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Abstract

In modern urban environments, we constantly encounter the limitations of current robotic
technology. Most robots are either wheeled – great for smooth surfaces but not for ob-
stacles like stairs, or legged – which can handle rough terrain but tend to be slow and
power-consuming. This presents a real challenge for using robots effectively in urban
settings.

Our project aims to address this issue by developing a new type of robot, one that com-
bines the best of both worlds. We propose a hybrid robot that uses both wheels and
legs, designed to navigate quickly and efficiently in urban environments. At the end of
this project, our hybrid wheeled-legged robot can perform various tasks, such as carry-
ing heavy loads, moving across rough landscapes, and even jumping. A key feature of
our design is a leg system that also acts as a dynamic suspension, allowing the robot to
smoothly handle different types of urban terrains.

This paper describes the design process, verification, cost, and schedule of our project
in detail. In the design section, we will discuss the design of four main sections of our
robot: mechanical structure, electrical system, embedded software, and control system.
In the verification section, we will discuss how we met our requirements. Finally, we will
discuss the cost of the project and our overall schedule.
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1 Introduction

The purpose of our project is to build a versatile robot that can traverse various landscapes
efficiently in urban settings. The unique design of our wheeled-legged robot allows it
to traverse smoothly through uneven landscapes and gives it the potential to go across
stairs.

Our robot has satisfied all of its functionalities. In addition to transitioning from a static
position to a balanced position without toppling, the robot can reach the speed of 1.5 m/s.
In addition. the robot can carry about 3.5 kg (8 lbs) of load, which is around its weight.
We have also demonstrated that the robot can jump at a height of 15 centimeters (from
wheel to ground).

As shown in figure 1, our system contains the power unit, the controller unit, and the
actuator unit. The control unit is the central hub of our system, where the microcon-
troller sends and receives signals from different devices. The power unit is responsible
for converting the battery voltage to 5V and 3.3V and supplying them to other parts of
the system. The actuator unit consists of four leg motors and two wheel motors, which
are all supplied by 24V from the power unit.

Microcontroller

Inertial
Measurement

Unit (IMU)

OLED Screen

Controller Unit

Power Unit

Actuator Unit24V LiPo Battery

5V to 3.3V
Regulator

Leg
Motor 1

Remote Controller

Receiver

24V

UART

2.4GHz

I2C

CAN

Legends

5V

USB 5V

24V to 5V
Converter

3V3

5V to 3.3V
Regulator

Leg
Motor 2

Leg
Motor 3

Leg
Motor 4

Wheel
Motor 1

Wheel
Motor 2

Figure 1: Top-level Block Diagram
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Figure 2: Robot Jumping Figure 3: Wiring Inside the Robot

2 Design

2.1 Design procedure

2.1.1 Mechanical Structure

Figure 4: Assembly View of Robot

In the development of the mechanical structure for our hybrid wheel-legged robot, our
approach was driven by the need for a high-performance, durable, and balanced design.
The primary focus was on the robotic legs, conceptualized as an electronic suspension
system. This required the legs to have motors with both high torque and rapid response
capabilities to ensure the robot could effectively handle dynamic movements like jumping
and navigating uneven terrain.

We carefully considered the strength and design of the legs to endure impacts and provide
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stability, along with selecting wheels that offered the right size and friction for stable
movement and speed.

Attention was also given to the robot’s overall design, particularly its center of gravity. A
symmetrical shape was chosen to distribute weight evenly, a key factor for stability and
fluid motion. This phase included a meticulous selection of materials aimed at achieving
a robust structure without compromising on the robot’s lightness and agility.

2.1.2 Electrical System

The electrical system contains two separate PCB boards: a power board and a microcon-
troller board. The function of the power board is to convert the battery voltage from 24V
to 5V and 3.3V, while the function of the micro-controller board is to communicate with
each device and run the main program.

Our rationale for separating our circuit into two boards is that we can test them sepa-
rately. If the power board fails during testing, it will not affect the microcontroller board.
The two XT30 connectors allow the power board to supply power to the micro-controller
board, and also act as pillars for the two boards to be stacked together.

Figure 5: electrical system with DC-DC on top and Micro Controller on bottom

Power Board

In the design procedure of our DC-DC Power Board, we focused on creating a versa-
tile and reliable power management system for connecting all motors and supplying two
kinds of voltage levels to the microcontroller. The board is designed to handle a wide
range of input voltages, specifically from 10 to 36 volts (battery at 24V), while providing
stable and efficient output voltages crucial for the operation of various electric compo-
nents like remote control receiver, UART port, etc. Safety features integral to the design:
reverse polarity protection to prevent damage from incorrect input connections, and over-
voltage protection to shield sensitive micro-controller boards from potentially harmful
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high voltages. We also prioritized user-friendly monitoring and status indication, incor-
porating test points for voltage level checks and LED indicators for immediate visual
feedback on the board’s status.

Figure 6: DC-DC Power Board

Microcontroller Board

For the microcontroller board, we are using STM32F103C8T6, a low-power ARM Cortex-
M3 core MCU that supports a wide range of peripherals. However, the performance
of this MCU is not especially high. The chip only has a 64KB flash memory and does
not have dedicated DSP instructions, which means it is less efficient in performing DSP
operations. At one point we even encountered FLASH overflow. Fortunately, this was
solved using compiler optimization. For our future design, we can change to an ARM
Cortex-M4 core MCU such as the STM32F407 series for higher performance.

Our board also contains an AMS1117 voltage regulator, a MAX3051 CAN Transceiver,
and a BMI088 IMU. In addition, it includes a range of connectors: 2 XT30 connectors and
1 USB-C connector for power input, 5 ports for CAN, a port for DBUS, a port for Serial
Wire Debug (SWD), and a port for UART.
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Figure 7: Render of the Microcontroller Board

2.1.3 Embedded Software

To communicate with our peripherals, we are using the API from the Hardware Abstrac-
tion Layer (HAL) provided by the chip manufacturer STMicroelectronics. We are also
using a Real-time Operating System (RTOS) to split our program into multiple threads.
Apart from multitasking, another reason for using RTOS is that it provides deterministic
response times to events, which is important for us to process IMU data.

2.1.4 Control System

For the control system, we first establish the physical models of wheel motion and leg mo-
tion by using classical mechanical analysis. For the wheel motion model, there are three
states: moving forward and backward, self-balancing, and rotation. For the leg motion
model, we need to analyze the support state and the five-link model for each leg. Then,
we introduce the linear quadratic regulator(LQR) algorithm for the wheel motion model
and the spring-damping system of virtual model control(VMC) algorithm for the leg mo-
tion model. The reason for choosing the spring-damping system is that we want the robot
can have an adaptive suspension system to reduce the vibration of the robot body when
moving on rough surfaces. After that, we can use the Simulink tool at Matlab to do the
simulation test. we conduct velocity and rotation tests for wheel motion, and we conduct
elevation and adaptive suspension tests for leg motion. After passing the simulation test,
we will implement the control system in C++ and flash into the robot.
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2.2 Design details

2.2.1 Mechanical Structure

Figure 8: Exploded View

In the detailed design of our robot’s mechanical structure, each component was chosen
for its specific role in enhancing the robot’s functionality. The selection of motors was a
critical aspect. We opted for motors that not only provided high torque but also had rapid
response capabilities. This choice was vital for the legs, enabling them to act effectively as
an electronic suspension system. These motors are essential for activities like jumping and
handling uneven ground, ensuring that the robot can cope with the various challenges of
urban terrain.

The design also carefully considered the robot’s center of gravity. A symmetrical shape
was not only aesthetically pleasing but also functionally important for weight distribu-
tion. This symmetry was crucial in ensuring the robot’s stability and smooth movement,
particularly when navigating the varied and often unpredictable urban landscape.

We conducted static Force analysis on key components to ensure that they are as lightweight
as possible while providing sufficient strength.
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Figure 9: Emergency Stop mechanisms

Safety is a major concern in our robot project, given the inherent risks associated with its
operation. To address this, we have incorporated three distinct emergency stop mecha-
nisms, each designed to enhance safety for both the user and the robot during testing.
Firstly, a mechanical emergency stop switch is located on the robot’s body, allowing for
immediate manual intervention. Secondly, a wireless emergency stop switch has been
integrated into the remote control, providing a quick and effective way to halt the robot’s
operations from a distance. Lastly, for an additional layer of safety, we have implemented
a program-level Kill Switch, also accessible via the remote control. These systems work
independently, ensuring a comprehensive safety net during the robot’s operation.

Figure 10: Joint Structure

Similar improvements have also appeared in the joints, where we have changed from thin
PTFE sheets to a low-friction shaft system with multiple bearing combinations. Signifi-
cantly reduce the frictional force of joint movement.

7



Figure 11: Leg ’sandwich structure’ Cross Section

In the iterative design process of our robot, we evolved from an initial design featuring a
single-layer thick aluminum plate to an enhanced version for greater durability. The orig-
inal design, while lightweight, fell short in supporting lateral forces, particularly evident
during side collisions on the leg components. To address this, we upgraded to a ’sand-
wich structure’ design, comprising two layers of carbon fiber with an inner layer of low-
density, 3D-printed material. This innovation significantly boosted the strength against
lateral impacts while maintaining a similar weight to the original aluminum plate.

Figure 12: First Image Caption Figure 13: Second Image Caption

In our final material update, we significantly reduced the robot’s weight by switching
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from aluminum to carbon fiber as the primary structural material. Recognizing the supe-
rior strength-to-weight ratio of carbon fiber, this choice was a pivotal shift in our design
strategy. In a comparative analysis, we found that the carbon fiber base of the robot was
more than four times lighter than its aluminum counterpart. This weight reduction not
only enhances the robot’s load-carrying capacity but also contributes to improved overall
performance. By opting for carbon fiber, we ensured that the robot remained robust yet
agile, capable of higher functionality in various operational scenarios.

2.2.2 Electrical System

Power Board

The DC-DC Power Board’s core comprises the FP6151 Buck Converter, chosen for its im-
pressive efficiency, reaching up to 90%. This efficiency can minimize energy loss during
voltage conversion. For the second Voltage level, we chose the AMS1117 Linear Voltage
Regulator to ensure consistent voltage levels supplied to the microcontroller. The board’s
output capabilities include 5V up to 5A and 3.3V up to 1A, catering to a range of power
requirements. The protection circuits are not only functional but also visually informa-
tive, with red LEDs indicating the activation of either the reverse polarity or overvoltage
protection, and a green LED showing the circuit’s operational status. Additional features
enhance the board’s functionality, such as the inclusion of six XT30 connectors for motor
power distribution and an OLED screen (not shown in the picture) connector for display-
ing information from a microcontroller. These details collectively define a power board
that is not only efficient and safe but also adaptable and user-friendly.

Figure 14: DC-DC Power Board Schematic

9



Microcontroller Board

The microcontroller board can be powered by two different power sources. When mounted
on the robot, the board can be connected to the power board and receives 5V and 3.3V
from it. If we want to test the board alone, we can power it through the USB-C port or
the SWD port. In this case, the 5V supplied by our laptop will be converted to 3.3V by the
onboard linear regulator. We can easily switch between these two types of power supply
by switching the position of the jumper hats on the right side of the board. One of the
jumper hats selects which 3.3V source it uses and the other selects which 5V source it
uses.

We have also taken several design considerations when placing the PCB components. We
placed the decoupling capacitors as close as possible to the MCU to minimize noise and
stabilize the current supplied to the MCU. In addition, the IMU is placed at the farthest
distance from the power circuit to minimize the effect of the heat generated by the linear
regulator. This is because the IMU is a Micro-Electro-Mechanical System (MEMS), mean-
ing that it contains tiny mechanical components, which are used to determine its angular
velocity and linear acceleration. A changing temperature can cause these components to
deflect, giving inaccurate sensor data.

The board also contains LEDs and push buttons, which can be configured for debugging
purposes. In our main program, the LED is configured as a breathing light that indicates
our program is running.

Figure 15: Layout of the Microcontroller Board

2.2.3 Embedded Software

Low-level Software
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The HAL library that we are using provides functions that allow us to communicate with
other devices. For example, functions like HAL SPI Transmit allow us to transmit mes-
sages to the IMU, and functions like HAL CAN RegisterCallback allow us to receive mes-
sages from the motors using hardware interrupts. We are also using Direct Memory Ac-
cess (DMA) for some peripherals to reduce CPU load and speed up data transfer.

The RTOS allows us to create multiple tasks on a single core, where its scheduler is re-
sponsible for switching tasks, scheduling, etc. The RTOS kernel we are using is FreeR-
TOS, a popular open-source RTOS kernel. Above that, we are using the CMSIS-RTOS V2
library developed by ARM, which acts as an abstraction layer to FreeRTOS. Using this
API, we can assign priority to each task, where the task with higher priority can preempt
the ones with lower priority. For example, the IMU task requires the highest priority as it
needs to process the raw IMU data in real-time.

Peripherals

The protocol we use to communicate with all of our motors is the Controller Area Net-
work (CAN). An advantage of this protocol is that it allows all devices to communicate
with each other without the need for a central hub. While we have six motors but only
five CAN ports on our microcontroller board, we can connect two motors in series and
connect one of them to the microcontroller.

For the IMU, we are using the Serial Peripheral Interface (SPI). The SPI is a high-speed
full-duplex communication protocol, which is important for the IMU as we need real-time
data for pose estimation.

We used the Universal Asynchronous Receiver/Transmitter (UART) protocol for two pur-
poses: transmission from DBUS receiver and debugging. The remote control signals re-
ceived by the receiver are transmitted to the microcontroller through a DBUS protocol,
which is essentially an inverted UART signal. For debugging, we use UART to transmit
messages to our screen through a serial port.

Sensor Fusion

Sensor fusion is crucial for precise orientation data. The IMU contains an accelerometer
and a gyroscope, where the accelerometer measures linear acceleration and the gyroscope
measures angular rate. Gyroscopes are prone to drift due to errors accumulated over time,
while accelerometer measurements contain high-frequency noise. To get more reliable
results, we can combine the high-frequency, short-term accuracy of the gyroscope with
the low-frequency, long-term stability of the accelerometer.

The sensor fusion algorithm of our choice is the Mahony Filter [1]. Compared to algo-
rithms such as the Extended Kalman filter (EKF), the Mahony Filter is less computation-
ally intensive, which makes it more suitable for our MCU.

To use the Mahony Filter, we first obtain the sensor measurements from the IMU. We
define Iωt as the gyroscope measurements and I ât as the normalized accelerometer mea-
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surements. Then, we calculate v
(
I
W q̂est,t

)
, the gravity component in the sensor’s frame

from the estimated quaternion at time t.

v
(
I
W q̂est,t

)
=


2 (q2q4 − q1q3)

2 (q1q2 + q3q4)

(q21 − q22 − q23 + q24)

 (1)

Using v
(
I
W q̂est,t

)
and the normalized accelerometer measurements I ât, we can use the

cross product to calculate the error between these two vectors:

et+1 =
I ât+1 × v

(
I
W q̂est,t

)
(2)

Then, we can find the integral error as follows:

ei,t+1 = ei,t + et+1∆t (3)

With the error et+1 and its integral ei,t+1, we can perform the fusion step by updating the
gyroscope measurements with a PI controller:

Iωt+1 =
Iωt+1 +Kpet+1 +Kiei,t+1 (4)

Using the updated gyroscope measurements, we can calculate the change in orienta-
tion:

I
W q̇ω,t+1 =

1

2
W q̂est,t ⊗

[
0, Iωt+1

]T (5)

where ⊗ represents quaternion multiplication.

Finally, we can update the orientation estimate with numerical integration:

I
Wqest,t+1 =

I
W q̂est,t +

I
W q̇ω,t+1∆t (6)

2.2.4 Control System

Wheel Motion Control System

For the analysis of wheel motion physical model, we have the following assumptions:

1. The mass of the body can be represented at the center of the mass.

2. Ignore the mass of the leg linkage and the effect on wheel motion from leg move-
ment.

3. No sliding on the wheels.
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The wheel motion can be separated into three parts: moving forward and backward, self-
balancing, and rotation. The schematic of the wheel motion physical model is shown in
Figure 16. The variable declaration is shown in Appendix B and the detailed mathemati-
cal proof is shown in Appendix C and Appendix D.

Figure 16: Simplified Wheel Motion Model

By analyzing the three situations of wheel motion and plugging in the parameter values,
we can get the state space model Ẋ = AX +Bu:



ẋ

ẍ

θ̇

θ̈

ψ̇

ψ̈


=



0 1 0 0 0 0

0 0 −14.7416 0 0 0

0 0 0 1 0 0

0 0 114.0117 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0


·



x

ẋ

θ

θ̇

ψ

ψ̇


+



0 0

21.0112 21.0112

0 0

−105.5102 −105.5102

0 0

67.6110 −67.6110


·

TL
TR

 (7)

To determine whether this system is controllable, we need to check whether the control-
lability matrix C(A,B) is full rank.

C(A,B) = [B|AB|A2B|...|A5B], C(A,B) ∈ R6×12 (8)

By using Matlab, rank(C(A,B)) = 6, this system is controllable.
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Then we need to analyze the stability of the system. We can compute the eigenvalues of
A to determine whether the current system is stable. If all eigenvalues are in the left Half
Plane, the system is stable.
The eigenvalues of matrix A are:

λ = [0, 0, 10.6776,−10.6776, 0, 0]T (9)

This system is not stable, we need to design a controller to make this system stable. We
will choose the LQR controller.
By using the LQR controller, we need to set the feedback gain matrix K:

K =

k11 k12 k13 k14 k15 k16

k21 k22 k23 k24 k25 k26

 (10)

Let u = −KX , we can rewrite the state space equation into X̂ = AX − BKX = (A −
BK)X . We can let A′ = (A−BK) and change the value of each element in K to make the
eigenvalues of A′ all negative, which will make the whole system stable.

The cost function of the LQR controller is:

J =

∫ ∞

0

(XTQX + uTRu)dt (11)

We want to change the feedback controller u = −KX to make the cost function become
minimal, Jmin. Matrix Q is a positive semi-definite matrix, which represents the punish-
ment to the state vector X(or the error state vector). If the element in the Q matrix is larger,
the corresponding element in the state vector will decrease to 0 more quickly. Matrix R is
a positive definite matrix, which represents the punishment to the input vector. It is used
to balance the importance of control inputs. Larger weights(elements in the R matrix) are
usually assigned to control inputs when you want the system to consume less energy on
those inputs or when you want them to be smoother.

According to the test, matrix Q and R used in this project are shown below:

Q =



1 0 0 0 0 0

0 20000 0 0 0 0

0 0 90000 1 0 0

0 0 0 1 0 0

0 0 0 0 20000 0

0 0 0 0 0 0


, R =

1500 0

0 1500

 (12)
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By using Matlab[2], the feedback gain matrix K is:

K =

−0.0183 −2.5897 −9.2569 −1.1094 2.5820 0.1954

−0.0183 −2.5897 −9.2569 −1.1094 −2.5820 −0.1954

 (13)

Leg Motion Control System

For the analysis of leg motion physical model, we have the following assumptions:

1. The mass of the robot is effectively concentrated at the center of mass.

2. The influence of wheeled motion on leg motion is neglected.

3. The mass of the leg links is ignored.

4. The robot maintains a balanced state throughout the leg motion process, i.e., the
pitch angle remains zero.

5. The two joint motors on the same side respond synchronously with equal magni-
tudes of control torque but in opposite directions.

When we do the classical mechanical analysis, We can equivalently represent the leg of
the robot as a rigid bar whose length varies with the joint motor angles, and establish a
statics model to support this relationship. The schematic model is shown in Figure 17.
The variable declaration is shown in Appendix B and the detailed mathematical proof is
shown in Appendix C and Appendix D.

Figure 17: Simplified Support Phase Model
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Based on this model, we can finally get the end-effector force equation:
PL =

Fz +Mg

2
− Tx
D

PR =
Fz +Mg

2
+
Tx
D

(14)

Then, each leg is a five-link model shown in Figure 18 and Figure 19. We can use the
Pythagorean theorem to find the geometric relationship between the robot’s height and
its leg lengths as well as its leg motor angles.

Figure 18: One side five-link model Figure 19: Half side five-link model

z =
√
l23 − (l1 − l2cos(α))2 − l2sin(α) (15)

Furthermore, we can use the principle of virtual work to find the relationship between
the leg motor torques and the end-effector forces.

τ = −[
(l1 − l2cos(α))l2sin(α)√
l23 − (l1 − l2cos(α))2

+ l2cos(α)] ∗
P

2
(16)

where P represents PL or PR in equation (14).

Because we want our robot legs to have adaptive suspension, we introduced Virtual
Model Control (VMC) control algorithm. We chose the spring-damping system to repre-
sent our leg motion. The force and torque spring-damping system equations are shown
in equation (17)

Fz = k1(zdesired − z) + c1(0− ż) =Mz̈

Tx = k2ϕ+ c2(0− ϕ̇) = Ixϕ̈
(17)
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After plugging in equation (17) into equation (14), we can get the relationship below:
PL =

k1(zdesired − z)− c1ż +Mg

2
− k2ϕ− c2ϕ̇

D

PR =
k1(zdesired − z)− c1ż +Mg

2
+
k2ϕ− c2ϕ̇

D

(18)

τ = −[
(l1 − l2cos(α))l2sin(α)√
l23 − (l1 − l2cos(α))2

+ l2cos(α)] ∗
P

2
, where P is PL or PR (19)

Combining motor rating data with simulation test performance, we will choose k1 =
400, c1 = 70, k2 = 120, c2 = 10.

3 Verification

All of our Requirements & Verification tables are in Appendix E.

3.1 DC-DC Power Board Test

To validate the functionality of our DC-DC power board, we conducted a series of tests
using a DC power source and a battery. Initially, we set the power source at 20V and 27V
and observed that the voltage output remained consistent at 5.06V and 3.30V, respectively,
confirming that the board’s voltage output aligns with our specifications.

For testing the output current, we connected the input to a battery and the output to var-
ious loads. Since we lacked a DC Electronic Load for a standardized test, we improvised
by using motors as a practical load. The results showed that the output current on the
5V side exceeded 1A, satisfying our requirements. To assess the 3.3V output current, we
connected it to a microcontroller board. The microcontroller board operated normally
throughout the test, indicating that the current provided was adequate for our needs.
These tests demonstrated that our DC-DC power board effectively meets the required
voltage and current specifications for our project.

3.2 Microcontroller Test

The microcontroller is one of the most important parts of our system. It communicates
with the IMU, the motors, and the radio receiver, meaning that its stable operation is
crucial to our success. Because we are connecting 6 motors to the board through the same
CAN bus, we need to ensure that the bus is not overloaded. To test this, we used a CAN
analyzer that can monitor the load on a CAN bus. We tested the load on the bus during
the robot’s normal operation, which means all 6 motors are receiving commands through
the same bus. The CAN analyzer showed the load on the CAN bus is around 40% on
average during normal operation, far below the critical load threshold. Among the tests
that we have performed on the robot, the CAN communication was always stable and we
didn’t notice any unusual behavior due to a broken communication.
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3.3 Attitude Sensing Test

The attitude sensing of the robot relies on the IMU, which is mounted on our microcon-
troller board. To begin with, we have established stable communication with the IMU
through SPI using hardware interrupt. The gyroscope and accelerometer data from the
IMU is stable even under intense motion such as collision with the wall. One direct way
to verify the attitude-sensing functionality is to observe the status of our robot, which
heavily relies on the IMU to balance itself. We have shown that the robot can balance
well using data from the IMU. We have also tested the drift of the IMU by placing the
board in a fixed position for over 30 minutes. We compared the linear accelerations and
angular velocities at the start and end of 30 minutes and observed that the difference in
linear accelerations is less than 0.001 m/s and the difference in angular velocities is less
than 0.003 m/s.

3.4 Wheel motion Simulation Test

The Simulink simulation block diagram is shown in Appendix F. For the wheel motion,
we conduct the velocity test and rotation test. For velocity test, the robot takes 1 second
to converge to our target velocity of 0.5 m/s without rotation. In this test, the maximum
output torque of each wheel motor is 0.1437 Nm. For rotation test, the robot takes about
0.5 seconds to converge to our target rotation angle of 30 degrees almost without transla-
tion. In this test, the maximum torque of the left wheel is -0.2773 Nm and the maximum
torque of the right wheel motor is 0.2773. In both tests, the maximum torque for each
wheel motor is less than the theoretically maximum output torque of the motor.

Detailed test plots and data is shown in Appendix G

3.5 Leg motion Simulation Test

The Simulink simulation block diagram is shown in Appendix F. For the wheel motion,
we conducted the elevation test and adaptive Suspension test. For elevation test, the
robot takes 0.5 seconds to converge to our target elevation height of 0.2 meters. In the
elevation test, the maximum output leg motor torque is 2.9 Nm. For adaptive suspen-
sion test, the robot tilted from an initial inclination of 0.2 rad to a horizontal position in
0.5 seconds. In this test, the maximum output torque of the left leg motor is 4.4 Nm and
the maximum output torque of the left leg motor is -2.7 Nm. In both tests, the maximum
torque for each leg motor is less than the theoretically maximum output torque of the
motor.

Detailed test plots and data is shown in Appendix G
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3.6 Remote Controller Test

To ensure the safety of the robot during operation, we have three levels of safety switches,
including two on the remote controller. One of them is defined as the right switch on the
remote controller, which acts as a software kill switch. This switch allows us to kill either
the wheel motors only or all motors at once. During critical situations, we have proved
that the switch can kill the motors in less than a second. The other switch is a remote relay
switch, which can cut the power from the entire system remotely. This switch guarantees
that if our program is jammed, we can still shut down the robot as fast as possible. We
have tested that the switch can shut down the power of the robot completely in less than
a second, which is crucial for the safety of the operator.

4 Cost and Schedule

4.1 Cost Analysis

The total cost without shipping cost in Figure 41(Appendix H) is $801.141. By adding
10% sales tax and 7% shipment cost, the total cost for parts is $937.34. For the labor cost,
we expect we can have a salary of $40/hr ∗ 2.5 ∗ 65hr = $6500 per person. We have
three team members. Therefore, the total labor cost should be $6500 ∗ 3 = $19500. The
machining costs at the machine shop are around $120. By adding the cost of the parts, the
total cost of our project should be $19500 + $937.34 + $120 = $20557.34.

4.2 Schedule

Detailed Schedule for all team members is shown in Appendix H.

5 Conclusions

In this project, we designed the mechanical structure of the robot ourselves, employing
a combination of carbon fiber plates and 3D-printed components to reduce weight and
enhance strength. We achieved a separation of the power management module and the
main control board. Successfully implementing multi-protocol communication and IMU
sensor fusion, we also achieved a hybrid control of the wheels and leg motors. The robot
are able to achieve our design goal. However, our current robot exhibits a slight high-
frequency oscillation in the balanced state. This is attributed to fluctuations in the data
transmitted from the IMU to the microcontroller, and there are also some disparities be-
tween our simulation model and the actual robot.

5.1 Future Work

To improve our design, To further optimize our design, we are considering various as-
pects. Regarding the mechanical structure, we plan to enhance the robot’s stability by
using larger wheels and a motor with higher output torque. From the electrical system
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perspective, we intend to use a more powerful microcontroller and incorporate an IMU
heating circuit on our PCB to reduce zero-drift issues in the IMU. For the embedded soft-
ware, we can use more sophisticated IMU filtering algorithms such as Extended Kalman
Filter (EKF) to mitigate the issue of IMU data fluctuations. Regarding the control sys-
tem, we can remodel the leg linkage motion and add jump state analysis with ground
detection.

5.2 Ethics Consideration

The structure of the wheeled-legged robot does not in itself present an ethical problem.
However, when this structure is maliciously applied to some mobile robots, perhaps this
will cause some ethical problems. Wheel-legged architectures can be built into automated
mobile platforms that carry weapons or monitors. This would violate the IEEE Code of
Ethics[3] and Three Laws of Robotics[4]. To avoid this situation, we will not be open-
sourcing our core technical parts, such as PCB drawing, detailed motion modeling, and
core code. At the same time, we will review our consumers(avoiding malicious or illegal
use) and in the future will also apply our products in positive directions, such as urban
logistics and transportation.
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Appendix A Mechanical structure

A.1 Static Force Analysis

Figure 20: Static Force Analysis on Park-
ing rack

Figure 21: Static Force Analysis on Leg Com-
ponent

Static force analysis shows Max URES on parts are about 3.5e-02(mm). Which would not
cause Plastic deformation on the tested material.
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A.2 Design Iteration

Figure 22: First Version

First version build by thick aluminum plate are more likely to bent. Simulation force
applied is 100N. With Max URES 2.357e-01(mm).
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Figure 23: Enhanced Version

Enhanced version build by carbon fiber and plastic. Simulation force applied is 100N.
With Max URES 3.738e-03(mm). Shown significant increase on the strength.

Figure 24: Comparison before and after optimization
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Top left are the first version, build by thick aluminum plate, and the left bottom one are
the final verion, with carbon fiber and 3D print plastic layer.The aluminum version weight
402 gram, carbon fiver version weight 373 gram. The middle figure shows the enhanced
bearing structure. And the right figure shows the joint structure.

Appendix B Variables and Parameter Declaration Robot Phys-
ical Modeling

B.1 Wheel Motion Variable and Parameter Declaration and Values

Label Meaning Unit

xL, xR The displacement of the left and right wheels. m

z The distance between the body’s center of mass and wheel motor ro-
tation axis along the z-axis.

m

ϕ The roll angle of the body. rad

θ The pitch angle of the body. rad

ψ The yaw angle of the body. rad

TL, TR The output torque of the left and right wheel motors. N ·m

T The output torque of the leg motors. N ·m

NL, NR The horizontal component of the force between wheels and the body
(along the x-axis).

N

PL, PR The vertical component of the force between wheels and the body
(along the y-axis).

N

FL, FR The frictions of the wheels when moving. N

Table 1: Variables
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Label Meaning Unit

m The mass of the rotor in the wheel motors. kg

M The mass of the body. kg

Iw The moment of inertia of the rotor in the wheel motors. kg ·m2

Ix The moment of inertia of the body rotated around the x-axis. kg ·m2

Iy The moment of inertia of the body rotated around the y-axis. kg ·m2

Iz The moment of inertia of the body rotated around the z-axis. kg ·m2

R The radius of the wheel. m

l The distance between the body’s center of mass and the rotation axis
of the wheel motor.

m

D The distance between the left and right wheels. m

g The acceleration due to the gravity measured. m/s2

Table 2: Parameters

Label Value Unit

m 0.174 kg

M 3.848 kg

Iw 1.4741× 10−4 kg ·m2

Iy 3.7049207× 10−2 kg ·m2

Iz 6.563965× 10−2 kg ·m2

R 0.03 m

l 0.152 m

D 0.3504 m

g 9.81 m/s2

Table 3: Wheel Motion Parameters(with values)
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B.2 Leg Motion Parameter Declaration and Values

Label Meaning Unit

l1 Half of the length of the body’s side. m

l2 The length of the active rod. m

l3 The length of the connecting rod. m

z The height of the body. m

α The angle of the leg motors. degree

Table 4: Leg Motion Parameters

Label Value Unit

M 3.848 kg

Ix 7.0768703× 10−2 kg ·m2

l1 0.05 m

l2 0.1 m

l3 0.18 m

D 0.3504 m

g 9.81 m/s2

Table 5: Leg Motion Parameters(with values)
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Appendix C Analysis of Robot Physical Modeling

C.1 Wheel motion Physical Modeling [5]

C.1.1 Planar Motion: Moving Forward and Backward

Figure 25: Wheel Model

For the net force:
Because we suppose the rotation for the left and right wheel motors is almost the same,
we will use left wheel motor to do the calculation.

Fnet = ma

FL −NL = mẍL
(20)

For the net torque:
According to the transformation between rotation and linear motion:

τ = Iα

TL − FL ∗R = Iw
ẍL
R

(21)

Combine equation (20) and (21), we can eliminate FL:
According (20):

FL = mẍL +NL (22)
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Plug (22) into (21):

TL − (mẍL +NL) ∗R = Iw
ẍL
R

TL −NLR−mRẍL = Iw
ẍL
R

(
Iw
R

+mR)ẍL = TL −NLR

ẍL =
TL −NLR
Iw
R
+mR

(23)

we can also get the right wheel acceleration:

ẍR =
TR −NRR
Iw
R
+mR

(24)

The acceleration of the whole robot is the average acceleration of the left and right
wheels.

ẍ =
ẍL + ẍR

2

ẍ =

TL−NLR+TR−NRR
Iw
R

+mR

2

ẍ =
TL + TR − (NL +NR)R

2( Iw
R
+mR)

(25)
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C.1.2 Planar Motion: Body Balance in Stationary State

Figure 26: Self-Balancing Model

We suppose the force can be moved to the body’s center of mass by convention.
We can decompose the velocity of the body into the horizontal and vertical directions.

vx =
∂

∂t
(x+ lsin(θ)) = ẋ+ l ∗ cos(θ)θ̇ (26)

vz =
∂

∂t
(l − l ∗ cos(θ)) = l ∗ sin(θ) ∗ θ̇ (27)

For the net force in Horizontal:

Fnet = ma

NL +NR =Mv̇x

NL +NR =M(ẍ+ l ∗ cos(θ)θ̈ − l ∗ sin(θ)θ̇2)
(28)

For the net force in Vertical:

Fnet = ma

Mg − (PL + PR) =Mv̇z

PL + PR =Mg −M(l ∗ sin(θ)θ̈ + l ∗ cos(θ)θ̇2)
(29)

By applying NL +NR and PL + PR to the body, we can get TN and TP .

TN = (NL +NR) ∗ l ∗ cos(θ), TP = (PL + PR) ∗ l ∗ sin(θ) (30)
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For the net torque along the y-axis:

τ = Iα

Iyθ̈ = TP − TN − (TL + TR)
(31)

Combining the formulas (28), (29), (30), (31), we can eliminate NL, NR, PL, PR, TN , TP to
get the complete motion model of the body.

Iyθ̈ =Mg ∗ lsin(θ)−Mẍ ∗ lcos(θ)−Ml2θ̈ − (TL + TR)

(Iy +Ml2)θ̈ =Mg ∗ lsin(θ)−Mẍ ∗ lcos(θ)− (TL + TR)
(32)

Combining the formulas (25) and (28), we can eliminate NL, NR to get the complete mo-
tion model of the wheels.

(
2Iw
R2

+ 2m)ẍ =
TL + TR

R
−Mẍ−M ∗ lcos(θ)θ̈ +M ∗ lsin(θ)θ̇2

(
2Iw
R2

+ 2m+M)ẍ =
TL + TR

R
−M ∗ lcos(θ)θ̈ +M ∗ lsin(θ)θ̇2

(33)

When the robot can keep the balance at a steady state by changing a tiny pitch angle(θ),
we can linearize the parameters.

cos(θ) = 1, sin(θ) = θ, θ̇2 = 0 (34)

By plugging (34) into (32) and (33), we can get the system of equations.(
2Iw
R2

+ 2m+M)ẍ =
TL + TR

R
−Mlθ̈

(Iy +Ml2)θ̈ =Mglθ −Mẍl − (TL + TR)
(35)

C.1.3 Rotation Motion

Figure 27: Rotation Model
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For the net torque along z-axis:

τ = Iα

Izψ̈ =
D

2
(NL −NR)

(36)

The relationship between the yaw angular acceleration and left and right wheel accelera-
tion is:

ψ̈ =
ẍL − ẍR

2
(37)

Plugging equations (36) and (37) into equations (23) and (24), we can eliminate NL and
NR :

ψ̈ =
TL − TR

R(2Iz
D

+ IwD
R2 +mD)

(38)

C.2 Leg motion Physical Modeling

C.2.1 Five link Model

During the leg motion, the two leg motors of the robot have equal magnitudes of rotation
angles but opposite directions, reducing the degrees of freedom of the five-bar linkage
mechanism to one. Therefore, we can analyze only half of the five-bar linkage mechanism.
The parameter declaration is shown in Appendix B.

Figure 28: Simplified five-linkage Model
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According to Figure 28 and the Pythagorean theorem, we can get the geometric relation-
ship.

l23 = (z + l2sin(α))
2 + (l1 − l2cos(α))

2 (39)

Because the length of each linkage is known, we can simply equation (39) to get the rela-
tionship between z and α.

z =
√
l23 − (l1 − l2cos(α))2 − l2sin(α) (40)

C.2.2 Support Phase

When we do the classical mechanical analysis, We can equivalently represent the five-
bar linkage of the leg as a rigid bar whose length varies with the joint motor angles, and
establish a statics model to support this relationship.

Figure 29: Simplified Support Phase Model

For the net force in the z-axis:

Fz = PL + PR −Mg (41)
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Fz is an abstract force that can control the movement along the z-axis to adjust the height
of the robot.

Fz =Mz̈ (42)

For the net torque along the x-axis

Tx = (PR − PL) ∗
D

2
(43)

Tx is an abstract torque that can be used for controlling the robot’s ground self-adaptive
motion.

Tx = Ixϕ (44)

By combining equation (41) and (43), we can get the following equations:
PL =

Fz +Mg

2
− Tx
D

PR =
Fz +Mg

2
+
Tx
D

(45)

Figure 30: One side five-link model

Take one side leg as an example, we can establish the equations according to the principle
of virtual work:

2τ ∗ δα = P ∗ δz P represents PL or PR. (46)
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By taking the derivative of equation (40), we can get:

δz = −[
(l1 − l2cos(α))l2sin(α)√
l23 − (l1 − l2cos(α))2

+ l2cos(α)]δα (47)

Plug in equation(47) to (46), we can get the output torque of the leg motors is:

τ = −[
(l1 − l2cos(α))l2sin(α)√
l23 − (l1 − l2cos(α))2

+ l2cos(α)] ∗
P

2
(48)
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Appendix D Control Theories

D.1 Linear Quadratic Regulator(LQR) for Wheel Motion

According to equations (35) and (38), we can get the control equations:
aẍ = TL + TR − bθ̈

cθ̈ = dθ − eẍ− (TL + TR)

ψ̈ = f(TL − TR)

(49)

where 

a = R(
2Iw
R2

+ 2m+M)

b =MlR

c = Iy +Ml2

d =Mgl

e =Ml

f =
1

R(2Iz
D

+ IwD
R2 +mD)

(50)

The state space equation is {
Ẋ = AX +Bu

Y = CX
(51)

We can determine the state vector X = [x, ẋ, θ, θ̇, ψ, ψ̇]T and the input vector u = [TL, TR]T .

Then, we can convert equation(49) to the following form:
ẍ =

−bd
ac− be

θ +
c+ b

ac− be
(TL + TR)

θ̈ =
ad

ac− be
θ − a+ e

ac− be
(TL + TR)

ψ̈ = f(TL − TR)

(52)

Converting the above equation in the state space model:

ẋ

ẍ

θ̇

θ̈

ψ̇

ψ̈


=



0 1 0 0 0 0

0 0 −bd
ac−be

0 0 0

0 0 0 1 0 0

0 0 ad
ac−be

0 0 0

0 0 0 0 0 1

0 0 0 0 0 0


·



x

ẋ

θ

θ̇

ψ

ψ̇


+



0 0

c+b
ac−be

c+b
ac−be

0 0

− a+e
ac−be

− a+e
ac−be

0 0

f −f


·

TL
TR

 (53)
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After plugging in the values of wheel motion parameters shown in Appendix B, we can
get:

A =



0 1 0 0 0 0

0 0 −bd
ac−be

0 0 0

0 0 0 1 0 0

0 0 ad
ac−be

0 0 0

0 0 0 0 0 1

0 0 0 0 0 0


=



0 1 0 0 0 0

0 0 −14.7416 0 0 0

0 0 0 1 0 0

0 0 114.0117 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0



B =



0 0

c+b
ac−be

c+b
ac−be

0 0

− a+e
ac−be

− a+e
ac−be

0 0

f −f


=



0 0

21.0112 21.0112

0 0

−105.5102 −105.5102

0 0

67.6110 −67.6110



(54)

To determine whether this system is controllable, we need to check whether the control-
lability matrix C(A,B) is full rank.

C(A,B) = [B|AB|A2B|...|A5B], C(A,B) ∈ R6×12 (55)

By using Matlab, rank(C(A,B)) = 6, this system is controllable.

Then we need to analyze the stability of the system. We can compute the eigenvalues of
A to determine whether the current system is stable. If all eigenvalues are in the LHP(left
Half Plane), the system is stable.

The eigenvalues of matrix A are:

λ = [0, 0, 10.6776,−10.6776, 0, 0]T (56)

This system is not stable, we need to design a controller to make this system stable. We
will choose the LQR controller.

By using the LQR controller, we need to set the feedback gain matrix K:

K =

k11 k12 k13 k14 k15 k16

k21 k22 k23 k24 k25 k26

 (57)

37



Let u = −KX , we can rewrite the state space equation into X̂ = AX − BKX = (A −
BK)X . We can let A′ = (A−BK) and change the value of each element in K to make the
eigenvalues of A′ all negative, which will make the whole system stable.

The cost function is:
J =

∫ ∞

0

(XTQX + uTRu)dt (58)

We want to change the feedback controller u = −KX to make the cost function become
minimal, Jmin. Matrix Q is a positive semi-definite matrix, which represents the punish-
ment to the state vector X(or the error state vector). If the element in the Q matrix is larger,
the corresponding element in the state vector will decrease to 0 more quickly. Matrix R is
a positive definite matrix, which represents the punishment to the input vector. It is used
to balance the importance of control inputs. Larger weights(elements in the R matrix) are
usually assigned to control inputs when you want the system to consume less energy on
those inputs or when you want them to be smoother.

The feedback gain matrix K is:
K = R−1BTP (59)

Where matrix P is gotten from the algebraic Riccati equation.

In this project, we can use the Matlab LQR function to get the K directly.

According to the test, matrix Q and R used in this project are shown below:

Q =



1 0 0 0 0 0

0 20000 0 0 0 0

0 0 90000 1 0 0

0 0 0 1 0 0

0 0 0 0 20000 0

0 0 0 0 0 0


, R =

1500 0

0 1500

 (60)

By using Matlab, the feedback gain matrix K is:

K =

−0.0183 −2.5897 −9.2569 −1.1094 2.5820 0.1954

−0.0183 −2.5897 −9.2569 −1.1094 −2.5820 −0.1954

 (61)

D.2 Virtual Model Control(VMC) for Leg Motion

The leg motion control of the robot is implemented using the Virtual Model Control
(VMC) method. This involves adding spring-damper virtual components to establish
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the virtual forces required for leg motion. Subsequently, the end-effector forces at the leg
links are determined using these virtual forces, and finally, the required torque for each
joint motor is calculated based on the end-effector forces.

As shown in Figure 29, we have a virtual force along with z-axis, Fz and a virtual torque
along with x-axis, Tx. We should establish the spring-damper virtual components, respec-
tively.

For Fz, we can set the spring constant as k1 and set the damping constant as c1. Therefore,
we can get the equation:

Fz = k1(zdesired − z) + c1(0− ż) =Mz̈ (62)

For Tx, we can set the spring constant as k2 and set the damping constant as c2. Therefore,
we can get the equation:

Tx = k2ϕ+ c2(0− ϕ̇) = Ixϕ̈ (63)

We can plug equation (62) and (63) into the equation (45), and we can get:
PL =

k1(zdesired − z)− c1ż +Mg

2
− k2ϕ− c2ϕ̇

D

PR =
k1(zdesired − z)− c1ż +Mg

2
+
k2ϕ− c2ϕ̇

D

(64)

After we have the forces(PL, PR) on the end-effectors of the leg, we can get the torque for
each leg motor based on the equation (48).

τ = −[
(l1 − l2cos(α))l2sin(α)√
l23 − (l1 − l2cos(α))2

+ l2cos(α)] ∗
P

2
, where P is PL or PR (65)

In the equation, α is a real-time value, which is gotten from the encoders in the motor. It
is hard to introduce this value in the simulation. Therefore, we will use the average value
of α during the simulation motion to implement the model.
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Appendix E Requirement and Verification Table

E.1 Actuated Legs

Requirement Verification Result

• The motor should be able to supply
a continuous torque of at least 4Nm ±
5% at 120RPM ± 5%.

• Using a script to read the torque
value from the data given by the
motors or Using the rotary torque
sensor to measure the torque. Check
whether the values from either
method are larger than 4 Nm ± 5%.
• Using a tachometer to measure
the motor’s RPM to confirm it can
achieve 120 RPM ± 5% under the
specified torque load.

Y

• The motors should be able to be
powered by 20 - 27V.

• Using an adjustable power supply
to test the motors at various voltages
within the range of 20-27V to ensure
consistent and efficient performance.

Y

• The motors must maintain a com-
munication rate of 1kHz ± 10HZ with
the STM32 through the CAN bus.

• Use a CAN bus analyzer or other
appropriate testing tools to measure
the communication rate between the
motors and the STM32. Ensure the
communication rate remains stable at
1kHz ± 10HZ.

Y

• The encoder of the motor should
have an angle resolution of less than
1 degrees
• Able to remember the correct motor
zero point after power cutoff.

• Run multiple commands to rotate
the motor to a certain angle, and
measure whether each angle rotation
matches the control command. Ro-
tate the motor at a certain angle and
read the motor angle feedback, com-
paring whether the angle feedback is
within 1 degree of the actual differ-
ence.
• After setting the motor to zero
point, power off and rotate the motor
angle. After powering on, check if the
motor remembers the correct zero po-
sition

Y

Table 6: Actuated Legs–Requirements & Verification
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E.2 Wheeled Drive

Requirement Verification Result

• M3508 motor maintains a commu-
nication rate of 1kHz ± 10Hz with the
STM32.

• Use a CAN bus analyzer or other
appropriate testing tools to measure
the communication rate between the
motors and the STM32. Confirm the
communication rate remains stable at
1kHz ± 10HZ.

Y

• The motors should be able to be
powered by 20 - 27V.

• Using an adjustable power supply
to test the motors at various voltages
within the range of 20-27V to ensure
consistent and efficient performance.

Y

• M3508 motor delivers a continuous
torque of at least 0.1Nm and achieves
a speed of at least 2000 RPM.
• M3508 motor can move the robot
under a load of around 2.5lb.

• Using a script to read the torque
value from the data given by the
motors or Using the rotary torque
sensor to measure the torque. Check
whether the values from either
method are larger than 0.1 Nm ± 5%
• Using a tachometer to measure
the motor’s RPM to confirm it can
achieve 2000 RPM ± 5% under the
specified torque load.
• Load the robot with a weight of
2.5lb and verify the motor moves the
robot effectively.

Y

• The encoder of the motor should
have an angle resolution of less than
1 degrees

• Run multiple commands to rotate
the motor to a certain angle, and
measure whether each angle rotation
matches the control command. Ro-
tate the motor at a certain angle and
read the motor angle feedback, com-
paring whether the angle feedback is
within 1 degree of the actual differ-
ence.

Y

Table 7: Wheeled Drive–Requirements & Verification
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E.3 Attitude Sensing

Requirement Verification Result

• Low bias error and drift.
• Low noise levels, High resolution

• Read the data from IMU in a normal
environment and Compare it with the
data from the reference sensor.
• Let the PCB work at a high electro-
magnetic interference environment
and check the return data with the
reference sensor.

Y

• Suitable range and high sampling
rate to get reasonable data.

• In a stable state of the IMU, connect
the data output pins of the IMU to an
oscilloscope and observe the wave-
form of the output signal. By mea-
suring the time interval between two
consecutive peaks, we can estimate
the sampling rate.

Y

•Ability to be calibrated and
temperature-compensated

• Use a script to send the calibrat-
ing signal to IMU and use the return
data to check whether the IMU is cal-
ibrated. Then, Keep monitoring the
temperature data from IMU during
the operation to check whether it can
be temperature-compensated.

Y

•Low power consumption • Using the adjustable DC power
supply, which can show the input
voltage, input current, and input
power, to measure the power con-
sumption during operation.

Y

•Common interfaces (I2C, SPI,
UART, or CAN)

• Using simple scrips to check
whether the microcontroller can send
the signals to IMU and receive the
IMU signals.

Y

Table 8: Attitude Sensing – Requirements & Verification
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E.4 PCB and Microcontroller

Requirement Verification Result

• Capable of processing inputs effi-
ciently and directing outputs to var-
ious peripherals.

• Perform an on-off test and volt-
age drop test on the entire PCB board
using a multimeter. After the first
two tests are successful, power up
the PCB board and measure the volt-
age of the circuit components to see
if they are regular. Then using scripts
to test the functionality of each inter-
face.

Y

• Must have protection mechanisms
against power surges or short circuits.

• Check the input and output capac-
itors before powering the PCB board
to ensure they can filter voltage fluc-
tuations.
• Using the adjustable DC power
supply to test the design under vari-
ous voltage and current conditions to
ensure protection mechanisms work
effectively.

Y

• STM32F103 should run at 72MHZ ±
5MHZ.

• Use a frequency meter to con-
firm the operating frequency of the
STM32F103 during operation.

Y

• PCB should consume ≤ 1W to en-
sure efficient power consumption.

• Using the adjustable DC power
supply, which can show the input
voltage, input current, and input
power, to measure the power con-
sumption of the design to ensure it
does not exceed 1W.

Y

• Capable of processing and inter-
preting signals from the IMU accu-
rately.

• Put the PCB board on a horizon-
tal table. Then, power the PCB board
and run the script to check whether
the IMU returns the zero point to the
microcontroller. Then, rotate the PCB
board 45 degrees counterclockwise 8
times and check whether the IMU re-
turns the correct data for each rota-
tion.

Y

Table 9: Central Control–Requirements & Verification Pt.1
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Requirement Verification Result

• Maintaining Can bus load under
80% between the IMU and the motors
to ensure stable communication.

• Run a script and Use a CAN bus an-
alyzer to monitor the CAN bus load,
ensuring it stays below 80% for stable
communication.

Y

• Minimize the time used in signal
processing for real-time applications
to 5ms± 5%.

• Using the inner clock to record sig-
nal processing time during the opera-
tion.

Y

• Must provide precise control sig-
nals to the motors via the CAN bus.

• Connect the PCB board and the mo-
tors and use the scripts to send the
rotation signal to the motors. Check
whether the motors rotate to the de-
sired position.

Y

Table 10: Central Control–Requirements & Verification Pt.2

E.5 Payload Compartment Subsystem (3D-printed)

Requirement Verification Result

• The compartment should be a 10cm
x 15cm x 10cm box with covering.

• Using rules to measure the length,
width, and height of the compart-
ment to ensure the error is no more
than 5%

Y

• The compartment should with-
stand 1-2.5lb loads.

• Using an electronic weighing ma-
chine to measure 2.75lb objects and
put them inside the compartment.
Then, lift the compartment by hand
and move it for 10 min. Check
whether the compartment has any
damage like fissures.

Y

Table 11: Payload Compartment - Requirements & Verification
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E.6 Remote Controller Subsystem

Requirement Verification Result

• The user can use this remote control
to send commands to the robot suc-
cessfully.

• Using the script on the microcon-
troller to print the commands sent by
the remote controller so that we can
visualize the commands on the com-
puter screen.

Y

• The remote control must maintain
reliable communication with delay ≤
10ms.

• When the microcontroller receives
the data from the remote controller,
we can add the time stamp at that mo-
ment. Then we can let the remote con-
troller send the same signal continu-
ously. The time interval between the
time stamps is the communication de-
lay. Check whether the delay ≤ 10ms.

Y

• The remote control must maintain
an emergency kill switch to stop the
robot in 2s.

• Let the robot run at a low speed and
then toggle the emergency kill switch.
Use a timer to record the stop time
and check whether the robot is killed
≤ 2s.

Y

Table 12: Remote Controller - Requirements & Verification

45



E.7 Power System

Requirement Verification Result

DC-DC Converter 1:
• Input: 20-27V Output: 5V ± 0.5V, ≥
1A.

• Use a multimeter to measure input
and output voltage and current to en-
sure they are within specified limits.

Y

DC-DC Converter 2:
• Input from Converter 1 Output:
3.3V ± 0.3V, 500mA ± 5%.

• Use a multimeter to measure input
and output voltage and current to en-
sure they are within specified limits.

Y

Battery:
• Supply: 20-27V, 20A peak, 5A con-
tinuous Runtime: ≥ 30 minutes at 5A.

• Use a multimeter to measure the
output voltage and current from the
battery under load. Use a timer to en-
sure it lasts for at least 30 minutes at a
5A load.

Y

Safety and Flexibility:
• Quick power cut-off: ≤ 200ms
Switch between battery and wired
power.

• Test the cut-off response time
with a stopwatch or electronic timer.
Check the seamless switching be-
tween power sources under opera-
tion.

Y

Table 13: Power System - Requirements & Verification
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Appendix F Simulink Simulation Block Diagram

F.1 Wheel Motion Simulation Block Diagram

Figure 31: Simulink Wheel Model
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F.2 Leg Motion Simulation Block Diagram

Figure 32: Simulink Leg Model

48



Appendix G Simulation Test Result

G.1 Wheel Motion Simulation Test

G.1.1 Velocity Simulation Test

We set the target speed to 0.5 m/s, and use the Simulink to simulate the robot behavior.
The state vector simulation result is shown in Figure 33 and the input vector simulation
result is shown in Figure 34.

Figure 33: State Vector Simulation Result

49



Figure 34: Input Vector Simulation Result

The robot uses about 1 s to reach the target speed of 0.5 m/s. During this process, the
maximum pitch angle is about 7 degrees and then converges to 0. Meanwhile, the rotation
angle is pretty small, and the peak torque of each wheel motor is 0.1437 Nm within the
peak torque range of the selected motor, which matches our requirements.

G.1.2 Rotation Simulation Test

We set the target rotation angle to 30 degrees, and use the Simulink to simulate the robot
behavior. The state vector simulation result is shown in Figure 35 and the input vector
simulation result is shown in Figure 36.
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Figure 35: State Vector Simulation Result

Figure 36: Input Vector Simulation Result

The robot uses less than 0.5 s to reach the target rotation angle of 30 degrees. During
this process, the maximum pitch angle omega, velocity, and displacement are almost 0.
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Meanwhile, the peak torque of each wheel motor is 0.2773 Nm within the peak torque
range of the selected motor, which matches our requirements.

G.2 Leg Motion Simulation Test

G.2.1 Elevation Simulation Test

We set the target elevation height to 0.2 m, and use the Simulink to simulate the robot
behavior. The variable simulation result is shown in Figure 37 and the motor torque sim-
ulation result is shown in Figure 38.

Figure 37: Variable Simulation Result

Figure 38: Motor Torque Simulation
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The robot uses about 0.5 s to reach the desired height. During this process, each motor’s
maximum torque is about 3 Nm within the peak torque range of the selected motor, which
matches our requirements.

G.2.2 Adaptive Suspension Simulation Test

We set the initial roll angle be 0.2 rad and use the Simulink to simulate the robot behav-
ior. The variable simulation result is shown in Figure 39 and the motor torque simulation
result is shown in Figure 40.

Figure 39: Variable Simulation Result

Figure 40: Motor Torque Simulation
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The robot uses about 0.5 s to come back to the balance state. During this process, the
left motor’s maximum torque is about 4.4 Nm, and the right motor’s maximum torque
is about 2.5 Nm within the peak torque range of the selected motor, which matches our
requirements.
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Appendix H Cost Table and Schedule

H.1 Cost Table

Figure 41: Bill of materials for the entire robot

Note: Battery, Motors, and remote controller are borrowed from RSO: Illini Robomaster.
The prices for these components are not listed in the table.
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H.2 Schedule

Figure 42: Detailed Schedule
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