
Smart Plastic Container Recycling System
ECE 445 Senior Design

Final Report
12/6/2023

Team 7
Jason Wright, Jennifer Chen, Smruthi Srinivasan

Jeff Chang

Abstract
Climate change is one of the greatest problems of our time and it is our responsibility as a society
to do our part to limit the implications of global warming. One of the easiest ways to tackle this
problem is to recycle. The United States lacks education regarding proper recycling compared to
other countries such as Sweden. Our project aims to tackle a portion of all recycling: plastics.
This paper explains the design process and overall results of our Smart Plastic Container
Recycling System along with the motivation behind it.

ii

Table of Contents

1. Introduction 1
1.1 Problem 1
1.2 Solution 1
1.3 Visual Aid 2
1.4 High Level Requirements 2

2. Design 3
2.1 Block Diagram 3
2.2 Physical Design 4
2.3 Control Subsystem 4

2.3.1 Overview 4
2.3.2 Design Decisions 5
2.3.3 Results 5

2.4 Power Subsystem 6
2.4.1 Overview 6
2.4.2 Design Decisions 6
2.4.3 Results 6

2.5 Sensor Subsystem 7
2.5.1 Overview 7
2.5.2 Design Decisions 7
2.5.3 Results 7

2.6 User Interface Subsystem 8
2.6.1 Overview 8
2.6.2 Design Decisions 8
2.6.3 Results 9

2.7 Software Design 9
2.7.1 Overview 9
2.7.2 Design Decisions 10
2.7.3 Results 11

3. Cost and Schedule 12
3.1 Cost Analysis 12

3.1.1 Cost of Materials 12
3.1.2 Cost of Labor 12

3.2 Schedule 13
4. Conclusion 15

4.1 Accomplishments 15

4.2 Uncertainties 15
4.3 Ethics and Safety 16
4.4 Future Work 16

References 17
Appendix A: PCB Schematics 19

A.1 Microcontroller Schematic 19
A.2 Stepper Motor Driver Schematic 20
A.3 Buck Converter and LDO Schematic 20

Appendix B: Requirements and Verification Tables 21
B.1 Control Subsystem Requirements and Verification Table 21
B.2 Power Subsystem Requirements and Verification Table 21
B.3 Sensor Subsystem Requirements and Verification Table 22
B.4 User Interface Subsystem Requirements and Verification Table 22

1. Introduction

1.1 Problem
Recycling maintains a lot of benefits for the community around us, especially as we aim to tackle
the effects of climate change. The benefits of recycling are countless, but recycling works to
reduce waste and pollution, conserve energy and natural resources, and create and support jobs
domestically. Unfortunately, a lot of people struggle with determining which materials can be
recycled and where they can effectively recycle them due to the recycling infrastructure in the
United States being outdated [1].

While other countries have effectively taught their population how to correctly recycle their
items from a young age, the United States lacks education on proper recycling. This leads to
contamination of other recyclables, ultimately preventing them from being recycled. In fact,
estimates show that over 50% of waste ends up in landfills instead of being recycled [2]. We
usually think of plastics as recyclable, but depending on the jurisdiction, some plastics may not
be able to be recycled. If they are accidentally recycled, they run the risk of contaminating all of
the other recyclables, which is a mistake we can no longer afford as the potential effects of
climate change loom ahead.

1.2 Solution
Our solution to this problem is a device with an imaging system that reads the symbols printed
on plastic containers. This device will be mounted on a user’s trash system. We will have a
camera sensor that works with a machine learning model (VGG16) to read the numbers printed
on the plastic container and a GPS sensor that determines the location of the user using latitude
and longitude coordinates. That information will be utilized to determine if that specific plastic
container can be recycled in the user’s location using RecycleNation API. Once the
determination has been made, we will have a sorting actuator that places the plastic in the proper
bin and a web application explaining more about the type of plastic and display the recycling
centers nearby (if any).

1

1.3 Visual Aid

Figure 1: Visual Aid

1.4 High Level Requirements
1. Camera detects the plastic being positioned in front of it 95 ± 1% of the time and system

is able to correctly identify the symbol listed on the plastic container 95 ± 1% of the time
2. GPS location sensor determines the user’s location within a 10 meter radius and pulls the

data regarding recycling in that area
3. System correctly determines 95 ± 1% of the time if the container is recyclable or not and

places the container in the proper bin, web application displays specific information
about plastic being recycled/specific location centers that accept this type of plastic.

2

2. Design

2.1 Block Diagram

Figure 2: Initial Block Diagram

Figure 3: Final Block Diagram Design

Based on the feedback we received from our Design Review session, we made modifications
from our initial block diagram in figure 2 to the final block diagram shown in figure 3. The
following sections discuss these design changes in depth.

3

2.2 Physical Design

Figure 4: Physical Design

The sorting mechanism of our system is a simple platform that the user places the plastic object
onto. Our camera sits several inches back from where the object is placed in order to view the
entire item. The PCB and other components are encased and mounted behind the user side of the
system next to the camera. All of this is mounted above two small trash cans, one on either side
of the sorting mechanism. Once the system has decided if an object is recyclable, our 12V
stepper motor will tilt the platform through the use of a chain attached to an axel. The use of a
stepper motor allows us more precise position control, allowing it to return to the level position
after each sort. Additionally, the chain system allows us to customize the sensitivity of our
rotation through the use of simple gears. Our motor contains 200 steps per revolution, giving a
base precision of 1.8° ± 5%, which we can increase as needed.

2.3 Control Subsystem

2.3.1 Overview

The control subsystem consists of our microcontroller (STM32F103C8T6), a microcomputer
(Raspberry Pi 2), and our 12V stepper motor and driver. The motor and driver directly take 12V
input from the wall converter, the microcomputer takes 5V input from the buck converter [3] [4],
and the MCU will use 3.3V from our LDO [5] [6]. The MCU has 3 functions: data collection
from the sensor subsystem, communication with the microcomputer, and control of the stepper
motor. The stepper motor physically sorts items by tilting the platform where items are placed
once they have been identified as recyclable or not from the other subsystems. The Raspberry Pi
will be loaded with the trained image recognition software and be able to connect to a web

4

application for the purpose of retrieving location specific recycling data and providing
information to the user.

2.3.2 Design Decisions

The control subsystem consists of the microcontroller, Raspberry Pi, and the stepper motor with
its driver. For our design, the microcontroller did not have to have strong computing power, but
did need to interface with the Raspberry Pi through UART, the programmer through JTAG, the
stepper motor driver through GPIO (General Purpose Input/Output) pins, and have one more
GPIO pin for the proximity sensor. To meet these requirements, the STM32F103C8T6 MCU was
chosen. The A4988 driver was chosen to allow more precise control of the stepper motor.
Integrating it into our system greatly simplified the programming process, allowing motor
control to be completed through 8 logic signals driven by the MCU. These signals allow us to
enable sleep mode, control direction, step using simple pulse signals, and have the ability to
enable microstepping for more precise positional control if desired.

The physical circuit for the motor driver was designed based off of an example circuit in the
A4988 datasheet. To map this circuit to our design, only a few components needed modification.
First, the sense resistors needed to be selected based on the maximum current draw of our motor.
Equation 1 describes how this resistance can be calculated. This is derived from the driver
internals available on the datasheet.

(1)𝑅 =
𝑉

𝑟𝑒𝑓

8*𝐼
𝑚𝑎𝑥

Using a reference voltage of 1V with a 350 mA max current draw, the necessary sense resistance
is 0.36 ohms. 0.35 ohm resistors were actually used in practice due to availability. The off-time
of the driver can also be customized with a pull-down resistor on the ROSC pin, but we
determined the default off-time of 30 microseconds was more than adequate for our application,
so this pin was set to ground (this enables the chip’s internal off-time). The capacitor values for
this circuit did not need to be modified.

2.3.3 Results

Testing of the control subsystem began with running a simple program to blink an LED by
toggling a logic signal being sent to a single GPIO pin. Through STM32CubeIDE, we were able
to successfully connect to and run the code on our custom circuit board. We next wrote a
program to enable our motor driver, select a direction, step 25 times (45 degrees), switch
directions and move back to the level position. After some experimentation with pulse lengths
and delay, we were able to successfully operate our motor while using the proximity sensor as a
trigger.

To complete our system integration, the Raspberry Pi would serve as the middle ground between
our user interface and microcontroller, allowing the MCU to control the motor according to the

5

determination made by the machine learning model and UI. Unfortunately, the Raspberry Pi that
our team acquired appeared to be faulty out of the box, unable to be loaded with any operating
system, resulting in the loss of an integral connection for our system. Without additional time to
obtain a new board, this piece of the control subsystem had to be omitted for demonstration
purposes.

2.4 Power Subsystem

2.4.1 Overview

The power subsystem consists of three major components. First, 120 VAC power is rectified to a
12V DC value by a 30W converter (Qualtek QFWB-30-12-US01). The 12V power is passed
directly to the stepper motor. It is also sent to a buck converter that steps the power down to 5V.
The 5V power is sent directly to the raspberry pi, and to a linear, low-dropout regulator (LDO).
The LDO steps the voltage down one more time to 3.3V which can be passed to the
microcontroller, camera, and motor driver. Both DC-DC converters need exterior resistance,
capacitance, and inductor values according to their individual datasheets.

2.4.2 Design Decisions

The stationary nature of our project naturally led to the decision to power it through standard AC
wall outlets. To keep our custom power converters as pure step-down converters, we started with
a pre-purchased 12V wall adapter. A simple linear regulator could not be used to step the 12 V
down to 5 V due to the high current draw under load of the Raspberry Pi (1.5 A maximum).
Instead, a customizable buck converter was selected. By following the guidelines set by the
SIC402 datasheet, resistor dividers, capacitors, and an inductor were selected to operate at 400
kHz switching frequency, keep ripple voltage under 100 mV, and have current ripple under 40%
of maximum current. The 3.3V components are all much lower power (expected total draw under
200 mA), so a 5V to 3.3V LDO could be used without many other considerations. Additional
space for capacitors was added to the design to ensure that voltage ripple could be reduced after
testing if necessary.

2.4.3 Results

Testing began by sending 12 volts to the circuit board and using a multimeter to read the 5V and
3.3V outputs through test pins. At first, the 5V pin was actually reading only 3.24 volts, and the
3.3V pin was reading 2.2 V. While attempting to gather more information to debug, the buck
converter stopped responding at all, no longer giving any output at all or drawing any current.
This was the most difficult component to solder including 3 underside pads, so we believe a
soldering issue underneath the chip caused part of it to burn out during testing. To work around
this component failure, a second wall adapter was added to our design to power our 5 volt
components. Because no current was being drawn through the failed buck converter, this second
voltage source could be connected to the same 5V test pin we were previously reading from in

6

order to power part of our system. Once constructed, a voltmeter was then used to confirm that
our linear regulator was outputting a clean 3.3 volts. Ultimately, this solution was sufficient and
the MCU and stepper motor were both successfully operated through our custom circuit board.

2.5 Sensor Subsystem

2.5.1 Overview

The sensor subsystem contains the hardware necessary to signal a camera to capture an image of
a recycling symbol on the container. The camera is positioned to take an image of the user’s
plastic container that is placed on the tilting platform and the image data is transmitted to the
Raspberry Pi. A proximity sensor is located on the tilting platform to signal the camera that an
item has been placed and an image should be captured for further classification.

2.5.2 Design Decisions

As shown in the original block diagram and information presented above, the sensor subsystem
was supposed to consist of a camera and GPS, both of which communicated directly to the
microcontroller. This design was modified to have the camera directly communicate with the
microcomputer in order to streamline the design and cut down on the amount of data transfers
necessary. The GPS was also removed from the final design because it was redundant to
constantly ping a user’s location when the system would typically remain stationary. A proximity
sensor was also added to this subsystem so that the picture would be captured only if there was a
container placed on the platform. The goal of this addition was to reduce energy consumption
required for the camera to constantly be on and capturing images.

2.5.3 Results

Our final design of the sensor subsystem differed from our initial design. Unfortunately, we were
unable to test and verify our camera sensor because it was supposed to be directly connected to
the Raspberry Pi. Since that was not working, we were not able to run our camera. A potential
idea for future work would be to use a computer’s web camera, eliminating the need for a
Raspberry Pi. Instead of fulfilling the GPS requirement using a GPS sensor, we retrieved a user’s
location using their IP address, which we will discuss more in depth in the next section. We were
able to verify the proximity sensor’s functionality by programming our microcontroller to light
up an LED when an item was placed on the platform in front of it. We were able to further
confirm that the proximity sensor worked by programming our microcontroller to move the
stepper motor to one side upon placement of an object on the platform.

7

2.6 User Interface Subsystem

2.6.1 Overview

The user interface consists of a full stack web application where information about the specific
plastic the user is attempting to recycle is displayed, in addition to the locations of specific
recycling centers that accept the type of plastic inputted. The user interface receives this
information from the machine learning model, which was intended to be housed on the
microcomputer, and uses the classification to display the necessary information. The left side of
the page displays the plastic type that is pulled from our microcomputer software and
information about it and the right side of the page displays a map that pinpoints the locations
using the Geoapify API [8] and Google Maps API [9]. The web application was built using
React JS.

2.6.2 Design Decisions

The user interface consists of the plastic symbol classification, the description of the plastic type
and a map that includes markers of nearby recycling locations based on the user’s location. We
used the Google Maps API for the map, and the Geoapify API for the recycling locations. For
the UI design, we used the React framework for the front-end and Django on the back-end of the
web application. We chose to use React for the UI design as it has a wide range of component
libraries, allowing for a customizable and responsive interface. Originally, we were going to
receive information regarding image classification from the Raspberry Pi. Since we were not
able to use the Raspberry Pi and load our model onto it, we integrated Django on the back-end of
the web application. Django is a Python based framework, which made it compatible with the
machine learning model we implemented in PyTorch and could be integrated with the React user
interface.

8

2.6.3 Results

Figure 5: Web Application Front End

Figure 5 above shows our final web application design. We have a header that displays the
plastic type and the text box on the left provides more information about the plastic type that the
container was classified as [7]. The right displays a map centered in the Champaign-Urbana area
and the red markers denote recycling centers in the area. We were originally going to use the
RecycleNation API to find these locations, but we were not able to receive access to it so we
have to pivot to using the Geoapify Places API. The map rendering was done using the Google
Maps API. The map’s location is dependent on the user’s IP address, which we use to extract the
user’s location. We also fulfill the requirement that we display centers within a 30 mile radius
(not necessarily shown above) since radius is a parameter in the API call. On the backend of the
application, we were able to integrate the machine learning model using Django, as shown in this
video. This is especially useful if we want to continue improving the system because we could
completely remove the Raspberry Pi and instead connect the model from the backend of the
application to the microcontroller.

2.7 Software Design

2.7.1 Overview

The machine learning model we selected is the VGG16 Model [10]. This model is a deep
Convolutional Neural Network that consists of 16 layers of convolutional layers, max pooling
layers and dense layers. Our design uses a model that is pre-trained on ImageNet [11] and we
finetuned the model on the Plastic Identification Symbol dataset [12]. This model is then loaded
onto the Raspberry Pi and fine tuned once connected to the controls subsystem.

9

https://drive.google.com/file/d/1sumd721EwDb6G1VRsFPJQ-6sTQvk2Hfd/view?usp=drive_link

The image that the camera sensor takes will be our input image into the network. As a
requirement of our control subsystem, we will verify that the image is 244x244 pixels
beforehand. This image then passes through a series of convolutional layers of 3x3 filter size that
learn specific features of the image and max pooling layers that select the maximum value of our
image feature map. This works to increase efficiency and reduce computational complexity,
which is important since a downside of using the VGG model is that since it has 16 layers it can
take a long time to train. It then goes through 3 fully connected layers that work on classifying
the image and outputting the category it most likely belongs to.

An example classification for our use case is first, the camera captures an image of a water
bottle’s recycling symbol (Plastic #1). The image will then be sent to the microcontroller and
then the microcomputer where it will be inputted into the VGG model network. The image will
pass layer by layer as the network learns its features and performs a classification. The final
output will be a list of class names and the corresponding probabilities that this image belongs to
the specific class, with Plastic #1 being at the top with the highest probability.

2.7.2 Design Decisions

We selected the VGG 16 model for this project because it can reach a test accuracy of 92.7% for
the ImageNet dataset (consisting of 14 million training images with 1000 classes) and its
architecture allows for a higher accuracy for image classification [14]. We opted to use PyTorch
to implement this since it had a pre-trained model. Initially, we were going to train the model
only on the Plastic Identification Symbol dataset (contains 685 data points), but later realized
that this dataset was not very suitable for our purpose because the symbols in it were all close up
and the images our camera would be taking were not as close up. We considered a R-CNN model
or even using unsupervised learning but it would have been difficult to implement due to limited
time and machine learning knowledge. Ultimately, we chose to train on the Plastic Identification
Symbol dataset first, take images that would comprise our own dataset, and then fine tune the
model on the dataset we created. Our dataset contained approximately 60 images spread across 8
different classifications. However, a limitation of this dataset as well as the Plastic Identification
dataset was that some plastics were harder to find so those plastics had less images.

In our initial design, we wanted to load the model onto the Raspberry Pi and finetune the model
again using pictures using the camera sensor. However, we were unable to load the model onto
the Raspberry Pi so we chose to integrate the model with the backend of the web application.
This can be extended in future work to streamline the design.

10

2.7.3 Results

Figure 6: VGG16 Trained Model Accuracy and Losses

Figure 7: VGG16 Performance on Test Set

We were able to successfully train and then test the VGG16 model to achieve a 97.5% accuracy,
which attains the model accuracy that we were looking for in our high level requirements. The
figure above shows the accuracy and the loss after each epoch (which was chosen to be 10). The
model accuracy and loss increase and decrease exponentially, respectively. We ended up
integrating the model with the backend of the web application and we were able to take in an
image input, run the model to perform image classification, and then update the user interface to
reflect the plastic type. With more time, we would have liked to be able to take in live camera
input either from a webcam or the camera sensor and in doing so we would be able to expand on
a plastics dataset to use to continuously fine tune the model.

11

3. Cost and Schedule

3.1 Cost Analysis

3.1.1 Cost of Materials

This table does not factor in the cost of wires and generic connectors off of the PCB. The cost of
passive components (capacitors, resistors, and inductor) was simplified to $0.10 per component
as that is close to the average cost per item.

Description Manufacturer Part Number Quantity Cost ($)

Microcontroller STMicroelectronics STM32F103C8T6 1 6.42

Camera Arducam OV2640 1 25.99

Stepper Driver Allegro A4988 1 3.05

Stepper Motor Adafruit 324 1 14.00

Trash Can Sterilite 1.5 Gallon Trash Can 2 1.96

30W Wall Converter Qualtek QFWB-30-12-US01 1 9.93

LDO Diodes Inc. AZ1117CH-3.3TRG1 1 0.45

Buck Converter Vishay Siliconix SIC402ACD-T1-GE3 1 1.99

Passive RLC
components

Various Various 35 3.50

Microcomputer Raspberry Pi Raspberry Pi 2 1 43.59

Proximity Sensor DFRobot SEN0381 1 12.90

Total $123.78

Table 1: Materials Cost Analysis

3.1.2 Cost of Labor

Since the majority of this group is in Computer Engineering, the hourly rate listed below is based
on the average salary of a Computer Engineering graduate, which is $105,352 [13]. This is
approximately $52.68 an hour based on a 40 hour work week for 50 weeks a year. In addition to
the work of our team, we also used the machine shop for the physical design and that work took
approximately one day.

Name Hourly Rate ($) Hours Total ($) Total x 2.5 ($)

12

Jennifer Chen 52.68 150 7902 19755

Smruthi Srinvasan 52.68 150 7902 19755

Jason Wright 52.68 150 7902 19755

Total $59,265

Table 2: Labor Cost Analysis

3.2 Schedule
● Week 6 (9/25-9/29):

○ Design document: Everyone
○ Schematic development: Jason
○ Machine learning model selection: Jennifer and Smruthi

● Week 7 (10/2-10/6):
○ Design review: Everyone
○ PCB review and necessary modifications: Jason
○ Order parts and materials: Everyone
○ Conduct additional research on VGG: Jennifer and Smruthi
○ Final discussion with machine shop on mechanical design: Everyone

● Week 8 (10/9-10/13):
○ Order PCB: Everyone
○ Train VGG model: Smruthi and Jennifer

● Week 9 (10/16-10/20):
○ Program microcontroller: Jason
○ Fine tune model on Raspberry Pi: Smruthi
○ Begin user interface development: Jennifer

● Week 10 (10/23-10/27):
○ Final PCB revisions: Jason
○ Order PCB (if necessary): Everyone
○ Finish user interface: Jennifer
○ Integrate microcontroller with Raspberry Pi: Smruthi

● Week 11 (10/30-11/3):
○ Finalize assembly: Jason
○ Complete integration and begin testing: Jennifer and Smruthi

● Week 12 (11/6-11/10):
○ Continue testing: Everyone

● Week 13 (11/13-11/17):
○ Mock demo: Everyone

● Week 14 (11/20-11/24):
○ Final modifications: Everyone

13

● Week 15 (11/27-12/1):
○ Final demo: Everyone

● Week 16 (12/4-12/8):
○ Final presentation: Everyone

14

4. Conclusion

4.1 Accomplishments
While we were unable to get the entire system working, we were able to get a majority of the
individual components functional. The final functionality can be separated into two parts, the
software component with the user interface and the machine learning model and the hardware
component with the microcontroller, stepper motor, and proximity sensor. On the software side,
we were able to successfully classify plastic container symbols using the machine learning model
and communicate that classification with the user interface to display information regarding the
plastic in addition to nearby recycling centers. In the hardware system, we were able to program
the microcontroller to use the motor to tilt the platform when an item is placed in front of the
proximity sensor. This was not exactly the intended function of the hardware portion because we
were not able to implement an integral connection between the hardware and software, but we
got very close that with a few modifications we can achieve full functionality. Despite this, we
were able to successfully complete portions of our system and we are confident that with a little
extra time we would have been able to connect the software and hardware through the model and
microcontroller to accomplish full functionality.

4.2 Uncertainties
A major uncertainty within our project was the Raspberry Pi not working. We were unable to
boot the OS downloaded from the Raspberry Pi website and at one point the green LED indicator
on the board would not even flash. This resulted in the loss of an integral component. While we
were able to work around loading the model onto the Raspberry Pi, we had designed our system
with the intention of the Raspberry Pi being the connection between the microcontroller and user
interface. The failure of the board resulted in us not being able to connect the software to the
hardware. We were able to make a determination of recyclability and simulate the physical
sorting mechanism, but were unable to test the physical sorting mechanism based on
recyclability.

Another uncertainty is the training set for the machine learning model. Since it can be difficult to
obtain images of the less common plastics, it reduced the size of the dataset for us to train and
test on. Ideally, we would have had thousands of images to train on which would have made our
model more robust and capable of accurately identifying containers regardless of placement on
the platform. Due to the fact that we had a more limited dataset, there was less room for user
error when it came to placing the container on the platform. With a more robust model, potential
user error can be handled. Moving forward, we will place an emphasis on selecting a larger
dataset, if available.

15

4.3 Ethics and Safety
Throughout the project development process, we followed the IEEE code of ethics, and made
sure to learn and apply new skills through design and implementation and follow all safety
guidelines [15]. Per IEEE Code of Ethics, we made sure to protect any user data and consider
data privacy pertaining to data collected such as the user’s location. We did not store any
sensitive information pertaining to the user’s location in our web application. One potential
safety concern would be that the plastic container should not have any liquids and should be
empty. Since the plastic container will be placed on the mounted system in between the two bins,
any potential leakage could lead to electrical safety issues. Another potential concern would be
the weight of the container. If the container is too heavy or causes the platform to be unbalanced,
it could cause the container to fall or damage part of the system.

4.4 Future Work
Given the opportunity to continue working on this project, there are several changes and
extensions we would like to make. The main recommendation for future work would be to fully
integrate all of the subsystems. Due to the faulty Raspberry Pi, we were missing the connection
between the microcontroller and machine learning model. Since we were able to house the
machine learning model with the user interface, the next step would be to make the connection
between the model and microcontroller. This would likely need some modifications to the PCB
design, particularly the selection of a different microcontroller that has WiFi capabilities. We
would also like to extend the user interface functionality from our web application to a mobile
application in order to increase the ease of use for users. This additional functionality could look
like compatibility with the Google Maps app and the ability to upload a picture from the phone
camera. Lastly, we can also integrate this with other recyclable detecting systems, such as metal
and glass detection.

16

References
[1] EPA. “The U.S. Recycling System” (2022), [Online]. Available:

https://www.epa.gov/circulareconomy/us-recycling-system#:~:text=For%20the%20envir
onment%2C%20recycling%3A,and%20process%20new%20raw%20materials. (visited
on 09/12/2023).

[2] A. Bradford, A. Truelove, S. Broude. “Trash in America: Moving From Destructive
Consumption to a Zero-Waste System” (2018), [Online]. Available:
https://frontiergroup.org/resources/trash-america/#:~:text=Currently%2C%20though%2C
%20the%20majority%20(,much%20material%20at%2034.6%20percent. (visited on
09/09/2023)

[3] “SiC402A/B”, SiC402A/B, Vishay Siliconix, Jun. 2020. [Online]. Available:
https://www.vishay.com/docs/63729/sic402abcd.pdf (visited on 09/21/2023).

[4] “Reference Board User’s Manual for SiC403 (6 A), SiC402 (10 A), and SiC401 (15 A)
Synchronous Buck Regulators”, SiC402A/B, Vishay Siliconix, Nov. 2014. [Online].
Available: https://www.vishay.com/docs/62923/sic401.pdf (visited on 09/21/2023).

[5] “STM32F103”, STM32F103, STMicroelectronics, Sep. 2023. [Online]. Available:
https://www.st.com/resource/en/datasheet/stm32f103cb.pdf (visited on 09/21/2023).

[6] “AZ1117C”, AZ1117C, Diodes, Sep. 2022. [Online]. Available:
https://www.diodes.com/assets/Datasheets/AZ1117C.pdf (visited on 09/21/2023).

[7] T. Hardin. “Plastic: It’s Not All the Same” (2021), [Online]. Available:
https://plasticoceans.org/7-types-of-plastic/ (visited on 11/21/2023).

[8] Geoapify. “”Places API Playground”.” (2023), [Online] Available:
https://apidocs.geoapify.com/playground/places/ (visited on 11/15/2023).

[9] Google Maps Platform. “”The Maps Embed API Overview”.” (2023), [Online].
Available: https://developers.google.com/maps/documentation/embed/get-started (visited
on 09/14/2023).

[10] Boesch, Gaudenz. “”VGG Very Deep Convolutional Neural Networks (VGGNet) - What
you need to know”.” (2023), [Online]. Available:
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/ (visited on
09/21/2023)

[11] PyTorch. “”VGG16_BN”.” (2017), [Online]. Available:
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16_bn.html#tor
chvision.models.vgg16_bn (visited on 09/21/2023).

[12] Kaggle. ““Plastic Identification Symbol”.” (2020) [Online] Available:
https://www.kaggle.com/code/abhichoudhury/plastic-identification-symbol/input (visited
on 09/21/2023).

[13] T. G. C. of Engineering. “”The Grainger College of Engineering - Computer
Engineering”.” (2023), [Online]. Available:

17

https://www.epa.gov/circulareconomy/us-recycling-system#:~:text=For%20the%20environment%2C%20recycling%3A,and%20process%20new%20raw%20materials.
https://www.epa.gov/circulareconomy/us-recycling-system#:~:text=For%20the%20environment%2C%20recycling%3A,and%20process%20new%20raw%20materials.
https://frontiergroup.org/resources/trash-america/#:~:text=Currently%2C%20though%2C%20the%20majority%20(,much%20material%20at%2034.6%20percent.
https://frontiergroup.org/resources/trash-america/#:~:text=Currently%2C%20though%2C%20the%20majority%20(,much%20material%20at%2034.6%20percent.
https://www.vishay.com/docs/63729/sic402abcd.pdf
https://www.vishay.com/docs/62923/sic401.pdf
https://www.st.com/resource/en/datasheet/stm32f103cb.pdf
https://www.diodes.com/assets/Datasheets/AZ1117C.pdf
https://plasticoceans.org/7-types-of-plastic/
https://apidocs.geoapify.com/playground/places/
https://developers.google.com/maps/documentation/embed/get-started
https://viso.ai/deep-learning/vgg-very-deep-convolutional-networks/
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16_bn.html#torchvision.models.vgg16_bn
https://pytorch.org/vision/main/models/generated/torchvision.models.vgg16_bn.html#torchvision.models.vgg16_bn
https://www.kaggle.com/code/abhichoudhury/plastic-identification-symbol/input

https://grainger.illinois.edu/academics/undergraduate/majors-and-minors/computer-engin
eering (visited on 09/21/2023).

[14] Datagen. “Understanding VGG16: Concepts, Architecture, and Performance.” (2023),
[Online]. Available:
datagen.tech/guides/computer-vision/vgg16/#:~:text=The%20VGG16%20model%20can
%20achieve,smaller%203%C3%973%20filters (visited on 12/4/2023).

[15] IEEE. “”IEEE Code of Ethics”.” (2016), [Online]. Available:
https://www.ieee.org/about/corporate/governance/p7-8.html (visited on 09/13/2023).

18

https://grainger.illinois.edu/academics/undergraduate/majors-and-minors/computer-engineering
https://grainger.illinois.edu/academics/undergraduate/majors-and-minors/computer-engineering
http://datagen.tech/guides/computer-vision/vgg16/#:~:text=The%20VGG16%20model%20can%20%20achieve,smaller%203%C3%973%20filters.
http://datagen.tech/guides/computer-vision/vgg16/#:~:text=The%20VGG16%20model%20can%20%20achieve,smaller%203%C3%973%20filters.

Appendix A: PCB Schematics

A.1 Microcontroller Schematic

Figure 8: Microcontroller connections

19

A.2 Stepper Motor Driver Schematic

Figure 9: Stepper Motor Driver

A.3 Buck Converter and LDO Schematic

Figure 10: Buck Converter and LDO Schematic

20

Appendix B: Requirements and Verification Tables

B.1 Control Subsystem Requirements and Verification Table

Requirement Verification

● Stepper motor capable of rotating the
amount required to move the item and
return to level position ± 1.8° (1 step)

● Test sorting motion on objects of
different weights and shapes to find
necessary angle difference (estimated
45°)

● Check angle of return position and
confirm new items will be able to
stand

● MCU can communicate with multiple
other components and collect data for
analysis in an organized way with use
of one of several supported protocols

● MCU receives data input from camera
and GPS modules with minimal losses
(>98% success rate)

● MCU communicates back and forth
with microcomputer, can be verified
through raspberry pi output

● Display the data inputs to the U/I to
verify

● Microcomputer interfaces with the
internet and retrieves data in a
reasonable time (<5 seconds)

● Run a script that times the data
retrieval and outputs the time

● Display script output on the U/I and
check the time is <5 seconds and the
information retrieved is accurate

Table 3: Control Subsystem RV Table

B.2 Power Subsystem Requirements and Verification Table

Requirement Verification

● Ripple on the 5V system stays under
250 mV, as needed by the raspberry pi
and can support expected current draw
by the LDO and raspberry pi (1.5 A)

● Ripple can be measured with an
oscilloscope, current support is
available on datasheets

21

● Ripple on the 3.3V system is kept
under 300 mV for continuous MCU
operation, current must support all
3.3V components

● Ripple can be measured with an
oscilloscope, current support is
available on datasheets

Table 4: Power Subsystem RV Table

B.3 Sensor Subsystem Requirements and Verification Table

Requirements Verification

● The image the camera produces must
be at least 244 x 244 to ensure that the
symbol can be read properly by the
VGG model

● Place a plastic container in front of the
camera sensor

● Verify that the pixel count is at least
244 x 244 pixels using OpenCV

● The GPS must provide coordinates
within a 10 meter radius given that the
device is in a location free of large
obstacles

● Place device complete with the GPS
sensor in a location with known
coordinates

● Display the GPS coordinates sent by
the device on the web page (for
verification purposes only)

● Calculate the distance between the
true location and GPS coordinates

● Verify the calculated distance is within
a 10 meter radius

Table 5: Sensor Subsystem RV Table

B.4 User Interface Subsystem Requirements and Verification Table

Requirements Verification

● The web application must display
information of the type of plastic the
user is attempting to recycle

● Navigate to the web page

● View the left hand side for plastic type
and the corresponding information

● Verify the plastic type displayed
matches the type printed on the
container

22

● The web application must be able to
display recycling locations within a 30
mile radius, if applicable to a user’s
location

● Navigate to the web page

● View the right hand side for the map
visualization

● Verify that the locations (if any)
displayed accept the plastic type

Table 6: User Interface Subsystem RV Table

23

