[bookmark: _Hlk152790302]
Cheap Tracker

By:
Diana Long
Joseph Cho
Qing Wang

Final Report for ECE 445, Senior Design, Fall 2023
TA: Ma Zicheng
6th December 2023
Project #: 15
 Abstract
This system is designed to track an object at a cheaper cost than other devices currently available. This device tracks at a low cost by using cheaper parts and combining multiple sensors into one output. Using a little bit of physics and trigonometry, we can display a measurement of how much an object moved. Overall, our project worked successfully, but it showed us that working with hardware components can be very tricky when it comes to soldering and testing and that we may need more copies of the components to have backups to test with. The project also taught us that calibration of the logic used to combine data from various sources can be very complicated.

iii
ii
Contents
Introduction 	1
Design 	2
2.1 Hardware Design	2
2.1.1 ESP32-S3 Boards	2
2.1.2 LSM6DSO Accelerometer Board	6
2.1.3 Camera Module	8
2.1.4 External Casing	8
2.2 Software Design	8
2.2.1 Accelerometer Data Transfer	8
2.1.1 Camera Data Transfer	9
2.1.1 PC Board Sensor Fusion Algorithm	10
Design Verification 	13
 3.1 Hardware Verification	13
3.1.1 Voltage Supply	13
3.1.2 External Component’s Power Lifespan	13
3.1.3 External Component’s Heat Resistance	14
 3.2 Software Verification	14
3.2.1 Camera Data Output	14
3.2.2 Wireless Communication/Final Output FPS	15
Costs 	16
 4.1 Parts	16
 4.1 Labor	17
Conclusion 	18
 5.1 Accomplishments	18
 5.1 Uncertainties	18
 5.1 Ethical Considerations	18
 5.1 Future Work	19
References 	20
Appendix A: Requirement and Verification Table 	22

iii
1

1. Introduction

Virtual Reality is a growing horizon in our modern era, and to expand must be accessible to everyone to use. With both the cost of the systems being multiple hundreds of dollars and controllers needing to be controlled using your hands, we sought to make a device that tracks an object for much cheaper than commercial VR headsets and can track a body part other than our hands. Our method was to combine a low FPS camera and an accelerometer to create a higher FPS in our tracker. Using the camera’s data to pinpoint our object and the accelerometer to calculate movement when the camera is not taking a picture, we can get an output multiple times higher than the FPS of our camera. Our code communicates our accelerometer data through Wi-Fi and our camera through a serial connection to an ESP32 microcontroller, which then performs a change in position calculation using multiple accelerometer data points and the camera data point as an origin. The project’s basic visual aid is provided in Figure 1 and our overall setup of the project after we built it is provided in Figure 2. Our project ended up working, but there are many improvements that could be made to make the development process easier and the final product better. Chapter 2 describes our hardware components and code in greater detail, chapter 3 describes our testing phase of the system, chapter 4 is the logistics of our project and chapter 5 is our final findings.
[image:][image:]
Figure 1: Visual Sketch of Demo 			Figure 2: Picture of Demo Setup
2. Design
Our overall hardware design contains 2 ESP32-S3 boards, an LSM6DSO accelerometer board, a camera module and a PC. These components can be divided into 3 subsystems, the measurement subsystem, control subsystem, and power subsystem. Figure 3 below is the block diagram that shows the different components that are part of each subsystem and the power input and outputs of each component as well as the method of communication it uses. The functionality and design of each hardware component as well as the design decisions we made will be described below in the hardware design section.
[image:]
Figure 3: Subsystem Block Diagram
We also have multiple components of software design, which includes collection of data from camera module and accelerometer, communication of those data through our ESP32-S3 boards and PC, and calculation of sensor fusion output in the PC board microcontroller. The process of these software applications and the design decisions we made will also be described below in the software design section.
[bookmark: _3am3ipcq8mb][bookmark: _Toc152790471]2.1 Hardware Design
[bookmark: _5nqrh0dunxtw][bookmark: _Toc152790472]2.1.1 ESP32-S3 Boards
For our project, we designed 2 ESP32-S3 boards which will be used as the external and internal (PC) boards. We chose to copy these boards since we were able to test with the development boards that we can rent out from the lab. These boards must have the functionality of wired communication using the serial peripheral interface (SPI) and wireless communication using Wi-Fi. The components of the boards and their design will be shown below using the schematic drawings.
2
3
[image:]
Figure 4: Schematic of ESP32-S3 Boards (Part 1)
The 2 ESP32-S3 boards contain various parts that allow us to use the 4 connectors on the left side of Figure 4 (J2-J5) to access the various I/O ports of MCU. U3 on the top right corner of Figure 4 is a 1.5A linear regulator which will allow us to receive 5V as an input voltage and output the dropped voltage of approximately 3.3V. The capacitors and resistor that are next to it (C8-C11, R9) is what decides the output voltage, which should be 3.3V for our project, within the range of the regulator's possible output voltage and the functionality of the LDO is confirmed by the diode D5 which will light up when it receives 3.3V. Right below U3, we have J6 which is a simple 3 pin connector for an external battery pack that can have 3 AA batteries in it.
Under J6 is U4 which is a dual digital transistor that is required so that the value of CHIP_PU and GPIO0 is automatically dependent on the value of the DTR and RTS. Based on the design of the transistors, CHIP_PU = 0 only when DTR = 1 and RTS = 0 while GPIO0 = 0 only when DTR = 0 and RTS = 1. The design layout of the dual transistor is shown in the Figure 5 below.
[image:]
Figure 5: Layout of UMH8N Dual Transistor [1]
4
[image:]
Figure 6: Schematic of ESP32-S3 Boards (Part 2)
Next we will look at the USB connectors which are shown in Figure 6 above. J1 and J8 are USB connectors that allow us to connect the PCB board to an external component through USB cables. There are two USB connectors, one for USB to UART communication and one for ESP USB communication. J1, with its USB_D_N and USB_D_P connections, is the connector for USB to UART communication while J8, which communicates to regular numbered GPIOs of the MCU, is the connector for ESP USB communication. The components CR1-CR6 are pair diode arrays that will confirm the connections of the power and I/O signals.
5
[image:]
Figure 7: Schematic of ESP32-S3 Boards (Part 3)
Figure 7 is the last part of the ESP32-S3 board schematic and it contains CP2102N and the ESP32-S3-WROOOM-1 MCU. U1, which is the CP2102N IC, has both USB_D_P and USB_D_N signals which are from the USB connector and the U0RXD and U0TXD signals, which are UART signals. This IC is a USB to UART bridge IC, which works like a translator between two communication systems, USB and UART, and allows our MCU to receive signals from USB connectors as if they’re UART communication signals. Lastly, the ESP32-S3-WROOM-1-N16 is the MCU we’re using for the ESP32-S3 board. This is a 2.4 GHz Wi-Fi and Bluetooth module that will serve as the key to our communication between components. The last value of its name, N16, shows how much we can flash in this MCU which is 16MB for the N16. [2] All of its I/O pins are connected according to the I/Os around the board, primarily to the 4 lines of connectors.
6
[image:]
Figure 8: PCB Layout of ESP32-S3 Boards
The final design for the PCB board is a 4-layer, 73.97mm x 59.12mm board. There’s an addition of 3 mounting holes to keep the board in place when it’s used as an external component inside the casing. The USB connectors on the bottom will be left sticking out of the board to allow connection from USB cables. The ESP32-S3-WROOM-1 MCU will also have part of its top side sticking out of the board to allow its keepout zone to be left unconnected to the board, as described by its datasheet. [2] 	
[bookmark: _b1wa7icgvtyt][bookmark: _Toc152790473]2.1.2 LSM6DSO Accelerometer Board
We decided to use the LSM6DSO accelerometer board since it already has a PCB-compatible communication system (SPI) and it’s small enough to be put inside our external casing. It measures 3D acceleration data which is more than enough for the purpose of our project and its power requirements is within the reasonable bounds (3.3V).
7
[image:]
Figure 9: Schematic of LSM6DSO Accelerometer Board
The LSM6DSO accelerometer board is a relatively simple board with a single chip and its overall design is shown in Figure 9 above. LSM6DSO is a 3D digital accelerometer that has the capability to communicate with SPI or I2C. U1 shows the I/O pins of LSM6DSO and the pins show that the IC is capable of communication with both SPI and I2C. Access to these pins are provided by the two 01x06 connectors, JP1 and JP2. The LED D1 is a simple checking LED for the power while the rest of the resistors are there to provide appropriate power to different signals. The PCB design for this board is a 2-layer, 35.63mm x 25.41mm board as shown in Figure 10. There are also 4 drill holes since the accelerometer board must be held steady inside the external casing.
[image:]
Figure 10: PCB Layout of LSM6DSO Board
8
[bookmark: _cs4a38zgrj3n][bookmark: _Toc152790474]2.1.3 Camera Module
Our camera module is a small size ESP32-CAM module. We only needed image data that can be sent to the internal board for calculation, so we connected it to our PC using a USB cable and had it send data directly to the internal board for the purpose of our project.. According to the datasheet provided in the website of the module [3], the maximum output of the module is 15 FPS but the output FPS value can decrease depending on the quality of connection. We verified that the camera module’s functionality is good enough for the purpose of our project and this process will be described in the design verification section.
[bookmark: _jmvetdmbdqk6][bookmark: _Toc152790475]2.1.4 External Casing
Our external casing was a dark blue, rectangular 3D-printed plastic case. Its color was chosen as dark blue since we need as much contrast as possible with the light background that we will be demoing in. The casing was designed to be large enough to contain all of the external components, which includes the battery pack, accelerometer, and external board, in it and still have the lid close over it. It also has drill holes to keep the boards in place and a heat sink hole under the microcontroller to help dissipate heat so that our components don’t overheat.
[bookmark: _nci9z7y7zc8f][bookmark: _Toc152790476]2.2 Software design
[bookmark: _a9h61m94arte][bookmark: _Toc152790477]2.2.1 Accelerometer Data Transfer
For the effective operation of our sensor fusion algorithm, it is imperative to transmit acceleration data acquired by the accelerometer to the microcontroller, which subsequently interfaces with the personal computer[4]. The accelerometer is interfaced with the external board via a SPI connection, whereby it procures acceleration measurements and relays this information to the board[5]. The external board is equipped with an accelerometer and a microcontroller, and serves as the primary board, transmitting data to the secondary or 'slave' board. The inter-board communication is facilitated through a Wi-Fi connection, which has been selected due to its superior range capabilities when compared to alternative wireless communication methods such as Bluetooth[6].
9
2.2.2 Camera Data Transfer
The camera constitutes a pivotal element within our system architecture, as it furnishes supplementary data that empowers the system to rectify cumulative discrepancies engendered by the accelerometer. In order to convert the image data into precise tracking coordinates, a quintet of procedural steps is requisite. These steps are systematically delineated in the flowchart presented in Figure 11.
[image:]
Figure 11: Flowchart of camera data collection
The first step involves gathering raw data, which is the foundational element for our project. The data is collected from a camera[7], consisting of a series of images that capture the target from different views. Since the tracking is performed on a microcontroller, we choose to use grayscale images to avoid transferring too much data at a time.
The second step is labeling the camera in the picture. In this step, the collected images are labeled to provide the machine-learning model with information about the contents of each image. Labeling is crucial as it enables the model to understand what features we are interested in. This process is often done manually and is time-consuming[8].
The next step involves selecting an appropriate model for tracking, which is critical for the performance of the tracking system. This model will be used to identify and follow the movement or changes of objects identified in the data. Since we need to perform the tracking. Because of the limitation of memory in the microcontroller, we chose to use the Fast Object More Object (FOMO) model created by EdgeImpuse to perform the tracking[9].
Next step is the training of the model. During training, the labeled data is fed into the machine learning algorithm to develop a predictive model. The data would be separated into an 80% training set and a 20% validation set. Where the training set is used by the model to learn to associate the image input data with the output features to be tracked. The validation set is used to validate the model’s accuracy
10
and performance in recognizing the target from the background. This process involves adjusting the model's parameters so that it can generalize from the training data to new, unseen data. The F1 score in Figure 12 shows that our model is completely capable of separating the target from the background.
[image:]
Figure 12: F1 score from training results
The last step is to feed the PC board with the model that’s trained for tracking an object. After the model has been trained, it is deployed to the microcontroller that is connected to the PC. The PC board uses the model to perform real-time analysis of new data coming from the camera, applying the learned features to track objects or activities in the camera's field of view.
2.2.3 PC Board Sensor Fusion Algorithm
The sensor fusion algorithm represents the cornerstone of our software suite, offering a robust integration of data from both the accelerometer and the camera to enhance the Frame Per Second (FPS) metric. To facilitate this integration, we have developed a dual microcontroller setup wherein data transmission is executed via Wi-Fi. The microcontroller connected to the computer is tasked with the receipt of data and execution of the sensor fusion algorithm. It processes two principal types of input:
1. Accelerometer data is bifurcated into two distinct measurements: acceleration along the x-axis and acceleration along the y-axis.
2. Camera data, comprising coordinates that have been converted from the imagery captured by the camera.
11
In our system architecture that necessitates Wi-Fi for inter-microcontroller communication, the PC board is programmed to initially check the status of the Wi-Fi connection. Once the connection is active, the board will execute a rudimentary tracking algorithm that operates independently of any sensor fusion processes. This fundamental algorithm serves as a benchmark, enabling a comparative analysis of tracking performance between scenarios employing sensor fusion and those devoid of it. Utilizing the inputs from our accelerometer and camera module, our algorithm synergizes the accelerometer and camera data to augment the FPS. The procedural methodology of our algorithm is illustrated in Figure 13.
[image:]
Figure 13: Logic state machine for algorithm
Once the accelerometer is also connected to WiFi, the sensor fusion algorithm will be active.
The sensor fusion algorithm is activated once the accelerometer establishes a Wi-Fi connection..The algorithm begins by calculating the current location of the target based on the (x, y) coordinates provided by the camera and the known height of the camera. The location, in inches, is determined using the formula[10]:
Location (inches) = 		(2.2.3.1)
where, and are the x-axis and y-axis coordinates of the object, respectively. Data from the accelerometer must also be converted from units of gravity (g) to inches/m. This involves two conversions: first from 1 g to 9.8 m/s^2, and then from 9.8 m/s^2 to 0.00038 inches/m.
12
With the units unified, the microcontroller fetches the camera data as the initial reference point. To calculate the displacement in the x and y directions, the following kinematic equation is used:
· 					(2.2.3.2)
where represents the new location after factoring in accelerometer data, is the initial velocity of the target (calculated from the previous acceleration data, with =), t is the time elapsed between each accelerometer data capture, and a is the current acceleration data from the accelerometer.
By applying the 2 equations, (2.2.3.1) and (2.2.3.2), the sensor fusion algorithm can adjust the tracking information based on both visual and motion data, leading to more accurate and reliable tracking performance.
13
3. Design Verification
There were several design verifications we needed to complete for both hardware and software designs in order to ensure that our overall design would function properly and fulfill the design requirements we set for ourselves in the design document. The exact requirements we listed in our requirements and verification table will be listed in Table 2 in Appendix A.
[bookmark: _lhrui3zefi9z][bookmark: _Toc152790478]3.1 Hardware Verification
[bookmark: _n613qimhp9bs][bookmark: _Toc152790479]3.1.1 Voltage Supply
One hardware design we needed to verify was the voltage supply being sent to each component. We have components such as the accelerometer module that requires an input of 3.3V but our voltage supply from the battery pack and USB is 5V by default. We can use voltage regulators to make up for this difference, but if the Vin-Vout value is less than that of the dropout voltage of a voltage regulator, our system may end up malfunctioning. Our minimum Vout is 3.3V since the lowest voltage supply we need is 3.3V and our Vin value can be up to 5V since our board will be equipped with a microcontroller which makes our maximum dropout voltage of the voltage regulator 5-3.3=1.7V. This is enough for voltage regulators that regulate voltage to an output of 3.3V so this design should be feasible. We also checked the datasheet of the voltage regulator we’re using and it was stated that a 3.3V voltage will be provided given an input voltage of 4.7 ~ 5.3V [12].
 3.1.2 External Component’s Power Lifespan
The power consumption of the external components, which will be powered by the 3 AA batteries in the battery pack, is also an important factor since it determines how long our system can run. Total power consumption is calculated by the total current consumption of I/O using the equation of
					(3.1.2.1)
where V is voltage supplied to the component in volts and I is the current consumption of the component in amps. According to the equation (3.1.2.1), the maximum power consumption for each external component is (0.55mA+ 4.3mA) * 3.3V = 16.005 mW for the accelerometer [13], and (355+97)mA * 5V = 2.26W for the microcontroller [2]. Combining these numbers together, we get 16.005mW + 2.26W = 2276.005mW = 2.276005W. A common AA battery has around 3~4 Wh of lifetime
14
so placing 3 of these batteries would make the lifetime of our system last for approximately 4 hours assuming maximum power consumption. We also verified this functionality with our design and it ran for over 10 hours without malfunctioning.
 3.1.3 External Component’s Heat Resistance
Heat in external components is also a factor to be considered. The operating temperature for both parts in the external casing is -40°C to 85°C [2][13]. Since the demo and operation of the system would normally be under room temperature which is around 20°C, our microcontroller would have to become extremely hot for it to pass the operating temperature. Since we’re only using 2 connections, we wouldn’t be generating heat anywhere near the maximum heat capacity and we also added heat sink holes in the casing to dispense heat. This functionality was also tested when we tested the power lifespan of our external components for over 10 hours.
[bookmark: _us6m9hs0grga][bookmark: _Toc152790480]3.2 Software Verification
[bookmark: _pzo2tabnklc9][bookmark: _Toc152790481]3.2.1 Camera Data Output
One software function we had to verify was that the camera module must provide fast enough output data in order for us to create an object tracking algorithm based on it. The camera’s output data has to be at least 7 FPS for us to double the amount of input and achieve 15 FPS output with the sensor fusion data. This was tested with a basic code that outputs the time at which a camera output data is created. The output is shown below in Figure 14 and we can see that there’s 9 camera outputs within the time labeled as 10:35:34.
[image:]
Figure 14: Camera Output Data
15
[bookmark: _hn5w5j20takx][bookmark: _Toc152790482]3.2.2 Wireless Communication/Final Output FPS
Our last verification was the one that checks for the overall output of the design. The output data of the design would confirm that the wireless communication between our external and internal board is established and data is being communicated since our accelerometer data wouldn’t be able to reach the internal board if the connection wasn’t secure. Our goal of doubling the number of output data using sensor fusion data would also be verified through this test since we can see how much sensor fusion data fits into each camera data output. Figure 15 below shows our final output data which shows that data from the accelerometer is received by our internal board and internal board is able to calculate and output 3 sensor fusion data between each camera data output.
[image:]
Figure 15: Final Output Data
16
[bookmark: _daqj84vckmbl][bookmark: _Toc152790483]4. Costs
According to Table 1, our total cost of parts is $47.77 and our total labor cost adds up to $18,000 which would make our overall cost $18,047.77.
[bookmark: _81s7sd91jmkj][bookmark: _Toc152790484]4.1 Parts
	Table 1 Parts Costs

	Part
	Manufacturer
	Retail Cost ($)
	Bulk Purchase Cost ($)
	Actual Cost ($)

	CP2102N-A02-GQFN20R
	Silicon Labs
	4.44
	4.44
	8.88

	RMCF0805FG47K5
	 Stackpole Electronics Inc
	0.10
	0.10
	0.20

	[bookmark: _br3cq1vjrjws][bookmark: _Toc152790485]AP7363-33D-13
	Diodes Incorporated
	0.53
	0.53
	1.06

	RMCF0805FG22K1
	Stackpole Electronics Inc
	0.10
	0.10
	0.20

	C0805C104M5RAC7800
	KEMET
	0.10
	0.02
	0.40

	BAV99-TP
	Micro Commercial Co
	0.10
	0.10
	0.80

	CUS10S30,H3F
	Toshiba Semiconductor and Storage
	0.35
	0.35
	1.40

	61300611121
	Würth Elektronik
	0.35
	0.35
	1.40

	MPZ2012S300AT000
	TDK Corporation
	0.12
	0.12
	0.24

	RMCF0805JT33R0
	Stackpole Electronics Inc
	0.10
	0.10
	0.40

	36-975-ND
	Keystone Electronics
	1.12
	1.12
	2.24

	87227-2
	TE Connectivity AMP Connectors
	2.83
	2.83
	5.66

	B1911USD-20D000114U1930
	Harvatek Corporation
	0.10
	0.10
	0.20

	LSM6DSOTR
	STMicroelectronics
	5.88
	5.88
	5.88

	RC0805FR-074K7L
	YAGEO
	0.10
	0.25
	0.25

	10118193-0001LF
	Amphenol ICC (FCI)
	0.46
	0.46
	1.84

	UMH8NTR
	ROHM Semiconductor
	0.51
	0.51
	1.02

	M20-9771146
	Harwin
	0.47
	0.47
	3.76

	GRM21BR61H106ME43L
	Murata Electronics
	0.36
	2.35
	3.07

	CL21B105KBFNNNG
	Samsung Electro-Mechanics
	0.11
	0.11
	0.44

	ESP32-S3-WROOM-1-N16
	Espressif Systems
	3.48
	3.48
	6.96

	RMCF0805ZT0R00
	Stackpole Electronics Inc
	0.10
	0.17
	0.57

	RMCF0805JT1K00
	Stackpole Electronics Inc
	0.10
	0.10
	0.30

	RMCF0805JG10K0
	Stackpole Electronics Inc
	0.10
	0.10
	0.30

	RMCF0805JT5K10
	Stackpole Electronics Inc
	0.10
	0.10
	0.20

	RMCF0805JT100K
	Stackpole Electronics Inc
	0.10
	0.10
	0.10

	Total
	
	22.21
	24.34
	47.77

[bookmark: _44mm9p275j3i][bookmark: _Toc152790486]4.2 Labor
For each team member, we could expect a salary of (40$/hour) x 2.5 x 60 hours to complete(estimate) = $6000. Multiply with the number of team members in our team, $6000 x 3 = $18,000 total labor cost.
16
17
[bookmark: _xp58u4buhw2p][bookmark: _Toc152790487]5. Conclusion
Our project has the ability to make technologies that require object tracking to be more affordable to the public. While this current iteration cannot be used for applications such as VR, the technology we have used can be modified to gain that capability. This device has the ability to allow users who previously could not access or afford tracking technology to have a simple way to get introduced to it and allows a whole new wave of VR and tracking hype. This technology is also simple enough to be made for many different applications within the tracking world.
[bookmark: _xk4t1tvhhazn][bookmark: _Toc152790488]5.1 Accomplishments
 Our largest accomplishment was getting our entire system to function. Our internal and external microcontroller boards functioned as intended, our accelerometer was able to successfully output our movement, and our camera was able to properly capture our object and transfer its data. The fact that our system works completely is a huge feat and a major success.
[bookmark: _nw2h1gvh70qw][bookmark: _Toc152790489]5.2 Uncertainties
We had one uncertainty with our accelerometer readings. The accelerometer is attached in a way that it has a small amount of room to move within the casing. It is also an accelerometer meant to detect very small changes in movement, which means that it can be too sensitive for our project at times. This causes some error in our measurements, and while in our case they are not enough of an issue to break tracking it could be a problem with future iterations of our designs.
[bookmark: _40r2th981u23][bookmark: _Toc152790490]5.3 Ethical considerations
Following the IEEE code of Ethics [14] and the OSHA standards [15], we promise to keep the following code of Ethics and safety:
· Safety is our top priority. Our external components will be cased properly so that the parts inside the casing do not pose danger of burn from heat or electric shock to the person handling the casing, which fulfills IEEE Code of Ethics 1.
· This is also in accordance with OSHA standard 1910.137, which describes design requirements for protective electrical insulation equipment.
· We strictly adhere to the lab safety regulations and report any safety incidents or hazards, as according to the IEEE Code of Ethics 1 and 4.
· This is also in accordance with OSHA standard 1910 Subpart H, which discusses hazardous materials and the safety procedures and equipment for protection.
· We protect the privacy of sensitive information and data entrusted to us. We will only collect the minimum amount of data from the accelerometer and camera that are necessary for our project, which fulfills IEEE Code of Ethics 4.
· We will try our best to avoid accidental or intentional misuse of our project. To prevent accidental misuse, we would compose a manual for the user to let them know how to use the product properly. This fulfills the IEEE Code of Ethics 1, 2, and 3.
· We will always uphold these codes throughout the project regardless of the situation. We will report any and all cases of violation of these codes without the fear of retaliation, as described in IEEE Code of Ethics 10.
[bookmark: _5rrhhil0hl1j][bookmark: _Toc152790491]5.4 Future work
Multiple future concepts have been made for our project. Our first and arguably most important future addition would be to include a visual output instead of a numerical output. By doing so we allow the user to more easily understand how our device works and could proceed into a version that is VR compatible. The second feature we wish for our project in the future is the ability to track three-dimensional movement using a second camera and calibrating our accelerometer differently. By using a second camera there are no dead zones in our tracking and recalibrating our accelerometer would stop us from getting faulty readings. Our last future improvement would be to receive additional data points to further increase our FPS. VR cameras operate around 300 FPS in the current day, which our camera is nowhere near. If we could get our FPS up to even 60 we could have a much more useful tracker and would make a large improvement on our project’s impact.
18
19
[bookmark: _1ozpmzinvh0y][bookmark: _Toc152790492]References
[1] Rohm Semiconductor, “UMH8N / IMH8A : Transistors,” Rev. C, 2014.10, Rohm Co., 2014, https://fscdn.rohm.com/en/products/databook/datasheet/discrete/transistor/digital/umh8ntr-e.pdf, p. 1 accessed October 2023
[2] Espressif Systems, “ESP32-S3-WROOM-1ESP32-S3-WROOM-1UDatasheet,” Datasheet v1.3, Espressif Systems, 2023, https://www.espressif.com/sites/default/files/documentation/esp32-s3-wroom-1_wroom-1u_datasheet_en.pdf, pp. 3, 30~32, accessed October 2023
[3] Ai-Thinker, “ESP32-CAM,” Ai-Thinker Technology, https://docs.ai-thinker.com/en/esp32-cam, accessed October 2023
[4]Sparkfun, “LSM6DSO_Arduino_Library,” Version 1.0.0, GitHub, 2023, https://github.com/sparkfun/SparkFun_Qwiic_6DoF_LSM6DSO_Arduino_Library, accessed November 2023
[5]Arduino, “String(),” Arduino, 2023, https://www.arduino.cc/reference/en/language/variables/data-types/stringobject/, accessed November 2023
[6]ESP32 I/O, “Communication between two ESP-32,” ESP32 I/O, 2018, https://esp32io.com/tutorials/communication-between-two-esp32, accessed November 2023
[7]Sara Santos, “ESP32-CAM Take Photo and Display in Web Server,” RandomNerdTutorials, 2013-2023, https://randomnerdtutorials.com/esp32-cam-take-photo-display-web-server/, accessed November 2023
[8]Eloquentarduino, “EloquentEsp32cam,” GitHub, 2023,
https://github.com/eloquentarduino/EloquentEsp32cam, accessed November 2023
[9]DroneBot Workshop, “ESP32-CAM Object Detection with Edge Impulse,” DroneBot Workshop, 2023, https://dronebotworkshop.com/esp32-object-detect/, accessed November 2023
[10]ResearchGate, “Distance from accelerometer MPU6050,” ResearchGate, 2020, https://www.researchgate.net/post/Distance_position_from_accelerometer_MPU6050, accessed November 2023
[11]Toppr, “Equations of Motion,” Toppr, https://www.toppr.com/guides/physics/motion/equations-of-motion/, accessed November 2023
[12] Espressif, “ESP32-S3-DevKitC-1 v1.1,” Espressif Systems (Shanghai) Co., Ltd., 2016-2023, https://docs.espressif.com/projects/esp-idf/en/latest/esp32s3/hw-reference/esp32s3/user-guide-devkitc-1.html, accessed October 2023
[13] SparkFun, “SparkFun_6DoF_LSM6DSO,” Rev v10, SparkFun, 2021,
https://cdn.sparkfun.com/assets/3/1/6/b/c/SparkFun_Qwiic_6DoF_LSM6DSO_Schematic.pdf?_gl=1*dtmz04*_ga*MTQwOTI0MzQ1MS4xNjk0MDI4Njkx*_ga_T369JS7J9N*MTY5ODIwOTAzNS4xOS4xLjE2OTgyMDkwNDMuNTIuMC4w, accessed October 2023
[14] IEEE, “IEEE Code of Ethics,” Section 7, IEEE, 2023, https://www.ieee.org/about/corporate/governance/p7-8.html, accessed September 2023
[15] Occupational Safety and Health Administration, “Regulations (Standards - 29 CFR),” U.S Department of Labor, https://www.osha.gov/laws-regs/regulations/standardnumber/1910, accessed September 2023
20
21
Appendix A: Requirement and Verification Table
	Table 2 System Requirements and Verifications
	

	Requirement
	Verification
	Verification status
(Y or N)

	1.All components must be connected to the appropriate power supply.
	We can probe the pin that receives power for each component with a voltmeter and check that each component is receiving the appropriate voltage (5V or 3.3V).
	

Y

	2.The external components must not malfunction even if they were powered on for a long duration of time. It must function for at least 30 minutes to last throughout the final demo and presentation.
	The batteries inside the battery pack will be providing power to the external components
Although we did the math for the power lifespan of external components, we can verify this functionality by leaving the external components powered on for a long time (10 hours).
	

Y

	3. Components of the external components must not malfunction even if it’s exposed to an environment that is hotter than room temperature since the components will be placed inside a case.
	The external component’s functionality can be tested by having it run for 30 minutes while checking the PC to make sure that the data from the accelerometer unit is still transf
	

Y

	4. Our camera module should be capturing images at 7 fps and the data should be transferred to the PC and to the PC board for sensor fusion.
	connection between each component by probing the inputs and outputs to check that some sort of data is being transferred.
If data is being transferred but the system is malfunctioning, we can check the data being received by the PC to see if it’s either our SPI interface or I2C interface that’s not working.
If either isn’t working properly, we can check the connection of the camera module, respective converter, and the USB to check where the problem occurs and address appropriately.
	

Y

	5. PC board and external board must be able to communicate with each other through wireless communication. At least one sensor fusion output data must be included in between each camera data output.
	We can do both of these functionality by outputting our overall output data. Our software won’t be able to output sensor fusion data if the wireless communication between our boards aren’t established and our overall output data can also show that our total number of output data at least doubles with sensor fusion data.
	

Y

22
23
image1.png
Camera Module pC

PC Board

Casing (Accelerometer,
battery pack, external
board)

image2.png

image3.png
—
]
3
@
1S
[e]
—_
Q
]
[S]
[S]
<

image4.png
2|

Conn_DfxlL

o [[[fen [s o

Els

ESP32_+3V3

CHIP_PU
GPIDA
GPI0S
GPIDG

GPI015
GPIOL6

GPI017

GPI018

GPIO8

GPID3
GPIO46

GPI09
GPI010
GPI011
GPIOL2
GPI013
GPIOL4

45V

GND

n
chn,uixln . U3 Vs
i AP7363-33D-13 "9
3 < 51K
g oND 1 v our| ;
Ts criowz 11 L c10 . L c8 <3
7 GPIosL 10uF 0.1uF &4
0.1, 100
8 GPI0GD 6D ’ ’ SZ\A
9 GPIO3S =
10 GPI03B
TJat crios7 ~
GND VBUS_1 oND GND
15 P—é > | s
Conn_01x11 il 975
1 GPID36 = > UM:;NTU
2 GPID3S Ri4
Z o
4 GPID4S FIN o6 appCHEPU
5 GPIDkA 7 |, s VWV om
Je cpriou7 RTS 3 s] [s
7 P02 ¢
8 GPID20 GPI0O
9 GPID19

GND

D5
LED

image5.png
Collector ~ Base Collector
®) (5) @)

A

DT2

I&
1)) 3)

Emitter Emitter ~ Base

UMH8N

DTrt

image6.png
VBUS_1

+iv o +/iv
- BAVO9—TP
1.5KExxA 1
| K 3 r{z 2
R11 i
*x(N4 10118193-00041LF
USB_D_P 0 3]s T o
- 12 i = 3 {p+ = +5V _—
== dub CR2 o O A BAVOI_TP
BAV99—TP A 71GND GND
. 91 GND 1
5 r{s z 2 ;}1 3
2
~
GND
VBUS_2
+iV CRY +/iV
o8 BAV99-TP
1.5KExxA 1
¢ Kl s |2
R12 18
0 v ESP USB
GND
A o GPIO19
c13 +5V
—— T5V CR6
=T 10uF CR5 N BAV99-TP
BAV99-TP N
1
1
. F{; z 2 :}7 3

GND

image7.png
+3v3

ut

+l—

GND

CP2102N-AQ2-GAFN28 &
GND
29
bco GND)
RI/CLK nTR(—28 IR Raﬁ
lGND DsR—2L 5 om0
D+ TXD—22 =
b RXD—22
24 RTS 0
VoD RTS| .
& an WREGIN crs—23
Tour e vBUS 6PI0.4—22
g RsTh GPI0.5—2L >
RY RL c2 NC GPI0.6—20
221K 475 1uF ISUSPENDD GPI0.0/TXT—22 ¢
am . >12 lsuspenp GPI0.L/RXT—18 s
Lo X%CHREN GPI0.2/RS485|—LL >
s—L4 cHRL GPI0.3/WAKEUP—L0 5
Jaus cHRO12x
GND N
43V3 GND
ESP32_+3V3
uz
GND ESP32-53-WROOM-1-N16 GND
433
R7 ER
3 e o —
2 v GND—20
CHPPU_ 5oy 01|39 Gpiot
cy 3 GPIOE & 58 G0z
SPI0s & o4 102
tou a1uF [SERC e TXDO|_21__Uorx
[T ool 36 UORXD
Gl S
SPI015 8 015 1041
& S0ty 16102 o trioss
Geiote 11 |l017 o351 erise
ae i =
SPI015 13 Jio19 1036_8
ez Soien e s
GPI0kE 16 |10, 56 erious
ae g
RE GPioil 19 | o10 04T 2 eRioat
SPIOLL 19 Ji049 102125 GPI02L
10k GPIG12 20 045 1014/ _22__GRIO14
CHIP_PU 101321 GPI013
cs
1uF

image8.png
*

o

©

g o

image9.png
+3.3v 433V
R3
" 10k
SDO/5A0 1 benobse 14 | soa
SDO/SA0 GOR
SoLAUX 2] op et |13 | sct
sox 5 cex s [12 s
T 4] <poy |11 SDO_AUX
voDID_ 5 10 ocs
T - 7 ocsx
&1 eno [—
@ o 7] ano voo |8
040 =T
-
GnD D
o1 cs R12
2 sbo/sa055 ohm
ey | T2 _esct scL
10| 4 BSPA gy
2 3 Ohm
SDA
4

aND

433V

433

P2
[

1 INT2
2 INTL
3 ocs
5 scx
5 SDLAUX
6_500_AUX

4330

433

R2
8.7k

RL
4.7k

A scL

sDa

5D0/5AD

RS R7 +3.3v

0 ohm 100k T

SDO/sAO 4 g

R9
 ehm

¥DIo

o anm
a0
sox
SDI_AUX Li
o £ 2£2zf
ool &
e oo

image10.png

image11.png
Collecting Data
From Camera

Laboling the data
npicture

Choose the proper mods!
For tracking

Train the model
with Labeled data
To capture features

Feed the model
to PC board

image12.png
Model

Last training performance (validetion set)
F1 SCORE
100.0%

Confusion matrix (validation seq

BACKGROUND TARGET

£15CORE 100 100

On-device performance @

INFERENCING TIME PEAK RAM USAGE FLASH USAGE
244 ms. 71.2K 63.8K

image13.png
for PC board?

“ " WiFi
‘connection

“Wi-Fi connected
for External board?.

Perform basic tracking vith
Camera (Low FPS)

Perform fusion
Tracking(High FPS)

image14.png
sinclude *esp_canera.
¥include SHFi h>

/7

1/ V191 35:43.988

¥ : 171608

016 : 170118
10:35:34.016 : 170498
/7 410:35:34.757 164178

e 794

10:35:34.831
//a$10:35:34. 869
#40110:35:34.903

10:35:34.941
¥1719:35:34,978
ot 10:35:35.014

: 168488
: 170688
: 172898
: 167318
: 171848
: 172858
171298

coni10:35:35.050 176008
) 10:35:35.125 1 174498
| ¥61410:35:40.871 : 1646141

1(10:35:41.302 >
| “5410:35:42,205 ->
5 &
-t

: 1666271
: 1685261

image15.png
AAANY AAAYAAMAYAAMAYAMAY

info
info
info
info
info
info
info
info
info
info
info
info
info
info
info
info
info
info
info

info

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

£rom

Camera: target
Accelerameter:
Accelerameter:
Accelerameter:
Camera: target
Accelerameter:
Accelerameter:
Accelerameter:
Camera: target
Accelerameter:
Accelerameter:
Accelerameter:
Camera: target
Accelerameter:
Accelerameter:
Accelerameter:
Camera: target
Accelerameter:
Accelerameter:

Accelerometer

at (0,1€), size 16 x 8

size 16 x 8, target moved
size 16 x 8, target moved
size 16 x 8,
at (0,16),

size 16 x 8,

target moved
size 16 x 8

target moved
size 16 x 8, target moved
size 16 x 8,
at (8,16),

size 16 x 8,

target moved
size 16 x 8

target moved
size 16 x 8, target moved
size 16 x 8,
at (8,16),

size 16 x 8,

target moved
size 16 x 8
target moved

size 16 x 8, target moved
moved

x 8

size 16 x 8,
at (16,16),

size 16 x 8,

target
size 16

target moved

size 16 x 8, target moved

size 16 x 8, target moved

0.881
0.890
0.642

0.324
0.912
0.489

0.671
0.635
0.152

0.671
0.859
0.478

0.935
0.564
0.914

inches
inches

inches

inches
inches

inches

inches
inches

inches

inches
inches

inches

inches
inches

inches

%

%

direction
direction

direction

direction
direction

direction

direction
direction

direction

direction
direction

direction

direction
direction

direction

-0.082 inches in y direction
0.032 inches in y direction

0.192 inches in y direction

-0.125 inches in y direction
0.024 inches in y direction

-0.038 inches in y direction

0.115 inches in y direction
0.084 inches in y direction

-0.045 inches in y direction

-0.098 inches in y direction
-0.124 inches in y direction

0.012 inches in y direction

0.095 inches in y direction
0.027 inches in y direction

0.038 inches in v direction

