

WIRELESS REMOTE MOTOR
CONTROLLER

By

Aaron Chen
Kyungha Kim

Lee Boon Sheng

Final Report for ECE 445, Senior Design, Fall 2023
TA: Jason Zhang

04 December 2023
Project No. 20

ii

Abstract
Our project introduces a Wireless Remote Motor Controller designed for adaptable and user-
friendly motor control, with a focus on achieving an adjustable speed range from 0 to 100%.
The key innovation is its wireless functionality, eliminating the need for wired connections,
enhancing convenience, and mitigating tripping hazards. The user-friendly interface provides
basic functions like start, stop, accelerate, and decelerate. The dual motor control design
expands versatility for efficient robotic platforms or wireless carts. Incorporating closed-loop
speed control ensures consistent performance, and current limiting control prevents
overloading, ensuring long-term durability and user safety. Throughout the creation of this
motor controller, we learned and created some of our own techniques to overcome obstacles
face. Some topics that will be covered include different techniques in H-bridges circuit designs,
dealing with high voltages, PCB design and the difficulties that come with the ESP-32.

iii

Contents

1. Introduction ... 1

1.1 Visual Aid ... 2

Figure 1: Visual Aid1.2 Block Diagram ... 3

2 Design .. 3

2.1 Design Procedure .. 3

2.2 Design Details ... 4

2.2.1 Motor Controller Subsystem .. 4

2.2.1.1 MOFSETs Selections .. 6

2.2.1.2 Gate Driver Selections ... 7

2.2.2 Power Subsystem ... 8

2.2.3 Current Sensing Subsystem .. 10

2.2.3.1 Current Sensor Selections .. 11

2.2.4 Remote Website Subsystem ... 12

2.2.5 Remote Arduino Subsystem ... 13

2.2.5.1 Speed Control .. 13

2.2.5.2 Rotational Direction Control ... 13

3. Design Verification ... 14

3.1 Motor Controller Subsystem ... 14

3.2 Power Subsystem .. 15

3.3 Current Sensing Subsystem ... 15

3.4 Remote Website Subsystem .. 15

3.5 Remote Arduino Subsystem .. 15

4. Costs .. 16

4.1 Parts... 16

4.2 Labor ... 17

5. Conclusion .. 18

5.1 Accomplishments .. 18

5.2 Uncertainties.. 18

5.3 Ethical considerations ... 18

5.4 Future work ... 19

References ... 20

Appendix A Requirement and Verification Table ... 21

Appendix B Pseudo Code for Arduino IDE .. 24

1

1. Introduction
In today's rapidly advancing technological landscape, motors play a pivotal role in the
functioning of countless devices and systems. Motors are the driving force behind robots that
automate tasks in factories, drones that survey remote areas, and small wireless carts that
navigate through crowded environments. The science or engineering problem addressed in the
report is the need for efficient and convenient motor control in various applications, including
robotics, automation, and remote-controlled vehicles. The existing solutions are often complex
and lack user-friendliness, making them less accessible to a broader range of users. Therefore,
the challenge lies in developing a wireless remote motor controller that is simple, user-friendly,
and suitable for diverse applications, ranging from industrial robotics to everyday remote-
controlled toys. To meet these diverse needs for simplicity and user-friendliness, a wireless
remote motor controller is required. Our project aims to address this problem by proposing the
development of a wireless remote motor controller that prioritizes ease of use, responsiveness,
and versatility to meet the diverse needs of different applications.
In the upcoming chapter, we delve into the comprehensive design procedure and intricate
details encompassing the five distinct subsystems that collectively constitute our wireless
remote motor controller. These subsystems include the motor controller subsystem, power
subsystem, current sensing subsystem, remote Android phone app subsystem, and remote
Arduino IDE subsystem. Furthermore, a detailed examination of the costs associated with the
components, particularly the Surface Mount Device (SMD) components on our PCB board, and
the labor costs will be presented. As we conclude our report in the final chapter, we reflect on
the accomplishments achieved and the obstacles encountered throughout the project.
Additionally, we explore future avenues for enhancing the performance and adaptability of our
wireless remote controller.

2

1.1 Visual Aid

Figure 1: Visual Aid

3

1.2 Block Diagram

Figure 2: Block Diagram

2 Design

2.1 Design Procedure

During the initial stages of our project brainstorming, we explored various designs for the
wireless motor controller. Following feedback from our Teaching Assistant (TA) and the Head
TA during the design review, we made the strategic decision to construct a motor controller
supporting a voltage range of 12-24V DC and capable of handling a maximum current of up to
10A. To fulfill this requirement, we opted to develop our H-bridge circuit, serving as the core
element of our wireless remote motor controller project. The project is divided into five distinct
subsystems: the motor controller subsystem, power subsystem, current sensing subsystem,
remote Android phone app subsystem, and remote Arduino IDE subsystem.

4

Before proceeding to create the schematic using KiCad, we conducted simulations on LTspice to
validate the functionality of our H-bridge circuit. Incorporating safety features into the H-bridge
circuits to prevent short circuits was also part of our pre-schematic creation steps. The
subsequent procedure involved assembling all the necessary components on the KiCad
schematic. This included assigning appropriate symbols and footprints for each component,
followed by moving on to the PCB layout.

In the PCB layout step, the primary focus was on ensuring the absence of air wires in the circuit
and correct routing of all components. Notably, power line traces were designed with wider
dimensions compared to other traces. After passing the design rule check, we advanced to the
manufacturing phase, utilizing PCBWay to produce our PCB board. The final assembly was
accomplished using a PCB oven to solder all the components onto the board.

Following the assembly, we initiated testing with the DC power supply in the lab, initially
focusing on the power subsystem. Once functionality was confirmed, we proceeded to test the
gate driver's ability to accept PWM signals from the ESP32, assessing output voltages of the HO
and LO terminals with an oscilloscope. Lastly, we conducted tests to ensure the accuracy of the
current sensor in measuring the current flowing into the motors.

2.2 Design Details

2.2.1 Motor Controller Subsystem
The Motor Controller Subsystem will include the hardware and software necessary to control
the motor's speed, direction, and braking. The heart of this subsystem is the H Bridge includes
four MOSFETS, two gate drivers for each side of the bridge with the associated bootstrap
capacitors, and an Arduino Uno used to create the PWM signals that are fed into the gate
drivers. Figure 3 below shows the basic circuit of an H Bridge circuit. When Q1 and Q4 are on,
the left lead of the motor will be connected to the power supply (battery pack for RC Car demo)
and current will start flowing in the forward direction and the DC gear motor shaft will start
spinning. Conversely, when Q2 and Q3 are turned on, the current will flow in the opposite
direction and the dc geared motor shaft will start spinning backwards. The top-end of the
bridge will be connected to a power supply and the bottom-end of the circuit is
grounded. Figure 4 shows the schematic of the H-bridge circuit while figure 5 shows the PCB
layout of the H-bridge circuit.

5

Figure 3: H-Bridge Circuit

Figure 4: Schematic for H-Bridge Circuit

6

Figure 5: PCB Layout for H-Bridge Circuit

2.2.1.1 MOFSETs Selections
In our H-Bridge design, we will be using four N-Channel MOSFETS to act as voltage-controlled.
For the MOSFET selection, it is important to consider the Drain-to-Source resistance of the
device when the device is operating in the active region. For this reason, we will be selecting
the IRF3205 N-Channel MOSFETs because the average series resistance is 8 milliohms.
Therefore, the maximum power dissipation across this device would be:

(0.8Ω ∗ 10𝐴) ∗ 10𝐴 = 80𝑊

It is safe to assume that the IRF3250 will successfully operate within the calculated current
specification because the highest possible power dissipation across the device is 200 Watts
according to the datasheet shown below.

7

2.2.1.2 Gate Driver Selections
Besides, we will have to consider the Gate-to-Source Threshold voltage required by the device
to switch the MOSFET on. Referencing the datasheet for the IRF3250 N-Channel MOSFET, the
Gate-to-Source Threshold Voltage (represented as VGS(th)) is on 4 Volts when 250 microamps
are flowing at drain. Because the HIGH signal from the ESP32 is 3.3V, we will have to use a gate
driver to create a high enough charge to activate the high side MOSFETs in an H-Bridge. Let's
say our source voltage is 12V from the battery and VGS(th) is 4 volts, the voltage applied to the
gate of the high side driver must be:

(4V + 12V) = 16𝑉
 To activate the High Side drivers, we will have to apply 16V to the gate. If a gate driver is used
in the design of an H-Bridge, then the IC itself has a built-in charge pump that can be used to
amplify a charge that will in turn trigger the high side MOSFET. This internal charge pump is
combined with a bootstrap capacitor that supplies the required charge needed to activate the

8

high side drivers. Note that this value is also lower than the maximum VGS of the RF3250 N-
Channel MOSFET which is 20V which can keep the MOSFETS from operating at a safe range. The
gate driver we are using is IR2104SPBF and the high side configuration can operates from 10 to
600V. This gate driver can also take in a maximum voltage supply of 25V and is compatible with
the 3.3V input logic which is similar to the ESP32. The figure below shows the datasheets for
the IR2104SPBF gate driver. The diagram below shows the full H-Bridge control schematic.

2.2.2 Power Subsystem
The power system will be responsible to efficiently manage the energy source, provide stable
voltage levels for various components, and incorporate safeguards to protect sensitive
electronics. In our design it will comprise of a 12V DC battery input, a 3.3V solder jumper
coupled with a buck converter for the ESP32-S3 module, and a battery voltage sensor with
Schottky diodes to safeguard the system's stability and safety. The voltage sensor will output
data to the ESP 32, which will allow us to monitor the voltage through the buck converter to
ensure its stability. At the core of the power system lies the 12-24V DC battery. This will serve
as the primary energy source for the entire controller. The choice of a 12-24V DC battery is
deliberate, as it can be easily balanced between providing sufficient power for motor operation
and being a common and readily available voltage source. This voltage level aligns with the
requirements of many motors, making it an ideal choice for a wide range of applications. Figure
6 shows the schematic of the Power Subsystem circuit while figure 7 shows the PCB Layout of
the Power Subsystem.

9

Figure 6: Schematic of the Power Subsystem

Figure 7: PCB Layout of the Power Subsystem

2.2.2.1 Powering the ESP-32
One of the key components in the wireless remote motor controller is the ESP32-S3 module,
responsible for wireless communication, control logic, and user interface. However, the ESP32-
S3 module typically operates at 3.3V, which poses a challenge when powered by a 12-24V
source. To bridge this voltage gap, the power system incorporates a 3.3V solder jumper and a
buck converter. The 3.3V solder jumper plays a crucial role in voltage regulation. It enables the
selection of the appropriate voltage level for the ESP32-S3 module, allowing for flexibility in the
power system design. By connecting the solder jumper, the voltage is adjusted to match the
module's requirements which will be verified by using the test points we incorporated into our
schematic. The buck converter, an essential part of the power system, efficiently steps down
the voltage from the 12-24V source to the required 3.3V level. This conversion process ensures
that the ESP32-S3 module receives a stable and precisely regulated power supply. The 3.3V can
also be supplied to the EN channel of the gate drivers. Buck converters are known for their
efficiency, making them an excellent choice for conserving battery power while providing a
clean and consistent voltage source.

2.2.2.2 Safeguarding the System

10

A critical aspect of the power system is monitoring the battery's voltage to prevent overvoltage
or undervoltage conditions that could damage sensitive components. To accomplish this, the
system incorporates a battery voltage sensor. This sensor continuously measures the battery's
input voltage, providing real-time information about the power source's health. To safeguard
the ESP32-S3 module and other electronics, two Schottky diodes are employed. These diodes
are strategically placed to clamp the voltage at the output of the divider circuit. Schottky Diodes
are known for their unidirectional path for current and voltage. The purpose of this clamping is
twofold: to protect the ESP32-S3 module's analog-to-digital converter (ADC) and to ensure that
the voltage does not exceed 3.3V or drop below ground potential. The Schottky diodes are
chosen for their low forward voltage drop and fast switching characteristics. This makes them
effective in limiting the voltage and preventing any unwanted spikes or deviations that could
adversely affect the ADC or other components.

In summary, the power system will start with a 12V DC battery input, which provides the
primary power source for the system. A 3.3V solder jumper and a buck converter ensure that
the ESP32-S3 module receives the correct voltage level for operation. To protect sensitive
components, a battery voltage sensor and Schottky diodes are employed, ensuring the stability
and safety of the power supply. This meticulous attention to the power system's design
guarantees the reliability and longevity of the wireless remote motor controller, enabling it to
excel in a wide range of applications while ensuring the safety of its users and components.

2.2.3 Current Sensing Subsystem
As mentioned before, the core of our motor controller circuit is an H-bridge. Because we are
dealing with a maximum current rating of 10A, current sensing is used to monitor, manage, and
control the load currents leading to improvement in safety, and reliability of our motor
controller circuit. From the H-bridge circuit shown below, if Q1, and Q2 are both on or Q3, and
Q4 are both on, it will cause a short circuit from battery to ground. In the figure, we can see
that there are 3 different locations, High-Side, In-Line, and Low-Side, to measure current in an
H-bridge. For our project, we use In-Line current Measurement for current sensing in an H-
Bridge to direct motor current measurement and low-bandwidth amplifier. Accurate current
measurement with an H-bridge is important to control motor torque. The PWM output often
experiences overshoot and undershoot during transition from low to high and high to low
transitions. Thus, it is important to have a current sense amplifier, which can endure these
conditions while maintaining a fast response time and survive in harsh requirements of an
inductive system. Figure 8 shows the schematic of the Current Sensing circuit while figure 9
shows the PCB Layout of the Current Sensing circuit.

11

Figure 8: Schematic of the Current Sensing circuit

Figure 9: PCB Layout of the Current Sensing circuit.

2.2.3.1 Current Sensor Selections
We are using an INA240 current sense amplifier with enhanced PWM rejection, which ranges
from -4V to 80V. It is designed to reject or filter out unwanted signals or noise related to PWM
(Pulse Width Modulation), which helps us make accurate measurements in systems that use
PWM signals. It provides a high level of suppression for common-mode transients (ΔV/Δt),
which is important for real-time measurements of load current in in-line measurement
positions. In other words, it can effectively filter out abrupt changes in voltage that occur in
systems using PWM signals. Besides, INA240 is suitable for use in H-bridge as it can be used in
various positions within the H-bridge: High-Side, In-Line, and Low-Side. The following figures
show the functional block of the INA240 device.

Figure 10: This shows the functional block of the INA240 device.

12

Figure 11: Functional block of the INA240 device

2.2.4 Remote Website Subsystem
The website provides wireless control for the DC motor, allowing users to send a signal that
commands the behavior of the motor. These commands are delivered to the Motor Controller
Subsystem and determines whether the DC geared motor to accelerate, decelerate, move
forward, move backward, or stop. The H-bridge circuit on the board system drives the DC gear
motor based on these commands.

Figure 12 is a screenshot of the website we implemented. Our implemented website features
two control bars: the top bar manages the first motor, while the bottom bar controls the
second motor. Each bar offers functionalities like speeding up, slowing down, rotating
clockwise, and counterclockwise. When activated, the 'Start' button transforms into a 'Stop'
button while the motor is running. The status bar displays real-time information indicating
whether the motor is running or stopped. It also provides details about the rotational direction
and the current speed percentage of the motor.

Figure 12: Screenshot of the Website

13

2.2.5 Remote Arduino Subsystem
Arduino IDE programs the ESP32 microcontroller. The code defines how the DC geared motors
should respond to inputs received from the website. In short, the Arduino IDE enables ESP32 to
control and fine-tune the motor controller based on user inputs. The pseudocode for Arduino
IDE is in Appendix B.

2.2.5.1 Speed Control
We use PWM to control the speed of motors in remote control systems. By adjusting the duty
cycle of the PWM signal sent to the motor controller, we can control the average power
delivered to the motor. A PWM signal is a square wave with a fixed frequency and a variable
duty cycle. By expressing the duty cycle in percentage, we can represent the fraction of time
during one cycle. Figure 13 represents a varying duty cycle. The duty cycle represents the
percentage of time during each cycle that the PWM signal is in the "on" or high state. A higher
duty cycle means the motor receives power for a greater portion of each cycle, resulting in
higher speed. Conversely, a lower duty cycle results in lower speed. In other words, we can
decide the time it takes to go from one rising edge to the next. This allows you to vary the
motor speed efficiently. This algorithm can be implemented in the Arduino IDE, and the speed
could be adjusted based on user input. The percentage displayed on the website's status bar
corresponds to a mapped range of duty cycles (0-255).

Figure 13: Graph of the Duty Cycle

2.2.5.2 Rotational Direction Control
We could also determine the direction of rotation for the connected motor by changing the
state of the input pins (setting them high or low). Setting one input high and the other low (e.g.,
IN1 high, IN2 low) will cause the motor to rotate in one direction (clockwise). Reversing the
configuration, setting the previously low input high and the previously high input low (e.g., IN2
high, IN1 low), will cause the motor to rotate in the opposite direction (counterclockwise). By
manipulating the state of these input pins in the code, it configures the motor driver to create
these different combinations, thus determining the direction of rotation.

14

3. Design Verification

Design verification is crucial for our wireless remote motor controller project because it ensures
our final product meets its desired functional requirements as outlined in the project’s initial
stages. During the verification process, it helps identify errors in the early development process
and confirms the functionality of all low-level requirements. Successful completion of these
tests would affirm the overall compliance, while any failures would trigger a fallback to our
conventional verification processes for troubleshooting. Appendix A includes a table providing a
comprehensive overview of the requirements, steps taken during verification, and the
corresponding results. Further insights into the verification process specific to each subsystem
are explained in sections 3.1 to 3.5.

3.1 Motor Controller Subsystem

At the heart of this subsystem lies an H-bridge comprising 4 MOSFETs, 2 gate drivers, and one
current sensor. We conducted simulations on the H-bridge using LTspice for testing, illustrated
in figure 14. The graph representing the H-bridge exhibits a square wave, affirming the accuracy
of the overall H-bridge design, as depicted in figure 15.

Figure 14: Schematic Used for Testing H-bridge

Figure 15: Graph for H-bridge

Upon the completion of assembling all H-bridge components on the PCB, we applied a 12V and
0.5A power supply to the designated terminal using a DC power supply from the laboratory.
This step was taken to conduct a preliminary test for potential short circuits. Once it was
confirmed that there were no short circuits, we utilized a multimeter to probe the VCC terminal
on the gate driver IC, ensuring it received the designated 12V DC supply. Subsequently, we
probed the HO and LO channels of the gate driver ICs to verify the presence of the 3.3V signal,

15

indicative of the gate driver successfully receiving the PWM signal from our ESP32
microcontroller.

3.2 Power Subsystem
In the power subsystem, our objective is to take in a 12-24V DC power supply and step it down
to 3.3V. This lower voltage is then supplied to the VCC of the ESP32 microcontroller, current
sensors, and the EN terminal of the gate driver ICs. To bridge this voltage gap, the power
system incorporates both a 3.3V solder jumper and a buck converter. After assembling all the
power subsystem components on the PCB, we applied a 12V and 0.1A power supply to the
designated terminal using a DC power supply from the laboratory. This step served to conduct a
preliminary test for potential short circuits and to evaluate the functionality of the buck
converter. The presence of the solder jumper is crucial as it prevents potential damage to the
ESP-32 in case the buck converter malfunctions by redirecting high voltage. Once it is confirmed
that there are no short circuits, the solder jumper will be connected, and the desired 3.3V
voltage will be verified using the test points incorporated into our PCB layout.

3.3 Current Sensing Subsystem
As previously mentioned, the core of our motor controller circuit is an H-bridge. Given the
maximum current rating of 10A, the inclusion of current sensing is crucial for monitoring,
managing, and controlling load currents, significantly enhancing the safety and reliability of our
motor controller circuit. Before assessing the functionality of our current sensor, we verified
the presence of the 3.3V signal in the VCC channels of both current sensor ICs. In our H-bridge
circuit, a 15mΩ shunt resistor is positioned between the power supply and motor. Using a
multimeter, we will measure the current across the shunt resistor for comparison with the
current sensor reading. Once the accuracy of the current sensor is confirmed, we will connect
the INA channel of the current sensor to the GPIO channel of the ESP32 for data retrieval.

3.4 Remote Website Subsystem
In ensuring smooth communication between the website and the Motor Controller Subsystem,
our focus was on the ESP32's accurate interpretation of user inputs from the website. We
meticulously checked and confirmed that the esp32 correctly recognized and interpreted
various user commands—adjusting speed, changing directions, and initiating start and stop
commands. To validate this, we conducted tests where we printed the user input from the
website when buttons were pressed, ensuring the ESP32's understanding of these commands,
crucial for the motor's behavior as per the programmed Arduino IDE code.

3.5 Remote Arduino Subsystem
Our attention shifted to the Remote Arduino Subsystem to ascertain the correct programming
of the ESP32 microcontroller using the Arduino IDE. Prior to programming, we meticulously
checked the software's connection to the ESP32, ensuring the correct pin configuration through
the pinMode() functions from the Arduino IDE. Our testing methodology was centered on
confirming the ESP32's accurate interpretation of user input from the website. We initially
validated the ESP32's reception of user commands by cross-referencing data transmitted to it.
Subsequent tests focused on observing the motor's response to these commands, ensuring
their precise execution. Additionally, we confirmed the correct mapping of speed percentages

16

to the range of duty cycles (0-255) and paid close attention to consistent motor responses for
both direction and speed control. This scrutiny ensured the system's accuracy and reliability in
translating user commands into motor actions.

4. Costs

4.1 Parts

Table 4.1 Parts Costs Bought
Number
of Items

Part Number and
Description

Manufacturer Retail
Cost
($)

Bulk
Purchase
Cost ($)

Actual
Cost ($)

1 1x ESP32-S3-WROOM-1-

N4R8

Espressif
Systems

3.35 N/A 3.35

2 Motor with encoder Bemonoc Store 14.88 N/A 29.76
1 Buck Converter

(TPS563300DRLR)
Texas

Instrument
0.68 N/A 0.68

2 Current sensor
(INA240A4PWR)

Texas
Instrument

3.23 N/A 3.23

8 MOSFET(IRF3205PBF-
ND)

Infineon
Technologies

1.44 N/A 11.52

1 Battery Pack CBB store 19.99 N/A 11.99
5 PCB PCBway 5.00 5 for 5 5.00
1 1x 470uH Inductor

(RT0805BRD0731K2L)
Murata Power

Solutions
0.29 N/A 0.29

6 0.1u Capacitor (11R474C) Kyocera AVX 0.27 N/A 1.62
1 31.2k Resistor

(RT0805BRD0731K2L)
Yageo 0.33 N/A .33

6 0.47u Capacitor
(GCM21BR71H474KA55L)

Murata
Electronics

0.20 N/A 1.20

2 15m Ohm resistor
(RL0805FR-070R015L)

Yageo 0.59 N/A 1.18

8 1 Ohm Resistor
(RMCF0805JT1R00)

Stackpole
Electronics

0.09 N/A 0.72

4 Gate Drivers (IR2104PBF) Infineon
Technologies

2.67 N/A 10.68

Total $92.46

17

4.2 Labor
Overall, the total parts cost will be around $92.46, but with shipping and an additional 6.25%
sales tax the total will come around $118. Over the course of the semester-long Wireless
Remote Motor Controller project, our team meticulously navigated through distinct phases,
each demanding specialized expertise. The initial weeks were dedicated to comprehensive
research and planning, where the Project Manager led for 20 hours alongside the Electrical
Engineer (EE) and Software Developer contributing 30 and 20 hours, respectively.
Subsequently, the design phase unfolded, with the EE investing 40 hours in circuit design, the
Mechanical Engineer allocating 15 hours for the enclosure, and the Software Developer
dedicating 30 hours to interface design and wireless protocols. As the semester progressed, the
team transitioned into prototype development, with the EE and Software Developer investing
50 and 40 hours, respectively, in building and testing the electronic circuit and programming
the controller functionality. Testing, iteration, documentation, and final presentation phases
were meticulously executed, with the entire team synergizing efforts. Throughout the
semester, the Project Manager maintained a cumulative 50 hours for coordination and
oversight. In total, the project demanded approximately 400 hours of collaborative effort,
resulting in the development of a sophisticated Wireless Remote Motor Controller. With that
said we will anticipate a compensation of $40 per hour for each team member working,
resulting in $16,000 per individual. When multiplied by the number of team members, the total
labor cost amounts to $48,000 which does not include overtime. The total spending for this
project comes out to be around $48,092.46.

18

5. Conclusion

5.1 Accomplishments
The project boasts significant achievements across its key components. Firstly, the power
subsystem demonstrates its capability by effectively delivering 12V to the power line and 3.3V
to both the ESP32 and current sensors, ensuring smooth functionality. Secondly, meeting all
three high-level requirements using the ESP32 dev board and L298N H-bridge module signifies a
major milestone. Circuit works as intended as we replaced the L298N H-bridge with the H-
bridge circuit we designed on the PCB board. One of our standout accomplishments is creating
a website app that allows wireless control over the motor's direction and speed. It works well
within a range of 10-15 meters which is one of our high-level requirements, showing that our
system is strong and fully operational. Moreover, it continues to work reliably even beyond 15
meters, showcasing its extended operational capacity.

5.2 Uncertainties
Several uncertainties have arisen during the project, demanding attention for resolution.
Initially, the critical need to replace the malfunctioning gate driver on our PCB board is evident.
Moreover, a concern has surfaced regarding improperly sized diodes on the PCB, necessitating
a redesignation of the circuit board. Due to the incorrect diode size that was ordered and did
not fit the pad, we resorted to manually connecting the diodes using two wires. Moreover,
challenges have surfaced regarding the ESP32's programming on the PCB board. In our KiCad
schematic, we have two sheets of schematics organized hierarchically, with a root sheet and
sub-sheet. The ESP32 problem is primarily stemming from labeling that wasn't set to global
variables in the sub-sheet and thus a lack of an established connection on the PCB board.

5.3 Ethical considerations
In the development of the Wireless Remote Motor Controller project, we are committed to
upholding the highest ethical and safety standards as outlined in the IEEE and ACM Code of
Ethics. Specifically, we will prioritize safety by ensuring the device complies with ethical
design and sustainable development practices. Safety is a paramount concern throughout
the development and operation of the Wireless Remote Motor Controller project. It extends
to various aspects, including power control, voltage regulation, soldering practices, and the
proper use of equipment. Here, we emphasize the safety measures and considerations
associated with these critical project components: To prevent overheating and protect the
motor and other components, the power system must implement current limiting
mechanisms. This ensures that the motor operates within safe limits, reducing the risk of
damage or accidents. Maintaining a stable voltage supply, as achieved through the buck
converter, is essential for the safety of the entire system. Fluctuations in voltage can lead to
erratic motor behavior and pose risks to users and equipment. We will continuously monitor
the voltage levels as a safety measure. The battery voltage sensor helps in this regard,
allowing the system to take corrective actions if voltage levels fall outside safe operating
limits. When working with electrical equipment, including the buck converter and voltage
sensor, it is crucial to follow electrical safety practices, such as isolating power sources when
making connections. Incorporating these safety measures and considerations into the

19

Wireless Remote Motor Controller project not only ensures the safety of the development
process but also contributes to the overall safety of the product. Prioritizing safety at each
stage of the project's lifecycle, from design and assembly to testing and operation,
demonstrates a commitment to delivering a reliable and secure product. should have
incorporated voltage input protection mechanisms to safeguard against voltage spikes,
surges, or reverse polarity, reducing the risk of damage to the controller and connected
motors. This requirement enhances the controller's durability and reliability.

5.4 Future work
Moving forward, several key areas require attention for future improvements. Firstly, replacing
the correct gate drivers stands as a priority to ensure the smooth operation of the system.
Optimizing the layout of PCB components by separating the digital and analog traces can
reduce the chances of digital noise affecting sensitive analog signals. This approach can improve
the efficiency and performance of the circuit because the digital and analog signals will be
operating at different voltage levels. Additionally, incorporating more test points into the
design will facilitate easier troubleshooting and validation in the future. It's also advisable to
order surplus key components as backups, ensuring continuity in case of unforeseen failures.
This is because most of our SMD components are the size of 0805 and they can easily be lost.
Implementing decoupling capacitors in between the space of MOFSETs will contribute to better
noise reduction and stability within the system. Placing MOFSETs at a90-degree angle can
improve thermal dissipation which can improve the overall performance. Furthermore,
expanding the functionality of the webpage by integrating features such as real-time RPM and
current readings will enhance the user interface and provide valuable live data for monitoring
purposes. These planned enhancements will significantly contribute to the system's reliability
and performance in future iterations.

20

References
[1] Microchip Technology Inc. "AN905 - Stepper Motor Control Using the PIC16F684."

Microchip Technology Inc.,
http://ww1.microchip.com/downloads/en/appnotes/00905b.pdf. Accessed 27
September 2023.

[2] Yavuz, Hasan. "" Ozderya, https://hasanyavuz.ozderya.net/?p=437. Accessed 27

September 2023.

[3] Modular Circuits. "H-Bridges – the Basics" Modular Circuits,

https://www.modularcircuits.com/blog/articles/h-bridge-secrets/h-bridges-the-basics/.

Accessed 27 September 2023.

[4] Michigan State University. "Application Note Regarding H Bridge Design and

Operation" Michigan State University,

https://www.egr.msu.edu/classes/ece480/capstone/fall14/group07/PDFs/Application%

20Note%20Regarding%20H%20Bridge%20Design%20and%20Operation.pdf.

Accessed 27 September 2023.

[5] Texas Instruments. "Current Sensing in an H-Bridge" Texas Instruments,

https://www.ti.com/lit/an/sboa174d/sboa174d.pdf?ts=1685998152220&ref_url=https

%253A%252F%252Fwww.google.com%252F. Accessed 27 September 2023.

[6] No specific author. "Micropython on ESP8266 and ESP32 - PWM LED Fading."

EngineersGarage, https://www.engineersgarage.com/micropython-esp8266-esp32-

pwm-led-

fading/#:~:text=While%20the%20base%20clock%20APB_CLK,cycle%20resolution

%20of%201%20bit.

http://ww1.microchip.com/downloads/en/appnotes/00905b.pdf
https://hasanyavuz.ozderya.net/?p=437
https://www.modularcircuits.com/blog/articles/h-bridge-secrets/h-bridges-the-basics/
https://www.egr.msu.edu/classes/ece480/capstone/fall14/group07/PDFs/Application%20Note%20Regarding%20H%20Bridge%20Design%20and%20Operation.pdf.
https://www.egr.msu.edu/classes/ece480/capstone/fall14/group07/PDFs/Application%20Note%20Regarding%20H%20Bridge%20Design%20and%20Operation.pdf.
https://uillinoisedu-my.sharepoint.com/personal/aaronkc2_illinois_edu/Documents/No%20specific%20author.%20%22Micropython%20on%20ESP8266%20and%20ESP32%20-%20PWM%20LED%20Fading.%22%20EngineersGarage,%20https:/www.engineersgarage.com/micropython-esp8266-esp32-pwm-led-fading#:~:text=While%20the%20base%20clock%20APB_CLK,cycle%20resolution%20of%201%20bit.
https://uillinoisedu-my.sharepoint.com/personal/aaronkc2_illinois_edu/Documents/No%20specific%20author.%20%22Micropython%20on%20ESP8266%20and%20ESP32%20-%20PWM%20LED%20Fading.%22%20EngineersGarage,%20https:/www.engineersgarage.com/micropython-esp8266-esp32-pwm-led-fading#:~:text=While%20the%20base%20clock%20APB_CLK,cycle%20resolution%20of%201%20bit.
https://www.engineersgarage.com/micropython-esp8266-esp32-pwm-led-fading/#:~:text=While%20the%20base%20clock%20APB_CLK,cycle%20resolution%20of%201%20bit
https://www.engineersgarage.com/micropython-esp8266-esp32-pwm-led-fading/#:~:text=While%20the%20base%20clock%20APB_CLK,cycle%20resolution%20of%201%20bit.
https://www.engineersgarage.com/micropython-esp8266-esp32-pwm-led-fading/#:~:text=While%20the%20base%20clock%20APB_CLK,cycle%20resolution%20of%201%20bit.
https://www.engineersgarage.com/micropython-esp8266-esp32-pwm-led-fading/#:~:text=While%20the%20base%20clock%20APB_CLK,cycle%20resolution%20of%201%20bit.
https://www.engineersgarage.com/micropython-esp8266-esp32-pwm-led-fading/#:~:text=While%20the%20base%20clock%20APB_CLK,cycle%20resolution%20of%201%20bit.

21

Appendix A Requirement and Verification Table

 Table A.1 System Requirements and Verifications

Requirement Verification Verificatio

n status

(Y or N)

1. The Motor Controller

Subsystem will include the

hardware and software

necessary to control the motor's

speed, direction, and braking.

a. The motor controller

will be able to withstand

12 V

b. The IRF3205 MOSFETs

can take in ± 20V from

the gate driver to be

fully switched on.

The IR2104SPBF gate

driver has to be able to

take in maximum supply

voltage of 25V and 3.3V

logic input.

1. When a button on the website the

car will move the correct

direction

a. We will verify this by

using a voltage source of

12V. We have placed test

points in our schematic

where we can monitor if

there are any irregularities

in the function of our

system at 12V.

b. We will ensure the

MOSFETs work in a safe

operation zone by

choosing a high-speed

power MOSFET driver ,

IR2104SPBF, that has a

floating channel that can

operate from 10 to 600V

to drive the high-side of

the N-channel MOSFETs.

c. We will test this by

connecting the battery

input voltage(12V) to the

VCC channel of the gate

driver and the ESP32

input channel (any GPIO)

to the EN channel of the

gate driver(3.3V).

Y

2. The Power Subsystem will

efficiently manage the energy

source, provide stable voltage

levels for various components,

and incorporate safeguards to

protect sensitive electronics.

a. The power system will

be able to limit the input

voltage of the ESP 32 to

only 3.3 Volts.

2. We will test each VCC input of

each component to make sure it is

turned on.

a. Before connecting the

source to the ESP 32 we

will check the output of

the buck converter at the

solder jumper using the

multimeter to verify the

Y

22

 output is a steady

3.3Volts.

3. The Current Sensor will be to

achieve current measurements

in the H-bridge and feedback

the signal to the ESP32 from the

INA channel.

b. The INA240 current

sensor will be able to

operate from a supply

voltage ranging from 2.7

to 5.5V.

3. We will be using a multimeter to

measure the current flowing

across the shunt resistor (15m

ohm) in between the power

supply and motor connection to

get the accurate measurement of

the current to compare with the

reading of the current sensor.

a. To verify, we will make

sure the current sensor is

connected to the 3.3V

source similar to ESP32 as

well as the gate driver

mentioned above.

N

4. The Remote Website

Subsystem manages DC motor

behavior through Motor

Controller Subsystem.

a. The ESP32 must

interpret user input

status.

4. Ensure that the Android phone

app is in the default unpressed

state. Record the data transmitted

from the app to the ESP32. We

will also Record the behavior of

the DC geared motor in response

to each command and confirm

that it aligns with the expected

actions (acceleration,

deceleration, forward, backward,

or stop).

a. Test the wireless

connection between the

Android Phone App and

the Motor Controller

Subsystem by sending

simple test commands

(start or stop motors) from

the app to the Motor

Controller subsystem.

Confirm connectivity by

checking if the Motor

Controller Subsystem

correctly responds to the

commands by executing

the requested actions.

Y

23

5. The Remote Arduino IDE

subsystem programs the ESP32

to dictate DC geared motor

responses to website inputs.

b. Arduino IDE programs

ESP32 for motor

direction via the website

commands.

c. Arduino IDE programs

ESP32 for speed control

via the website

commands.

5. Upload a sample program to the

ESP32 via the Arduino IDE,

specifically designed for handling

direction-changing and speed-

changing commands.

a. Test varied commands

from the website and

confirm consistent motor

response.

b. Verify PWM signal

reduces speed by

adjusting duty cycle.

Y

24

Appendix B Pseudo Code for Arduino IDE
// Define motor pins

Motor1: ENA, IN1, IN2

Motor2: IN3, IN4, ENB

// Setup function

setup():

 // Initialize pin modes for motors

 pinMode(ENA, OUTPUT);

 pinMode(IN1, OUTPUT);

 pinMode(IN2, OUTPUT);

 pinMode(ENB, OUTPUT);

 pinMode(IN3, OUTPUT);

 pinMode(IN4, OUTPUT);

 // Initialize PWM channels for motor speed control

 //...

 // Initialize WiFi connection and server

 //...

// Function to handle user commands and update webpage

Webpage():

 // Construct HTML page with motor status and controls

 //...

// Main loop

loop():

 // Handle client requests

 //...

 // Control motor rotation based on direction, speed, and stop states

 //...

// Function to handle changes in motor speed

MotorSpeed():

 // Update motor speeds based on user commands

 //...

// Function to handle changes in motor direction

MotorDirection():

 // Update motor directions based on user commands

 //...

// Function to handle motor braking

MotorBrake():

25

 // Control motor stopping based on user commands

 //...

// Function to apply brake to motors

brake(int motor):

 // Stop the specified motor

 //...

// Function to rotate motors based on direction and speed

rotate(int motor, int value, int dir):

 // Rotate the specified motor in the specified direction and speed

 //...

// Start the system

setup();

// Continuously run the system

while (true):

 loop();

