h CRAL3BEES
LB s
EHE T o GND CDAOABUBE CBILTUEE i
= I .Luri 1 5 If>.. P 3 D— 2] cuaews w
L L] pinenz L4
agdry |, wha 423 L o 3 B
ciddry | o e Y 2 T AuF +3.3% : =] =
Addrd | a PESETL
rru b 2 o]
—"‘l—“drz B an.Lu: CO7LHEIE T e
P w 1es i]an
] L
k- T=TH by J‘_ AuF
iy .
iy i L "
T Lo wl= <~ =
-t GND GHD
GND u2E
= EDADLIUBE
a
R
2F
COLDYIUBE
FXE Thest 7
File: eredbbslave.kical_sch
Size: A4 [Date: [Rew
Kitad E.D:A, kicad 7.0.7 ‘ I 1L
T T T T T 3 T I3 T

Figure 7: Final Moisture Sensing Subsystem Schematic

After some deliberation, it was decided to not try to force the ESP-32’s built in SPI protocol to fit into our

usage and instead just manually set the MOSI pin and read the MISO pin depending on the clock cycle.

void loop() {

unsigned long currentMicros =

clk = ~clk

= currentMicros;

digitalWrite(clkpin, clk);

if(clk == 0){

cycle++;

11

micros();
if (currentMicros - previousMicros >=
previousMicros

interval) {

The clock cycling is done by toggling the clock every 10 us and updating a cycle counter if the code just
switched to a 0 on the clock as shown in Figure 8.

Figure 8: Clock toggling/cycle incrementing on the ESP32.

From there, we used the MCP3004 datasheet page on Figure 9 to work through what each pin needs to
be in each clock cycle, writing data on the low edge of the clock and reading during the high edge.

leve 1. feve
tesib—
[]

ow =] [D2[D1]D0 sad[| D2
SGU SGuU
DIFF DIFF
II
tcon
tsamPLE v toata ™

Figure 9: Waveforms for SPI communication with MCP3004 ADC.

Shown in Appendix B is a rough outline of the communication protocol, each entry representing what
happens during each clock cycle.

3. Design Verification

Individual subsystems were verified satisfactorily. As shown in the RV tables in Appendix A, the failures
came during total system integration. This failure will be discussed more in the conclusion, but all the
individual subsystems met the tasks and specifications we set for them.

3.1 Ul Subsystem

To verify that the Ul-Subsystem works, the user clicks on “Add Plant” and fills in the parameters of the
Plant Name, Minimum Moisture Level, Watering Hours, and Watering Days. They then click the “Send
msg to ESP32” button and this data is now sent to the ESP32. We can see this exact sent data in the
Arduino terminal running the microcontroller code to verify communication works from the frontend to
the microcontroller works properly. In the microcontroller code, we have a hardcoded JSON mocking
the plant data read from the moisture sensor. We can verify that the communication between the ESP32
and the Web-App works as the right hand column of the Web-App displays the exact same values from
the mock data of each plant with its respective address, health, and moisture value. This verifies the
functionality of sending data from the microcontroller to the frontend. All this functionality works and is
verified.

12

3.2 Control Subsystem
The verification of the control subsystem consists of testing the WiFi connectivity with User input for
WiFi SSID and password, testing the decision making algorithm, and LDO testing.

WiFi Test:

® The User connects to PLANT_SYS WIFI network with password ‘pass1234’
e The User enters the WiFi credentials of the desired WIFI network by going to the browser and
entering this url: http://192.168.4.1/
o This will always be accessible to change the WiFi network
e A WiFi Status LED will continuously blink blue until the ESP32 connects to the Internet, then
stays green once successful.

Decision Making:

e Setting restrictions on days and times other than the current day and hour will always decide no
water should be done

e Setting allowed watering day and time to present time will allow decision making continue

e Putting the top sensor in a dry location will keep the valve open until the drain sensor is wet,
submerging the top sensor in water will do nothing but relay the data to the control subsystem

Linear Voltage Regulator (LDO):

e After connecting our power supply to our Master PCB, we confirmed the LDO has an output of
3.3v from 5v max input. The output was just about 3v.

3.3 Moisture Sensing Subsystem

Accurate transmission of data is essential for this project to succeed. After building the moisture sensing
slave hardware on a breadboard, the following tests were performed and results were as desired, using
an ESP32 dev board and its 3.3V power supply output:

Write Test:

e Wire the slave to the microcontroller as it will be during normal operation. Hardwire the slave’s
internal address to 0001.

e Disconnect the Open signal from the microcontroller and connect it directly to Vdd.

e Connect an LED with positive terminal at the slave’s solenoid control signal and negative
terminal at ground.

e Implement the communication protocol described in section 2.3.2. Set the max address variable
to 3. Set the clock period slow enough for the human eye to see (1500 ms).

e Add code to output the current address to a hex display and connect a hex display to the
specified pins.

e Boot the code to the ESP32 and run it.

® Observe the LED light up and remain lit.

13

e Manually connect the Open signal to ground.

e Observe the LED turn off.

e Halt the program and edit the code to turn the Open signal on and off depending on what the
current address is. The specific sequence is arbitrary, but keep track of what the Open signal is
when address == 1.

e Connect the Open signal back to the microcontroller, and add an LED from it to ground to see
the Open signal changing.

® Boot the code and run it again.

e Observe the solenoid control LED remains at whatever value Open was set for address == 1,
despite the addresses incrementing and the Open signal changing

Read Test:

e Wire the slave to the microcontroller as it will be during normal operation. Hardwire the slave’s
internal address to 0001.

e Implement the communication protocol described in section 2.3.2. Set the max address variable
to 3. Set the clock frequency to faster than the minimum clock speed required by the ADC, which
is 10kHz. We used 50 kHz for this test.

e Add code to save the sensor data from each channel when address == 1 and continuously output
it to 20 pins (10 bits per each channel).

e Connect strip LEDs to the output pins to visually confirm the data that the microcontroller
receives from the ADC’s two channels.

e Use resistor division to manually set a distinct voltage at the input of Channel 0 and Channel 1
on the ADC (two identical resistors in series with Channel 0 connected in between gives Vdd/2 at
Channel 2, three identical resistors in series with Channel 1 connected between the final resistor
and ground gives Vdd/3 at Channel 1).

e Boot the code to the ESP32 and run it.

® Observe and write down the binary sequence corresponding to each channel on the LEDs.

e Compute what integer each channel’s LEDs represent in unsigned binary. Divide this by 2710
(1024) and verify that the decimal is within a 10% tolerance of the value created with the
resistor divider.

All our tests with the communication between master and slave were satisfactory. The slave changed its
Open Valve control signal when it should and remained the same when it should during the Write Test.
When the clock period was set to 10 us, we saw LED response within 2 s of changing the moisture
sensor’s state, well within the 2 minutes we gave ourselves in the high level requirements for a system
responsive enough for gardening purposes. The Read Test yielded correct results as well for both
channels, outputting 0111111111 = 503 / 1024 = 0.4912 when set to Vdd/2, 0101010110 =342 / 1024 =
0.3340 when set to Vdd/3, and 0100000001 = 257 / 1024 = 0.2510 when set to Vdd/4.

A test of the integration of Write and Read was performed by setting up a simple version of the
makeDecision function on the ESP32 to turn a valve on or off based only on the current value of a plant’s
top level moisture sensor. The system performed exactly as intended, with the LED on one moisture

14

sensing subsystem’s valve control signal turning off when the moisture sensor was placed in water and

on when it was in open air, and two moisture sensing subsystems operated entirely independently of

each other.

4. Costs

4.1 Parts

The costs of the necessary parts are shown below. Table 1 shows the total parts purchased in the course

of designing this project throughout the semester, including development parts and using the actual

quantities of materials purchased, using two moisture sensing subsystems. Entries marked with an

asterisk designate costs for one moisture sensing subsystem and can be assumed to scale linearly with

the amount of plants an individual consumer wishes to take care of.

Table 1 Total Parts Costs

Part Manufacturer Retail Cost ($) | Bulk Purchase | Actual Cost ($)
Cost (9)
ESP32 Devkit Espressif Systems 9.00 9.00 0.00
20x First round PCBs PCBWay 2.00 2.00 Covered by the
department
1x RPT-6003 AC/DC MEAN WELL USA 21.46 20.20 21.46
Power Converter
1x 3 prong outlet Qualtek 5.34 3.10 5.34
cord
1x LM1117-5.0 Texas Instruments 1.14 0.52 0.00
1x CONN RCPT HSG JST Sales America 0.22 0.10 0.22
6P0OS
1x CONN RCPT HSG JST Sales America 0.15 0.06 0.15
3P0OS
1x Espressif Systems 3.48 3.48 3.48
ESP32-S3-WROOM
10x Master Control PCBWay 2.00 2.00 Covered by
Subsystem PCB department
4x TVS Diode Onsemi 0.24 0.05 0.096
1x 3 Position Adam Tech 0.98 0.41 0.98
Terminal Block Plug
1x 1/2 in. PVC Hose Orbit 3.55 3.55 3.55
Adapter
1x LP-55P Plastic Polycase 4,97 3.99 0.00
Electronics Enclosure
10x Moisture Sensing PCBWay 2.00 2.00 Covered by
Subsystem PCB* department
2x Plastic Water Adafruit Industries 6.95 6.95 6.95

Solenoid Valve*

15

4x SEN-13322 Sparkfun Electronics 6.50 6.50 6.50
Moisture Sensor*
2x MCP3004-I/P Microchip Technology 2.97 2.26 2.97
ADC*
2x 1N4001-T Diode* Diodes Incorporated 0.20 0.04 0.20
2x SN74HC266N Texas Instruments 0.67 0.29 0.67
XNOR*
2x CD4013BE Flip Texas Instruments 0.70 0.30 0.70
Flop*
2x CD4049UBE Texas Instruments 0.69 0.29 0.69
Inverter*
2x CD74HC21E4 Texas Instruments 0.73 0.31 0.73
Input AND*
2x TC74HCO8APF 2 Toshiba Semiconductor 0.45 0.14 0.45
Input AND* and Storage
2x IRLB8721PBF Infineon Technologies 1.05 0.46 1.05
Power MOSFET*
5x 12 position TE Connectivity AMP 4.67 3.04 4.67
connector* Connectors
2x 8 position TE Connectivity AMP 2.62 1.71 2.62
connector* Connectors
2x WC-21F Outdoor Polycase 14.15 9.25 0.00
Enclosure*
8x LR1F30K Resistor* TE Connectivity Passive 0.14 0.02 0.00
Product
12x KEMET 0.43 0.13 0.00
C317C104K5R5TA
0.1uF Capacitor*
2x 1uF Capacitor* Murata Electronics 0.74 0.22 0.74
2x 1/2in. PVC Charlotte Pipe 0.64 0.55 0.64
Schedule 40S xS xS
Tee*
2x 1/2 in. PVC Charlotte Pipe 0.75 0.75 0.75
Schedule 40 Male
MPT x S Adapter*
2x1/2in.x3/4 in. DURA 1.27 1.27 1.27
F-Adapter Fitting*
10 feet 1/8" Heat Electriduct 1.00 per foot 1.00 per foot 0.00
Shrink Tubing
1 can Liquid Electrical Performix 7.49 per can 7.49 per can 7.49 per can
Tape Spray
1 can All-Purpose Oatey 3.98 per can 3.98 per can 3.98 per can
Fast Setting

Clear Cement

10 feet %5 in PVC pipe

Charlotte Pipe

0.42 per foot

0.42 per foot

0.42 per foot

70 feet 22 AWG wire

Adafruit Industries

0.11 per foot

0.11 per foot

0.00

16

Total | | 369.41 | 255.00 | 142.02

The above table all pertains to the actual costs used for the development of one master control
subsystem and two moisture sensing subsystems. We also report below, using bulk costs and half the
quantities shown for the asterisk-marked moisture sensing subsystem parts, the estimated costs of units
in mass production.

Costs of hardware per moisture sensing subsystem in bulk production: $46.73
Costs of master control subsystem in bulk production: $34.06

The costs of the waterproofing materials and PVC equipment are variable depending on the dimensions
and construction of the consumer’s gardens.

4.2 Labor

With an estimation of $48.00 an hour wage for 3 group members, each having given approximately 150
hours of work in the course of the semester, and a multiplier of 2.5x, we estimate a labor cost for the
three of us at $54,000. Additionally, with an approximation of 2 hours of fabrication work at $21.96 per
hour, we estimate $43.92 of fabrication labor costs.

5. Conclusion

When finishing and demonstrating our design, completing subsystem requirements and combining our
individual subsystems yielded an unfinished product. First, we ran into issues when creating our Ul
subsystem and integrating it with our control subsystem. Creating and testing the frontend is one thing,
but gathering data, saving data, and sending to the frontend gave us more room for errors in our data
transfer pipeline. This includes data loss between cycles due to timing out from our websocket
implementation for sending data to the users. The ESP32 will reset itself mid address cycle and restart
the address cycling process. More devastating issues arose when we disconnected our system for water
proofing. We had failed to create a system for wiring the slave and master board which caused the
wrong wires to be put in the wrong places prior to demo. Spending more time on software testing and
better allocation of decision making on project details would have significantly improved our process for
designing and building our project.

5.1 Accomplishments

Individually, we were able to complete a Ul subsystem that accepts formatted data from the ESP32
board, with updating data to the user. The moisture subsystem is able to output 2 channels of data from
the moisture sensors and be received by the ESP32. The control system is able to cycle through
addresses based on the number of plants inputted by the user. When budgeting for the project, we
stayed really close to our limit by only slightly going over $150 by a few dollars.

17

5.2 Ethical considerations

Safety Standards: Following the IEEE guideline on the safety of our project, it is designed to be easy to
use and compatible. It is safe to use and will not have the ability to cause property damage (IEEE Code of
Ethics 7.8.9) [3]. Any high voltage components will be properly sealed to protect against the elements, to
ensure user safety and prevent property damage. Informing the user how to use the device properly will
be crucial to ensure safety and functionality.

Intellectual Property and Attribution: When developing unique Wi-Fi technology, it's important to credit
others' work appropriately and ensure that our project respects existing patents and intellectual
property rights. Properly citing and respecting the work of others helps maintain ethical standards (ACM
Code 1.5). [4]

Privacy Concerns: Ensuring the privacy of users' data and information transmitted over the Wi-Fi
network is crucial. Following privacy standards of ACM Code 1.6 [5], each user has a right to privacy and
privacy standards will be followed to ensure information accessible via the internet is protected. This will
be done by safeguarding any of the user’s personal information by following industry level privacy
practices in our code.

5.3 Future work

Overall, a lot can be done to improve our design. Some future work we have considered was a complete
water usage tracking system, auto detecting slave devices and an improvement for our wiring. In
addition, we want to add features like failure detection, to notify the user when a valve or moisture
sensor is not functioning the way it is supposed to be, i.e. the valve is stuck open or closed. PSI
measurement to ensure the minimum PSl is available to open and close the valves. A better wiring
system would be needed as well, to make connecting slaves to the master streamlined.

18

References

[1]

(2]

3]

[4]

"Why Your Solenoid Valve Needs a Diode - Collin’s Lab Notes." Adafruit Industries. 2021.
https://www.youtube.com/watch?v=-PYasR6Z0KQ

"Automatic Irrigation System using an Arduino Uno." Rajesh, Circuit Digest. 2021.
https://circuitdigest.com/microcontroller-projects/automatic-irrigation-system-using-arduino-uno

"IEEE Code of Ethics." IEEE (Institute of Electrical and Electronics Engineers).
https://ieee.org/about/corporate/governance/p7-8.html

"ACM Code of Ethics and Professional Conduct." ACM (Association for Computing

Machinery). 2018. https://www.acm.org/code-of-ethics

[5]

[6]

Random Nerd Tutorials. “ESP32 Flash Memory - Save Permanent Data.” Random Nerd Tutorials, 2
Mar. 2021, https://randomnerdtutorials.com/esp32-flash-memory/

Random Nerd Tutorials. “ESP32 Async Web Server — Control Outputs.” Random Nerd Tutorials, 23
Oct. 2020, https://randomnerdtutorials.com/esp32-async-web-server-espasyncwebserver-library/

19

Appendix A Requirement and Verification Table

Table 2 System Requirements and Verifications

parameters and
communicate them to
the control unit.

o Exact same
parameters
show up in the
ESP32 terminal

configuration settings
functionality, user
clicks on “add new
plant” button then
fills in the four
parameters: plant
name, water usage,
watering hours, and
the minimum
moisture level

® User clicks “Send
Message to esp32”
button

e To ensure proper
functionality, the
solenoid should open
the valve of the
specific plant at the
specific watering
hours and whenever

Requirements Verification Verification (Yes or No)
e Can be launched e A webpage with the Yes
successfully locally on a intended arguments
Web-App with intended and buttons to add
Ul-Subsystem. pIanFs and. .
configuration settings
o Ul-Subsystem should pop up,
loads up and ensuring frontend
user can click works properly
on buttons e To ensure saved
o Once user parameters, the
submits system should only
parameters open the valve on
! scheduled time, the
the data will be valve should not be
saved opened outside of the
scheduled time/date.
e (Can take in user e To ensure saved Yes

20

the plant dips below
its minimum top level
moisture level.
Confirm that this is
true as no valves
should be open
outside these times.
A plant’s watering is
stopped when the
drain sensor becomes
very wet. For demo
purposes, manually
place the drain sensor
into the glass of water
to stop watering.

Can receive plant
moisture and water
usage information from
the master control unit
and display itina
legible manner to the
user.

o The expected
parameters
show up on
Ul-Subsystem

User clicks on “add
new plant” button
then fills in the four
parameters: plant
name, minimum
moisture level,
watering hours, and
the watering days
User attaches
moisture sensor to
the top of the soil of
the plant (for demo
purposes, leave
sensors in open air)
On the Ul-Subsystem,
a reading of the total
water usage,plant
address, plant health,
and plant moisture
information is
displayed. Confirm
that these values
show up and the
parameter does not
show up as empty.

No. Communication of
data from the
moisture sensing
subsystem to the
master control
subsystem was
verified.
Communication from
the master control
subsystem to the Ul
subsystem was
verified. Integration of
the software to allow
moisture data from
the sensors to the Ul
subsystem ran into
compilation errors
and was lost due to a
lack of time.

When the master pcb is
in the WIFI_CONFIG
mode upon first
startup, the master will
act as an access point

Turn on system, press
reset, grab your
phone and search for
open WIFI networks
Connect to the Access

Yes

21

for the user to input
WIFI credentials and
attempt to connect to
the WIFI.

o AP Name:

PLANT_SYS

BLUE LED =
WIFI_CONFIG

Point (AP) named
PLANT_SYS with
password: config23
Follow URL:
url_placeholder on
your phone to interact
with the system

A prompt will appear
to turn on and off an
onboard Blue LED to
verify connection.
There will also be two
textboxes to enter the
name of your WIFI
network and WIFI
password.

Press enter to save
password

Wifi credentials are Confirm that your Yes
saved for the main network connection
system to connect to to PLANTTSYS no
WIEI longer exists
o aGreen LED
o PLANT_SYS = will be turned
DNE on to confirm
o Green LED = a successful
WIFI Connected WIFI
connection
The system can Use system in normal Yes

perform serial
communication
between the moisture
sensing subsystems and
control subsystem. Each
moisture sensing
subsystem operates
independently and is
not influenced by other
plants.

o Switching
between dry
and wet
environments

operation with
moisture sensors in
plant soil. (for demo
purposes, sensors will
be either in open air
or a glass of water).
Select one moisture
sensing subsystem,
use the Ul subsystem
to set the minimum
moisture level to the
mid-range value.
Alternate placing both
moisture sensors for
the plant in question
between a pot of

22

on one plant
opens and
closes that
plant’s valve
while not
affecting the
valve of any
other plants.

completely dry soil
(open air for demo
purposes) and a
container of water.
This specific unit
should have its valve
open when in the dry
soil and closed while
in the water; the
other units should not
be affected by this
switching.

The moisture sensing

subsystem can

communicate data to

the master control unit

within +/- 10% accuracy

o Data which

appears on the
Ul subsystem
for the status of
each plant is
within +/- 10%
of a voltmeter
reading of the
plant’s sensor’s
output

Use system in normal
operation with
moisture sensors in
open air.

Use a voltmeter with
negative probe at a
plant’s top level
moisture sensor’s
ground pin and
positive on the
sensor’s output pin.
Read the voltmeter’s
measurement.
Compare with the
value on the Ul
subsystem for the
plant in question and
ensure the value is
within +/- 10%.

No. All steps were

completed except for
being able to send
data to the Ul
subsystem. Moisture
sensor -> master
control
microcontroller
accuracy was verified
to +/- 2% accuracy.

23

Appendix B Custom Read/Write Communication Protocol

Start at a new address, assume write was just set to 0 and address pins are set to 1111 (invalid
address on all the slaves). Set MOSI pin to O.

~Wait for MOSI signal to propagate™

Set address pins to the current address number. This, combined with a low Write signal, will pull
Chip Select Low down on the desired slave

~Wait for address logic to propagate™

Set MOSI pin to 1 (Start Bit for SPI communication with ADC)

Set MOSI pin to 1 (Select single-ended mode for ADC read)

Set MOSI pin to 0 (D2, MSB of channel selection logic on the ADC)

Set MOSI pin to 0 (D1)

Set MOSI pin to 0 (DO, LSB of channel selection logic on the ADC. Channel 0 is selected for read).
~Wait 3 cycles for ADC sampling™

Read and store MISO pin (B9, MSB of ADC data)

Read and store MISO pin (B8)

Read and store MISO pin (B0, LSB of ADC data)

Set address pins to 1111 (invalid address for all slaves; this pulls CS Low high, which is necessary
before performing another read with the other moisture sensor on the plant)

~Wait to allow address pins to propagate™

Set address pins back to the current address

~Wait to allow address pins to propagate™

Set MOSI pin to 1 (Start Bit for SPI communication with ADC)

<Repeat the SPI protocol again, this time with the LSB of the channel selection address set to 1
to read from Channel 1>

~Wait to allow for computation of open/close valve decision™

Set Open Valve pin to the decision reached on whether the plant should receive water (1) or not
(0)

~Wait for Open signal to propagate™

Set Write pin to 1, Set MOSI pinto 0

~Wait for Write signal propagation and storage of decision in the plant’s flip flop™

Set Write pin to 0, increment address value (wrap back to 0 if max address was reached), set
address pins to 1111, reset cycle counter

This repeats constantly on the ESP32, with breaks after getting through the entire address set to

communicate with the Ul subsystem.

24

